Positive and Negative Affect Differentially Predict Individual Differences and Intra-Individual Changes in Daily Cognitive Failures in Younger and Older Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Transparency and Openness
2.2. Design and Sample
2.3. Measures
2.3.1. Baseline
2.3.2. Day-Level Variables
2.4. Analytical Plan
2.4.1. General Overview
2.4.2. Inclusion of Day as a Predictor
2.4.3. Unadjusted Model
B2i(deviation of negative affect)di + B3i(day)di + εdi
B1i = γ10 + μ1i
B2i = γ20 + μ2i
B3i = γ30 + μ3i
B2i(deviation of negative affect)di + B3i(day)di + εdi
2.4.4. Adjusted Model
3. Results
3.1. Inclusion of Day as a Predictor
3.2. Singapore Sample
3.3. US Sample
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wallace, J.C. Confirmatory factor analysis of the cognitive failures questionnaire: Evidence for dimensionality and construct validity. Personal. Individ. Differ. 2004, 37, 307–324. [Google Scholar] [CrossRef]
- Bridger, R.S.; Johnsen, S.Å.K.; Brasher, K. Psychometric properties of the Cognitive Failures Questionnaire†. Ergonomics 2013, 56, 1515–1524. [Google Scholar] [CrossRef] [PubMed]
- Broadbent, D.E.; Cooper, P.F.; FitzGerald, P.; Parkes, K.R. The Cognitive Failures Questionnaire (CFQ) and its correlates. Br. J. Clin. Psychol. 1982, 21, 1–16. [Google Scholar] [CrossRef]
- Unsworth, N.; Brewer, G.A.; Spillers, G.J. Variation in cognitive failures: An individual differences investigation of everyday attention and memory failures. J. Mem. Lang. 2012, 67, 1–16. [Google Scholar] [CrossRef]
- Allahyari, T.; Saraji, G.N.; Adi, J.; Hosseini, M.; Iravani, M.; Younesian, M.; Kass, S.J. Cognitive Failures, Driving Errors and Driving Accidents. Int. J. Occup. Saf. Ergon. 2008, 14, 149–158. [Google Scholar] [CrossRef]
- Hassanzadeh-Rangi, N.; Asghar Farshad, A.; Khosravi, Y.; Zare, G.; Mirkazemi, R. Occupational Cognitive Failure and Its Relationship With Unsafe Behaviors and Accidents. Int. J. Occup. Saf. Ergon. 2014, 20, 265–271. [Google Scholar] [CrossRef]
- Wickens, C.M.; Toplak, M.E.; Wiesenthal, D.L. Cognitive failures as predictors of driving errors, lapses, and violations. Accid. Anal. Prev. 2008, 40, 1223–1233. [Google Scholar] [CrossRef]
- Abbasi, M.; Falahati, M.; Kaydani, M.; Fallah Madvari, R.; Mehri, A.; Ghaljahi, M.; Yazdanirad, S. The effects of psychological risk factors at work on cognitive failures through the accident proneness. BMC Psychol. 2021, 9, 162. [Google Scholar] [CrossRef]
- Day, A.J.; Brasher, K.; Bridger, R.S. Accident proneness revisited: The role of psychological stress and cognitive failure. Accid. Anal. Prev. 2012, 49, 532–535. [Google Scholar] [CrossRef]
- Wallace, J.C.; Vodanovich, S.J. Workplace safety performance: Conscientiousness, cognitive failure, and their interaction. J. Occup. Health Psychol. 2003, 8, 316–327. [Google Scholar] [CrossRef]
- Smith, A. Well-being and cognitive failures: A survey of university staff. Eur. J. Pharm. Med. Res. 2023, 10, 119–123. [Google Scholar]
- Hadlington, L.J. Cognitive failures in daily life: Exploring the link with Internet addiction and problematic mobile phone use. Comput. Hum. Behav. 2015, 51, 75–81. [Google Scholar] [CrossRef]
- Hartanto, A.; Lee, K.Y.X.; Chua, Y.J.; Quek, F.Y.X.; Majeed, N.M. Smartphone use and daily cognitive failures: A critical examination using a daily diary approach with objective smartphone measures. Br. J. Psychol. 2023, 114, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Wilmer, H.H.; Sherman, L.E.; Chein, J.M. Smartphones and Cognition: A Review of Research Exploring the Links between Mobile Technology Habits and Cognitive Functioning. Front. Psychol. 2017, 8, 605. [Google Scholar] [CrossRef]
- Klein, K.; Boals, A. The relationship of life event stress and working memory capacity. Appl. Cogn. Psychol. 2001, 15, 565–579. [Google Scholar] [CrossRef]
- Mahoney, A.M.; Dalby, J.T.; King, M.C. Cognitive Failures and Stress. Psychol. Rep. 1998, 82, 1432–1434. [Google Scholar] [CrossRef]
- Majeed, N.M.; Kasturiratna, K.T.A.S.; Lua, V.Y.Q.; Li, M.Y.; Hartanto, A. Discrimination and cognitive failures in Singapore and the US: An investigation of between- and within-persons associations through multilevel modelling. Int. J. Intercult. Relat. 2023, 94, 101805. [Google Scholar] [CrossRef]
