Exploring Vitreous Haze as a Potential Biomarker for Accelerated Glymphatic Outflow and Neurodegeneration in Multiple Sclerosis: A Cross-Sectional Study
Abstract
:1. Introduction
2. Methods
2.1. Participants and Assessment
2.2. Retinal Layer Thickness and Vitreous Haze Measurements
2.3. MRI Protocol
2.4. Statistical Analyses
3. Results
3.1. VH and Demographic Characteristics
3.1.1. VH and MS Phenotype
3.1.2. VH and Severity of Disability, Stratified by EDSS
3.2. VH and Retinal Layer Thickness
3.3. Magnetic Resonance Imaging
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamm, C.P.; Uitdehaag, B.M.; Polman, C.H. Multiple sclerosis: Current knowledge and future outlook. Eur. Neurol. 2014, 72, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Vidal-Jordana, A.; Montalban, X. Multiple sclerosis: Clinical aspects. Curr. Opin. Neurol. 2018, 31, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Criste, G.; Trapp, B.; Dutta, R. Chapter 5—Axonal loss in multiple sclerosis: Causes and mechanisms. In Handbook of Clinical Neurology; Goodin, D.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 122, pp. 101–113. [Google Scholar]
- Amato, M.P.; Derfuss, T.; Hemmer, B.; Liblau, R.; Montalban, X.; Soelberg Sørensen, P.; Miller, D.H. Environmental modifiable risk factors for multiple sclerosis: Report from the 2016 ECTRIMS focused workshop. Mult. Scler. J. 2018, 24, 590–603. [Google Scholar] [CrossRef] [PubMed]
- Walton, C.; King, R.; Rechtman, L.; Kaye, W.; Leray, E.; Marrie, R.A.; Robertson, N.; La Rocca, N.; Uitdehaag, B.; van der Mei, I.; et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult. Scler. 2020, 26, 1816–1821. [Google Scholar] [CrossRef] [PubMed]
- Filippi, M.; Bar-Or, A.; Piehl, F.; Preziosa, P.; Solari, A.; Vukusic, S.; Rocca, M.A. Multiple sclerosis. Nat. Rev. Dis. Primers 2018, 4, 43. [Google Scholar] [CrossRef] [PubMed]
- Segal, B.M. 66—Multiple Sclerosis. In Clinical Immunology, 5th ed.; Rich, R.R., Fleisher, T.A., Shearer, W.T., Schroeder, H.W., Frew, A.J., Weyand, C.M., Eds.; Elsevier: London, UK, 2019; pp. 891–902.e1. [Google Scholar] [CrossRef]
- Andravizou, A.; Dardiotis, E.; Artemiadis, A.; Sokratous, M.; Siokas, V.; Tsouris, Z.; Aloizou, A.-M.; Nikolaidis, I.; Bakirtzis, C.; Tsivgoulis, G.; et al. Brain atrophy in multiple sclerosis: Mechanisms, clinical relevance and treatment options. Autoimmun. Highlights 2019, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- Höglund, K.; Salter, H. Molecular biomarkers of neurodegeneration. Expert Rev. Mol. Diagn. 2013, 13, 845–861. [Google Scholar] [CrossRef] [PubMed]
- Trevaskis, N.L.; Kaminskas, L.M.; Porter, C.J. From sewer to saviour—Targeting the lymphatic system to promote drug exposure and activity. Nat. Rev. Drug Discov. 2015, 14, 781–803. [Google Scholar] [CrossRef]
- MacAulay, N. Molecular mechanisms of brain water transport. Nat. Rev. Neurosci. 2021, 22, 326–344. [Google Scholar] [CrossRef]
- Iliff, J.J.; Wang, M.; Liao, Y.; Plogg, B.A.; Peng, W.; Gundersen, G.A.; Benveniste, H.; Vates, G.E.; Deane, R.; Goldman, S.A.; et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 2012, 4, 147ra111. [Google Scholar] [CrossRef]