- Neblett, E.W.; Shelton, J.N.; Sellers, R.M. The Role of Racial Identity in Managing Daily Racial Hassles. In Racial Identity in context: The legacy of Kenneth B. Clark.; Philogène, G., Ed.; American Psychological Association: Washington, DC, USA, 2004; pp. 77–90. ISBN 978-1-59147-122-6. [Google Scholar]
- Elfering, A.; Grebner, S.; Dudan, A. Job Characteristics in Nursing and Cognitive Failure at Work. Saf. Health Work 2011, 2, 194–200. [Google Scholar] [CrossRef]
- Linden, D.V.D.; Keijsers, G.P.J.; Eling, P.; Schaijk, R.V. Work stress and attentional difficulties: An initial study on burnout and cognitive failures. Work Stress 2005, 19, 23–36. [Google Scholar] [CrossRef]
- Smeekens, B.A.; Kane, M.J. Working memory capacity, mind wandering, and creative cognition: An individual-differences investigation into the benefits of controlled versus spontaneous thought. Psychol. Aesthet. Creat. Arts 2016, 10, 389–415. [Google Scholar] [CrossRef]
- Isbell, L.M.; Burns, K.C.; Haar, T. The Role of Affect on the Search for Global and Specific Target Information. Soc. Cogn. 2005, 23, 529–552. [Google Scholar] [CrossRef]
- Johnson, K.J.; Waugh, C.E.; Fredrickson, B.L. Smile to see the forest: Facially expressed positive emotions broaden cognition. Cogn. Emot. 2010, 24, 299–321. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, T.W.; De Rosa, E.; Anderson, A.K. Opposing Influences of Affective State Valence on Visual Cortical Encoding. J. Neurosci. 2009, 29, 7199–7207. [Google Scholar] [CrossRef] [PubMed]
- Clore, G.; Wyer, J.; Dienes, B.; Gasper, K.; Gohm, C.; Isbell, L. Affective Feelings as Feedback: Some Cognitive Consequences. In Theories of Mood and Cognition: A User’s Handbook; Taylor & Francis Group: Milton Park, UK, 2001. [Google Scholar]
- Bless, H.; Clore, G.L.; Schwarz, N.; Golisano, V.; Rabe, C.; Wölk, M. Mood and the use of scripts: Does a happy mood really lead to mindlessness? J. Pers. Soc. Psychol. 1996, 71, 665–679. [Google Scholar] [CrossRef]
- Schwarz, N. Feelings as Information: Informational and Motivational Functions of Affective States. In Handbook of Motivation and Cognition: Foundations of Social Behaviour; Guilford Press: New York, NY, USA, 1990; Volume 2. [Google Scholar]
- Fredrickson, B.L. The role of positive emotions in positive psychology: The broaden-and-build theory of positive emotions. Am. Psychol. 2001, 56, 218–226. [Google Scholar] [CrossRef]
- Fredrickson, B.L.; Branigan, C. Positive emotions broaden the scope of attention and thought-action repertoires. Cogn. Emot. 2005, 19, 313–332. [Google Scholar] [CrossRef]
- Rowe, G.; Hirsh, J.B.; Anderson, A.K. Positive affect increases the breadth of attentional selection. Proc. Natl. Acad. Sci. USA 2007, 104, 383–388. [Google Scholar] [CrossRef]
- Gasper, K.; Clore, G.L. Attending to the Big Picture: Mood and Global Versus Local Processing of Visual Information. Psychol. Sci. 2002, 13, 34–40. [Google Scholar] [CrossRef]
- Majeed, N.M.; Kasturiratna, K.T.A.S.; Li, M.Y.; Chia, J.L.; Lua, V.Y.Q.; Hartanto, A. COVID-19 stress and cognitive failures in daily life: A multilevel examination of within- and between-persons patterns. J. Pac. Rim Psychol. 2023, 17, 18344909231208119. [Google Scholar] [CrossRef]
- Probst, T.M.; Lee, H.J.; Bazzoli, A. Economic stressors and the enactment of CDC-recommended COVID-19 prevention behaviors: The impact of state-level context. J. Appl. Psychol. 2020, 105, 1397–1407. [Google Scholar] [CrossRef]
- Hartanto, A.; Yang, H. Testing theoretical assumptions underlying the relation between anxiety, mind wandering, and task-switching: A diffusion model analysis. Emotion 2022, 22, 493–510. [Google Scholar] [CrossRef] [PubMed]
- Morin, A.; Racy, F. Dynamic self-processes. In The Handbook of Personality Dynamics and Processes; Elsevier: Amsterdam, The Netherlands, 2021; pp. 365–386. ISBN 978-0-12-813995-0. [Google Scholar]
- Smallwood, J.; Schooler, J.W. The restless mind. Psychol. Bull. 2006, 132, 946–958. [Google Scholar] [CrossRef] [PubMed]
- Banks, J.B.; Boals, A. Understanding the role of mind wandering in stress-related working memory impairments. Cogn. Emot. 2017, 31, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Burdett, B.R.D.; Charlton, S.G.; Starkey, N.J. Not all minds wander equally: The influence of traits, states and road environment factors on self-reported mind wandering during everyday driving. Accid. Anal. Prev. 2016, 95, 1–7. [Google Scholar] [CrossRef]
- McVay, J.C.; Kane, M.J. Does mind wandering reflect executive function or executive failure? Comment on Smallwood and Schooler (2006) and Watkins (2008). Psychol. Bull. 2010, 136, 188–197. [Google Scholar] [CrossRef]
- Chua, K.Q.; Ng, R.; Sung, C.L.Q.; Hartanto, A.; Oh, V.Y.S.; Tong, E.M.W. Relationship between contentment and working memory capacity: Experimental and naturalistic evidence. Curr. Psychol. 2023, 42, 26243–26258. [Google Scholar] [CrossRef]
- Van Der Stigchel, S.; Imants, P.; Richard Ridderinkhof, K. Positive affect increases cognitive control in the antisaccade task. Brain Cogn. 2011, 75, 177–181. [Google Scholar] [CrossRef]
- Yang, H.; Yang, S.; Isen, A.M. Positive affect improves working memory: Implications for controlled cognitive processing. Cogn. Emot. 2013, 27, 474–482. [Google Scholar] [CrossRef]
- Könen, T.; Karbach, J. Self-Reported Cognitive Failures in Everyday Life: A Closer Look at Their Relation to Personality and Cognitive Performance. Assessment 2020, 27, 982–995. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The Unity and Diversity of Executive Functions and Their Contributions to Complex “Frontal Lobe” Tasks: A Latent Variable Analysis. Cognit. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef]
- Unsworth, N.; McMillan, B.D.; Brewer, G.A.; Spillers, G.J. Everyday attention failures: An individual differences investigation. J. Exp. Psychol. Learn. Mem. Cogn. 2012, 38, 1765–1772. [Google Scholar] [CrossRef] [PubMed]
- Keyes, C.L.M. Psychological Well-Being. In Encyclopedia of Gerontology; Elsevier: Amsterdam, The Netherlands, 2007; pp. 399–406. ISBN 978-0-12-370870-0. [Google Scholar]
- Almeida, D.M. Resilience and Vulnerability to Daily Stressors Assessed via Diary Methods. Curr. Dir. Psychol. Sci. 2005, 14, 64–68. [Google Scholar] [CrossRef]
- Bolger, N.; Davis, A.; Rafaeli, E. Diary Methods: Capturing Life as it is Lived. Annu. Rev. Psychol. 2003, 54, 579–616. [Google Scholar] [CrossRef] [PubMed]
- Lischetzke, T. Daily Diary Methodology. In Encyclopedia of Quality of Life and Well-Being Research; Michalos, A.C., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 1413–1419. ISBN 978-94-007-0752-8. [Google Scholar]
- Hektner, J.; Schmidt, J.; Csikszentmihalyi, M. Experience Sampling Method; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2007; ISBN 978-1-4129-4923-1. [Google Scholar]
- R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024.
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. dplyr: A Grammar of Data Manipulation 2023, 1.1.4. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 15 November 2024).
- Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research 2024, 2.4.3. Available online: https://CRAN.R-project.org/package=psych (accessed on 15 November 2024).
- Rosseel, Y.; Jorgensen, T.D.; De Wilde, L. lavaan: Latent Variable Analysis 2012, 0.6–18. Available online: https://doi.org/10.32614/CRAN.package.lavaan (accessed on 15 November 2024).
- Jorgensen, T.D.; Pornprasertmanit, S.; Schoemann, A.M.; Rosseel, Y. semTools: Useful Tools for Structural Equation Modeling 2022, 0.5–6. Available online: https://CRAN.R-project.org/package=semTools (accessed on 15 November 2024).
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. lme4: Linear Mixed-Effects Models using “Eigen” and S4 2015, 1.1–35.5. Available online: https://doi.org/10.32614/CRAN.package.lme4 (accessed on 15 November 2024).
- Kuznetsova, A.; Bruun Brockhoff, P.; Haubo Bojesen Christensen, R. lmerTest: Tests in Linear Mixed Effects Models 2017, 3.1–3. Available online: https://doi.org/10.32614/CRAN.package.lmerTest (accessed on 15 November 2024).
- Ben-Shachar, M.S.; Makowski, D.; Lüdecke, D.; Patil, I.; Wiernik, B.M.; Thériault, R.; Waggoner, P. effectsize: Indices of Effect Size 2020, 0.8.9. Available online: https://doi.org/10.32614/CRAN.package.effectsize (accessed on 15 November 2024).