- Lenck, S.; Radovanovic, I.; Nicholson, P.; Hodaie, M.; Krings, T.; Mendes-Pereira, V. Idiopathic intracranial hypertension: The veno glymphatic connections. Neurology 2018, 91, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, M.K.; Mestre, H.; Nedergaard, M. The glymphatic pathway in neurological disorders. Lancet Neurol. 2018, 17, 1016–1024. [Google Scholar] [CrossRef] [PubMed]
- Carotenuto, A.; Cacciaguerra, L.; Pagani, E.; Preziosa, P.; Filippi, M.; Rocca, M.A. Glymphatic system impairment in multiple sclerosis: Relation with brain damage and disability. Brain 2022, 145, 2785–2795. [Google Scholar] [CrossRef] [PubMed]
- Verghese, J.P.; Terry, A.; de Natale, E.R.; Politis, M. Research Evidence of the Role of the Glymphatic System and Its Potential Pharmacological Modulation in Neurodegenerative Diseases. J. Clin. Med. 2022, 11, 6964. [Google Scholar] [CrossRef] [PubMed]
- Denniston, A.K.; Keane, P.A. Paravascular Pathways in the Eye: Is There an ‘Ocular Glymphatic System’? Investig. Opthalmology Vis. Sci. 2015, 56, 3955–3956. [Google Scholar] [CrossRef] [PubMed]
- Wostyn, P.; De Groot, V.; Van Dam, D.; Audenaert, K.; Killer, H.E.; De Deyn, P.P. Age-related macular degeneration, glaucoma and Alzheimer’s disease: Amyloidogenic diseases with the same glymphatic background? Cell. Mol. Life Sci. 2016, 73, 4299–4301. [Google Scholar] [CrossRef] [PubMed]
- Petzold, A. Retinal glymphatic system: An explanation for transient retinal layer volume changes? Brain 2016, 139, 2816–2819. [Google Scholar] [CrossRef]
- Wang, X.; Lou, N.; Eberhardt, A.; Yang, Y.; Kusk, P.; Xu, Q.; Förstera, B.; Peng, S.; Shi, M.; Ladrón-de-Guevara, A.; et al. An ocular glymphatic clearance system removes β-amyloid from the rodent eye. Sci. Transl. Med. 2020, 12, eaaw3210. [Google Scholar] [CrossRef]
- Montesano, G.; Way, C.M.; Ometto, G.; Ibrahim, H.; Jones, P.R.; Carmichael, R.; Liu, X.; Aslam, T.; Keane, P.A.; Crabb, D.P.; et al. Optimizing OCT acquisition parameters for assessments of vitreous haze for application in uveitis. Sci. Rep. 2018, 8, 1648. [Google Scholar] [CrossRef]
- Liu, X.; Kale, A.U.; Ometto, G.; Montesano, G.; Sitch, A.J.; Capewell, N.; Radovanovic, C.; Bucknall, N.; Beare, N.A.V.; Moore, D.J.; et al. OCT Assisted Quantification of Vitreous Inflammation in Uveitis. Transl. Vis. Sci. Technol. 2022, 11, 3. [Google Scholar] [CrossRef]
- Coric, D.; Ometto, G.; Montesano, G.; Keane, P.A.; Balk, L.J.; Uitdehaag, B.M.J.; Petzold, A.; Crabb, D.P.; Denniston, A.K. Objective quantification of vitreous haze on optical coherence tomography scans: No evidence for relationship between uveitis and inflammation in multiple sclerosis. Eur. J. Neurol. 2020, 27, 144-e3. [Google Scholar] [CrossRef] [PubMed]
- van Lierop, Z.Y.; Wieske, L.; Koel-Simmelink, M.J.; Chatterjee, M.; Dekker, I.; Leurs, C.E.; Willemse, E.A.; Moraal, B.; Barkhof, F.; Eftimov, F.; et al. Serum contactin-1 as a biomarker of long-term disease progression in natalizumab-treated multiple sclerosis. Mult. Scler. 2022, 28, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef] [PubMed]