- Patil, I.; Bacher, E.; Makowski, D.; Lüdecke, D.; Ben-Shachar, M.S.; Wiernik, B.M. datawizard: Easy Data Wrangling and Statistical Transformations 2022, 0.12.2. Available online: https://doi.org/10.32614/CRAN.package.datawizard (accessed on 15 November 2024).
- Wickham, H.; Chang, W.; Henry, L.; Pedersen, T.L.; Takahashi, K.; Wilke, C.; Woo, K.; Yutani, H.; Dunnington, D.; Van Den Brand, T. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics 2016, 3.5.1. Available online: https://doi.org/10.32614/CRAN.package.ggplot2 (accessed on 15 November 2024).
- Kassambara, A. ggpubr: “ggplot2” Based Publication Ready Plots 2023, 0.6.0. Available online: https://CRAN.R-project.org/package=ggpubr (accessed on 15 November 2024).
- Goh, A.Y.H.; Chia, S.M.; Majeed, N.M.; Chen, N.R.Y.; Hartanto, A. Untangling the Additive and Multiplicative Relations between Natural Scenery Exposure and Human–Animal Interaction on Affective Well-Being: Evidence from Daily Diary Studies. Sustainability 2023, 15, 2910. [Google Scholar] [CrossRef]
- Lua, V.Y.Q.; Majeed, N.M.; Leung, A.K.-Y.; Hartanto, A. A daily within-person investigation on the link between social expectancies to be busy and emotional wellbeing: The moderating role of emotional complexity acceptance. Cogn. Emot. 2022, 36, 773–780. [Google Scholar] [CrossRef]
- Ng, M.H.S.; Lua, V.Y.Q.; Majeed, N.M.; Hartanto, A. Does trait self-esteem serve as a protective factor in maintaining daily affective well-being? Multilevel analyses of daily diary studies in the US and Singapore. Personal. Individ. Differ. 2022, 198, 111804. [Google Scholar] [CrossRef]
- Ryff, C.; Almeida, D.; Ayanian, J.; Binkley, N.; Carr, D.S.; Coe, C.; Davidson, R.; Grzywacz, J.; Karlamangla, A.; Krueger, R.; et al. Midlife in the United States (MIDUS 3), 2013–2014: Version 7 2015. Available online: https://doi.org/10.3886/ICPSR36346.V7 (accessed on 7 November 2024).
- Ryff, C.D.; Almeida, D.M. Midlife in the United States (MIDUS 3): Daily Diary Project, 2017–2019: Version 1 2022. Available online: https://doi.org/10.3886/ICPSR38529.V1 (accessed on 7 November 2024).
- Ryff, C.; Almeida, D.M.; Ayanian, J.Z.; Binkley, N.; Carr, D.S.; Coe, C.; Davidson, R.; Grzywacz, J.; Karlamangla, A.; Krueger, R.; et al. Midlife in the United States (MIDUS Refresher 1), 2011–2014: Version 3 2016. Available online: https://doi.org/10.3886/ICPSR36532.V3 (accessed on 7 November 2024).
- Ryff, C.D.; Almeida, D.M. Midlife in the United States (MIDUS Refresher 1): Daily Diary Project, 2012–2014: Version 2 2018. Available online: https://doi.org/10.3886/ICPSR37083.V2 (accessed on 7 November 2024).
- Schönbrodt, F.D.; Perugini, M. At what sample size do correlations stabilize? J. Res. Personal. 2013, 47, 609–612. [Google Scholar] [CrossRef]
- Adler, N.E.; Epel, E.S.; Castellazzo, G.; Ickovics, J.R. Relationship of subjective and objective social status with psychological and physiological functioning: Preliminary data in healthy, White women. Health Psychol. 2000, 19, 586–592. [Google Scholar] [CrossRef]
- Mroczek, D.K.; Kolarz, C.M. The effect of age on positive and negative affect: A developmental perspective on happiness. J. Pers. Soc. Psychol. 1998, 75, 1333–1349. [Google Scholar] [CrossRef]
- Lange, S.; Süß, H.-M. Measuring slips and lapses when they occur—Ambulatory assessment in application to cognitive failures. Conscious. Cogn. 2014, 24, 1–11. [Google Scholar] [CrossRef]
- Sunderland, A.; Harris, J.E.; Baddeley, A.D. Do laboratory tests predict everyday memory? A neuropsychological study. J. Verbal Learn. Verbal Behav. 1983, 22, 341–357. [Google Scholar] [CrossRef]
- Lin, L.-C.; Huang, P.-H.; Weng, L.-J. Selecting Path Models in SEM: A Comparison of Model Selection Criteria. Struct. Equ. Model. Multidiscip. J. 2017, 24, 855–869. [Google Scholar] [CrossRef]