- Petzold, A.; Wattjes, M.P.; Costello, F.; Flores-Rivera, J.; Fraser, C.L.; Fujihara, K.; Leavitt, J.; Marignier, R.; Paul, F.; Schippling, S.; et al. The investigation of acute optic neuritis: A review and proposed protocol. Nat. Rev. Neurol. 2014, 10, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Balk, L.J.; Sonder, J.M.; Strijbis, E.M.; Twisk, J.W.; Killestein, J.; Uitdehaag, B.M.; Polman, C.H.; Petzold, A. The physiological variation of the retinal nerve fiber layer thickness and macular volume in humans as assessed by spectral domain-optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 2012, 53, 1251–1257. [Google Scholar] [CrossRef] [PubMed]
- Aytulun, A.; Cruz-Herranz, A.; Aktas, O.; Balcer, L.J.; Balk, L.; Barboni, P.; Blanco, A.A.; Calabresi, P.A.; Costello, F.; Sanchez-Dalmau, B.; et al. APOSTEL 2.0 Recommendations for Reporting Quantitative Optical Coherence Tomography Studies. Neurology 2021, 97, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Tewarie, P.; Balk, L.; Costello, F.; Green, A.; Martin, R.; Schippling, S.; Petzold, A. The OSCAR-IB consensus criteria for retinal OCT quality assessment. PLoS ONE 2012, 7, e34823. [Google Scholar] [CrossRef] [PubMed]
- Keane, P.A.; Balaskas, K.; Sim, D.A.; Aman, K.; Denniston, A.K.; Aslam, T.; Equator Study Group. Automated Analysis of Vitreous Inflammation Using Spectral-Domain Optical Coherence Tomography. Transl. Vis. Sci. Technol. 2015, 4, 4. [Google Scholar] [CrossRef]
- Balk, L.J.; Twisk, J.W.; Steenwijk, M.D.; Daams, M.; Tewarie, P.; Killestein, J.; Uitdehaag, B.M.; Polman, C.H.; Petzold, A. A dam for retrograde axonal degeneration in multiple sclerosis? J. Neurol. Neurosurg. Psychiatry 2014, 85, 782–789. [Google Scholar] [CrossRef]
- Balk, L.J.; Steenwijk, M.D.; Tewarie, P.; Daams, M.; Killestein, J.; Wattjes, M.P.; Vrenken, H.; Barkhof, F.; Polman, C.H.; Uitdehaag, B.M.; et al. Bidirectional trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2015, 86, 419–424. [Google Scholar] [CrossRef]
- Steenwijk, M.D.; Pouwels, P.J.; Daams, M.; van Dalen, J.W.; Caan, M.W.; Richard, E.; Barkhof, F.; Vrenken, H. Accurate white matter lesion segmentation by k nearest neighbor classification with tissue type priors (kNN-TTPs). Neuroimage Clin. 2013, 3, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Chard, D.T.; Jackson, J.S.; Miller, D.H.; Wheeler-Kingshott, C.A. Reducing the impact of white matter lesions on automated measures of brain gray and white matter volumes. J. Magn. Reson. Imaging 2010, 32, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Leurs, C.E.; Podlesniy, P.; Trullas, R.; Balk, L.; Steenwijk, M.D.; Malekzadeh, A.; Piehl, F.; Uitdehaag, B.M.; Killestein, J.; van Horssen, J.; et al. Cerebrospinal fluid mtDNA concentration is elevated in multiple sclerosis disease and responds to treatment. Mult. Scler. 2018, 24, 472–480. [Google Scholar] [CrossRef] [PubMed]