- Lu, Z.-H.; Chow, S.-M.; Loken, E. A comparison of Bayesian and frequentist model selection methods for factor analysis models. Psychol. Methods 2017, 22, 361–381. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, A.; Ghosh, J.K. AIC, BIC and Recent Advances in Model Selection. In Philosophy of Statistics; Elsevier: Amsterdam, The Netherlands, 2011; pp. 583–605. ISBN 978-0-444-51862-0. [Google Scholar]
- Huang, P.-H. Asymptotics of AIC, BIC, and RMSEA for Model Selection in Structural Equation Modeling. Psychometrika 2017, 82, 407–426. [Google Scholar] [CrossRef]
- Vrieze, S.I. Model selection and psychological theory: A discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychol. Methods 2012, 17, 228–243. [Google Scholar] [CrossRef]
- Enders, C.K.; Tofighi, D. Centering predictor variables in cross-sectional multilevel models: A new look at an old issue. Psychol. Methods 2007, 12, 121–138. [Google Scholar] [CrossRef]
- Banks, S.J.; Obuchowski, N.; Shin, W.; Lowe, M.; Phillips, M.; Modic, M.; Bernick, C. The Protective Effect of Education on Cognition in Professional Fighters. Arch. Clin. Neuropsychol. 2014, 29, 54–59. [Google Scholar] [CrossRef]
- Hyde, J.S. Sex and cognition: Gender and cognitive functions. Curr. Opin. Neurobiol. 2016, 38, 53–56. [Google Scholar] [CrossRef]
- Murman, D. The Impact of Age on Cognition. Semin. Hear. 2015, 36, 111–121. [Google Scholar] [CrossRef]
- Tomasi, D.; Volkow, N.D. Associations of family income with cognition and brain structure in USA children: Prevention implications. Mol. Psychiatry 2021, 26, 6619–6629. [Google Scholar] [CrossRef]
- Yang, H.; Yang, S. Positive affect facilitates task switching in the dimensional change card sort task: Implications for the shifting aspect of executive function. Cogn. Emot. 2014, 28, 1242–1254. [Google Scholar] [CrossRef] [PubMed]
- Phillips, L.H.; Bull, R.; Adams, E.; Fraser, L. Positive mood and executive function: Evidence from Stroop and fluency tasks. Emotion 2002, 2, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Dreisbach, G.; Goschke, T. How Positive Affect Modulates Cognitive Control: Reduced Perseveration at the Cost of Increased Distractibility. J. Exp. Psychol. Learn. Mem. Cogn. 2004, 30, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.L.; Chentsova-Dutton, Y.; Freire-Bebeau, L.; Przymus, D.E. Emotional expression and physiology in European Americans and Hmong Americans. Emotion 2002, 2, 380–397. [Google Scholar] [CrossRef]
- Tsai, J.L.; Levenson, R.W.; McCoy, K. Cultural and temperamental variation in emotional response. Emotion 2006, 6, 484–497. [Google Scholar] [CrossRef]
- Bond, M.H. Emotions and their expression in Chinese culture. J. Nonverbal Behav. 1993, 17, 245–262. [Google Scholar] [CrossRef]
- Eng, J.S. Emotion Regulation and Culture: The Effects of Cultural Models of Self on Western and East Asian Differences in Suppression and Reappraisal; University of California: Berkeley, CA, USA, 2012. [Google Scholar]
- Haga, S.M.; Kraft, P.; Corby, E.-K. Emotion Regulation: Antecedents and Well-Being Outcomes of Cognitive Reappraisal and Expressive Suppression in Cross-Cultural Samples. J. Happiness Stud. 2009, 10, 271–291. [Google Scholar] [CrossRef]
- Elliot, A.J.; Chirkov, V.I.; Kim, Y.; Sheldon, K.M. A Cross-Cultural Analysis of Avoidance (Relative to Approach) Personal Goals. Psychol. Sci. 2001, 12, 505–510. [Google Scholar] [CrossRef]
- Heine, S.J.; Lehman, D.R.; Markus, H.R.; Kitayama, S. Is there a universal need for positive self-regard? Psychol. Rev. 1999, 106, 766–794. [Google Scholar] [CrossRef]
- Folkman, S.; Lazarus, R.S.; Pimley, S.; Novacek, J. Age differences in stress and coping processes. Psychol. Aging 1987, 2, 171–184. [Google Scholar] [CrossRef]
- McCrae, R.R. Age Differences in the Use of Coping Mechanisms. J. Gerontol. 1982, 37, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Carstensen, L.L.; Mikels, J.A. At the Intersection of Emotion and Cognition: Aging and the Positivity Effect. Curr. Dir. Psychol. Sci. 2005, 14, 117–121. [Google Scholar] [CrossRef]
- Harmon-Jones, E.; Gable, P.A.; Price, T.F. Does Negative Affect Always Narrow and Positive Affect Always Broaden the Mind? Considering the Influence of Motivational Intensity on Cognitive Scope. Curr. Dir. Psychol. Sci. 2013, 22, 301–307. [Google Scholar] [CrossRef]
- Hartanto, A.; Ong, N.C.H.; Ng, W.Q.; Majeed, N.M. The Effect of State Gratitude on Cognitive Flexibility: A Within-Subject Experimental Approach. Brain Sci. 2020, 10, 413. [Google Scholar] [CrossRef] [PubMed]
- Payne, T.W.; Schnapp, M.A. The Relationship between Negative Affect and Reported Cognitive Failures. Depress. Res. Treat. 2014, 2014, 396195. [Google Scholar] [CrossRef]
- Fossati, P.; Bastard Guillaume, L.; Ergis, A.-M.; Allilaire, J.-F. Qualitative analysis of verbal fluency in depression. Psychiatry Res. 2003, 117, 17–24. [Google Scholar] [CrossRef]
- Videbech, P.; Ravnkilde, B.; Kristensen, S.; Egander, A.; Clemmensen, K.; Rasmussen, N.A.; Gjedde, A.; Rosenberg, R. The Danish PET/depression project: Poor verbal fluency performance despite normal prefrontal activation in patients with major depression. Psychiatry Res. Neuroimaging 2003, 123, 49–63. [Google Scholar] [CrossRef]
- Eysenck, M.W.; Calvo, M.G. Anxiety and Performance: The Processing Efficiency Theory. Cogn. Emot. 1992, 6, 409–434. [Google Scholar] [CrossRef]
- McVay, J.C.; Kane, M.J.; Kwapil, T.R. Tracking the train of thought from the laboratory into everyday life: An experience-sampling study of mind wandering across controlled and ecological contexts. Psychon. Bull. Rev. 2009, 16, 857–863. [Google Scholar] [CrossRef]
- Poerio, G.L.; Totterdell, P.; Miles, E. Mind-wandering and negative mood: Does one thing really lead to another? Conscious. Cogn. 2013, 22, 1412–1421. [Google Scholar] [CrossRef]
- Stawarczyk, D.; Majerus, S.; D’Argembeau, A. Concern-induced negative affect is associated with the occurrence and content of mind-wandering. Conscious. Cogn. 2013, 22, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Mroczek, D.K.; Almeida, D.M. The Effect of Daily Stress, Personality, and Age on Daily Negative Affect. J. Pers. 2004, 72, 355–378. [Google Scholar] [CrossRef] [PubMed]
- Mor, N.; Doane, L.D.; Adam, E.K.; Mineka, S.; Zinbarg, R.E.; Griffith, J.W.; Craske, M.G.; Waters, A.; Nazarian, M. Within-person variations in self-focused attention and negative affect in depression and anxiety: A diary study. Cogn. Emot. 2010, 24, 48–62. [Google Scholar] [CrossRef]
- Seli, P.; Beaty, R.E.; Marty-Dugas, J.; Smilek, D. Depression, anxiety, and stress and the distinction between intentional and unintentional mind wandering. Psychol. Conscious. Theory Res. Pract. 2019, 6, 163–170. [Google Scholar] [CrossRef]
- Cohen, J.N.; Taylor Dryman, M.; Morrison, A.S.; Gilbert, K.E.; Heimberg, R.G.; Gruber, J. Positive and Negative Affect as Links Between Social Anxiety and Depression: Predicting Concurrent and Prospective Mood Symptoms in Unipolar and Bipolar Mood Disorders. Behav. Ther. 2017, 48, 820–833. [Google Scholar] [CrossRef]
- Rutter, L.A.; Ten Thij, M.; Lorenzo-Luaces, L.; Valdez, D.; Bollen, J. Negative affect variability differs between anxiety and depression on social media. PLoS ONE 2024, 19, e0272107. [Google Scholar] [CrossRef]
- Sultson, H.; Murd, C.; Havik, M.; Konstabel, K. Negative affect instability predicts elevated depressive and generalized anxiety disorder symptoms even when negative affect intensity is controlled for: An ecological momentary assessment study. Front. Psychol. 2024, 15, 1371115. [Google Scholar] [CrossRef]
- Eysenck, M.W.; Derakshan, N.; Santos, R.; Calvo, M.G. Anxiety and cognitive performance: Attentional control theory. Emotion 2007, 7, 336–353. [Google Scholar] [CrossRef]
- Waszczuk, M.A.; Brown, H.M.; Eley, T.C.; Lester, K.J. Attentional Control Theory in Childhood: Enhanced Attentional Capture by Non-Emotional and Emotional Distractors in Anxiety and Depression. PLoS ONE 2015, 10, e0141535. [Google Scholar] [CrossRef]
- Edwards, E.J.; Edwards, M.S.; Lyvers, M. Cognitive trait anxiety, situational stress, and mental effort predict shifting efficiency: Implications for attentional control theory. Emotion 2015, 15, 350–359. [Google Scholar] [CrossRef]
- Majeed, N.M.; Chua, Y.J.; Kothari, M.; Kaur, M.; Quek, F.Y.X.; Ng, M.H.S.; Ng, W.Q.; Hartanto, A. Anxiety disorders and executive functions: A three-level meta-analysis of reaction time and accuracy. Psychiatry Res. Commun. 2023, 3, 100100. [Google Scholar] [CrossRef]
- Conway, N.; Briner, R.B. A daily diary study of affective responses to psychological contract breach and exceeded promises. J. Organ. Behav. 2002, 23, 287–302. [Google Scholar] [CrossRef]
- Scollon, C.N.; Kim-Prieto, C.; Scollon, C.N. Experience Sampling: Promises and Pitfalls, Strengths and Weaknesses. J. Happiness Stud. 2003, 4, 5–34. [Google Scholar] [CrossRef]
- Olorunfemi, D. Diary studies in research: More than a research method. Int. J. Mark. Res. 2024, 66, 410–427. [Google Scholar] [CrossRef]
- Iida, M.; Shrout, P.E.; Laurenceau, J.-P.; Bolger, N. Using diary methods in psychological research. In APA Handbook of Research Methods in Psychology, Vol 1: Foundations, Planning, Measures, and Psychometrics; Cooper, H., Camic, P.M., Long, D.L., Panter, A.T., Rindskopf, D., Sher, K.J., Eds.; American Psychological Association: Washington, DC, USA, 2012; pp. 277–305. ISBN 978-1-4338-1004-6. [Google Scholar]
- Lang, P.J. The emotion probe: Studies of motivation and attention. Am. Psychol. 1995, 50, 372–385. [Google Scholar] [CrossRef]
- Russell, J.A. Core affect and the psychological construction of emotion. Psychol. Rev. 2003, 110, 145–172. [Google Scholar] [CrossRef]
- Clark, L.A.; Watson, D. The PANAS-X: Manual for the Positive and Negative Affect Schedule—Expanded Form; University of Iowa: Iowa City, IA, USA, 1994. [Google Scholar] [CrossRef]
- Russell, J.A. A circumplex model of affect. J. Pers. Soc. Psychol. 1980, 39, 1161–1178. [Google Scholar] [CrossRef]
- Efklides, A.; Sideridis, G.D. Assessing Cognitive Failures. Eur. J. Psychol. Assess. 2009, 25, 69–72. [Google Scholar] [CrossRef]
- Williams, P.G.; Suchy, Y.; Rau, H.K. Individual Differences in Executive Functioning: Implications for Stress Regulation. Ann. Behav. Med. 2009, 37, 126–140. [Google Scholar] [CrossRef]
- Morris, M.C.; Evans, L.D.; Rao, U.; Garber, J. Executive function moderates the relation between coping and depressive symptoms. Anxiety Stress Coping 2015, 28, 31–49. [Google Scholar] [CrossRef]
- Ng, T.L.Y.; Majeed, N.M.; Lua, V.Y.Q.; Hartanto, A. Do executive functions buffer against COVID-19 stress?: A latent variable approach. Curr. Psychol. 2024, 43, 16939–16955. [Google Scholar] [CrossRef] [PubMed]
- Blasco-Magraner, J.S.; Bernabé-Valero, G.; Marín-Liébana, P.; Botella-Nicolás, A.M. Changing positive and negative affects through music experiences: A study with university students. BMC Psychol. 2023, 11, 76. [Google Scholar] [CrossRef] [PubMed]
- Giannouli, V.; Yordanova, J.; Kolev, V. Can Brief Listening to Mozart’s Music Improve Visual Working Memory? An Update on the Role of Cognitive and Emotional Factors. J. Intell. 2024, 12, 54. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-C.; Wang, H.-H.; Chou, F.-H.; Chen, K.-M. The Effect of Music Therapy on Cognitive Functioning Among Older Adults: A Systematic Review and Meta-Analysis. J. Am. Med. Dir. Assoc. 2015, 16, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Majeed, N.M.; Lua, V.Y.Q.; Chong, J.S.; Lew, Z.; Hartanto, A. Does bedtime music listening improve subjective sleep quality and next-morning well-being in young adults? A randomized cross-over trial. Psychomusicol. Music Mind Brain 2021, 31, 149–158. [Google Scholar] [CrossRef]
- Carrigan, N.; Barkus, E. A systematic review of cognitive failures in daily life: Healthy populations. Neurosci. Biobehav. Rev. 2016, 63, 29–42. [Google Scholar] [CrossRef]
- Giannouli, V.; Tsolaki, M. Is negative affect associated with deficits in financial capacity in nondepressed older adults? A preliminary study. J. Affect. Disord. Rep. 2022, 10, 100391. [Google Scholar] [CrossRef]
- Vanderhasselt, M.-A.; Demeyer, I.; Van Imschoot, L.; Hoorelbeke, K.; De Raedt, R. Cognitive Control Training in Healthy Older Adults: A Proof of Concept Study on the Effects on Cognitive Functioning, Emotion Regulation and Affect. Cogn. Ther. Res. 2021, 45, 959–968. [Google Scholar] [CrossRef]
Variable | N | M (SD) or % | Observed Range | Theoretical Range |
---|---|---|---|---|
Participant Level a | ||||
Demographics | ||||
Age | 253 | 22.11 (1.63) | 19–29 | |
Sex (% Female) | 253 | 76.68% | ||
Race (%) | 253 | |||
Chinese | 190 | 75.10% | ||
Malay | 12 | 4.74% | ||
Indian | 26 | 10.28% | ||
Others | 25 | 9.88% | ||
Monthly household income | 253 | 3.00 (1.43) | 1–6 | 1–6 |
Subjective social status | 253 | 6.11 (1.25) | 2–10 | 1–10 |
Average of day-level variables | ||||
Average positive affect | 253 | 1.89 (0.72) | 0.00–3.97 | 0.00–4.00 |
Average negative affect | 253 | 0.57 (0.45) | 0.00–2.29 | 0.00–4.00 |
Average cognitive failures | 253 | 0.34 (0.35) | 0.00–2.87 | 0.00–4.00 |
Day Level b | ||||
Daily positive affect | 1721 | 1.90 (0.91) | 0.00–4.00 | 0.00–4.00 |
Daily negative affect | 1721 | 0.57 (0.61) | 0.00–3.93 | 0.00–4.00 |
Daily cognitive failures (severity) | 1721 | 0.33 (0.44) | 0.00–3.00 | 0.00–4.00 |
Variable | N | M (SD) or % | Observed Range | Theoretical Range |
---|---|---|---|---|
Participant Level a | ||||
Demographics | ||||
Age | 1726 | 56.22 (13.51) | 25–90 | |
Sex (% female) | 1726 | 55.04% | ||
Race (%) | 1726 | |||
White | 1520 | 88.06% | ||
Black | 74 | 4.29% | ||
Other | 132 | 7.65% | ||
Marital status (% Married) | 1726 | 66.98% | ||
Education level | 1726 | 7.93 (2.41) | 1–12 | 1–12 |
Annual household income (in units of 10,000) | 1726 | 8.98 (6.87) | 0–30 | 0–30 |
Subjective social status | 1726 | 6.43 (1.83) | 1–10 | 1–10 |
Average of day-level variables | ||||
Average positive affect | 1726 | 2.61 (0.71) | 0.21–4.00 | 0.00–4.00 |
Average negative affect | 1726 | 0.19 (0.24) | 0.00–2.86 | 0.00–4.00 |
Average cognitive failures | 1726 | 0.71 (0.82) | 0.00–7.00 | 0.00–9.00 |
Day Level b | ||||
Daily positive affect | 12,722 | 2.61 (0.79) | 0.00–4.00 | 0.00–4.00 |
Daily negative affect | 12,722 | 0.19 (0.30) | 0.00–3.43 | 0.00–4.00 |
Daily cognitive failures (count) | 12,722 | 0.69 (1.07) | 0.00–8.00 | 0.00–9.00 |
Singapore (Nparticipants = 253, Nobservations = 1721) | US (Nparticipants = 1726, Nobservations = 12,722) | |||
---|---|---|---|---|
Model | AIC | BIC | AIC | BIC |
Model A (null model) | 1165 | 1182 | 26,092 | 26,107 |
Model B (day as fixed) | 1140 | 1162 | 25,856 | 25,878 |
Model C (day as fixed and random) | 1107 | 1140 | 25,757 | 25,794 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guevarra, Y.A.; Majeed, N.M.; Hisham, E.M.; Hartanto, A. Positive and Negative Affect Differentially Predict Individual Differences and Intra-Individual Changes in Daily Cognitive Failures in Younger and Older Adults. Brain Sci. 2024, 14, 1259. https://doi.org/10.3390/brainsci14121259
Guevarra YA, Majeed NM, Hisham EM, Hartanto A. Positive and Negative Affect Differentially Predict Individual Differences and Intra-Individual Changes in Daily Cognitive Failures in Younger and Older Adults. Brain Sciences. 2024; 14(12):1259. https://doi.org/10.3390/brainsci14121259
Chicago/Turabian StyleGuevarra, Ysabel A., Nadyanna M. Majeed, Eva M. Hisham, and Andree Hartanto. 2024. "Positive and Negative Affect Differentially Predict Individual Differences and Intra-Individual Changes in Daily Cognitive Failures in Younger and Older Adults" Brain Sciences 14, no. 12: 1259. https://doi.org/10.3390/brainsci14121259
APA StyleGuevarra, Y. A., Majeed, N. M., Hisham, E. M., & Hartanto, A. (2024). Positive and Negative Affect Differentially Predict Individual Differences and Intra-Individual Changes in Daily Cognitive Failures in Younger and Older Adults. Brain Sciences, 14(12), 1259. https://doi.org/10.3390/brainsci14121259