- Polman, C.H.; Reingold, S.C.; Banwell, B.; Clanet, M.; Cohen, J.A.; Filippi, M.; Fujihara, K.; Havrdova, E.; Hutchinson, M.; Kappos, L.; et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 2011, 69, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Bohr, T.; Hjorth, P.G.; Holst, S.C.; Hrabětová, S.; Kiviniemi, V.; Lilius, T.; Lundgaard, I.; Mardal, K.A.; Martens, E.A.; Mori, Y.; et al. The glymphatic system: Current understanding and modeling. iScience 2022, 25, 104987. [Google Scholar] [CrossRef] [PubMed]
- Buccellato, F.R.; D’Anca, M.; Serpente, M.; Arighi, A.; Galimberti, D. The Role of Glymphatic System in Alzheimer’s and Parkinson’s Disease Pathogenesis. Biomedicines 2022, 10, 2261. [Google Scholar]
- Petzold, A.; Tisdall, M.M.; Girbes, A.R.; Martinian, L.; Thom, M.; Kitchen, N.; Smith, M. In vivo monitoring of neuronal loss in traumatic brain injury: A microdialysis study. Brain 2011, 134, 464–483. [Google Scholar] [CrossRef] [PubMed]
- Petzold, A.; Balcer, L.J.; Calabresi, P.A.; Costello, F.; Frohman, T.C.; Frohman, E.M.; Martinez-Lapiscina, E.H.; Green, A.J.; Kardon, R.; Outteryck, O.; et al. Retinal layer segmentation in multiple sclerosis: A systematic review and meta-analysis. Lancet Neurol. 2017, 16, 797–812. [Google Scholar] [CrossRef]
- Balk, L.J.; Cruz-Herranz, A.; Albrecht, P.; Arnow, S.; Gelfand, J.M.; Tewarie, P.; Killestein, J.; Uitdehaag, B.M.; Petzold, A.; Green, A.J. Timing of retinal neuronal and axonal loss in MS: A longitudinal OCT study. J. Neurol. 2016, 263, 1323–1331. [Google Scholar] [CrossRef]
- Paul, F.; Calabresi, P.A.; Barkhof, F.; Green, A.J.; Kardon, R.; Sastre-Garriga, J.; Schippling, S.; Vermersch, P.; Saidha, S.; Gerendas, B.S.; et al. Optical coherence tomography in multiple sclerosis: A 3-year prospective multicenter study. Ann. Clin. Transl. Neurol. 2021, 8, 2235–2251. [Google Scholar] [CrossRef]
- Jessen, N.A.; Munk, A.S.; Lundgaard, I.; Nedergaard, M. The Glymphatic System: A Beginner’s Guide. Neurochem. Res. 2015, 40, 2583–2599. [Google Scholar] [CrossRef] [PubMed]
- Verkman, A.S.; Phuan, P.W.; Asavapanumas, N.; Tradtrantip, L. Biology of AQP4 and anti-AQP4 antibody: Therapeutic implications for NMO. Brain Pathol. 2013, 23, 684–695. [Google Scholar] [CrossRef] [PubMed]
- Tarasoff-Conway, J.M.; Carare, R.O.; Osorio, R.S.; Glodzik, L.; Butler, T.; Fieremans, E.; Axel, L.; Rusinek, H.; Nicholson, C.; Zlokovic, B.V.; et al. Clearance systems in the brain-implications for Alzheimer disease. Nat. Rev. Neurol. 2015, 11, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Petzold, A.; Coric, D.; Balk, L.J.; Hamann, S.; Uitdehaag, B.M.J.; Denniston, A.K.; Keane, P.A.; Crabb, D.P. Longitudinal Development of Peripapillary Hyper-Reflective Ovoid Masslike Structures Suggests a Novel Pathological Pathway in Multiple Sclerosis. Ann. Neurol. 2020, 88, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Reichenbach, A.; Bringmann, A. New functions of Müller cells. Glia 2013, 61, 651–678. [Google Scholar] [CrossRef]
- Deng, W.; Liu, C.; Parra, C.; Sims, J.R.; Faiq, M.A.; Sainulabdeen, A.; Song, H.; Chan, K.C. Quantitative imaging of the clearance systems in the eye and the brain. Quant. Imaging Med. Surg. 2019, 10, 1–14. [Google Scholar] [CrossRef]
- Ann, L.A. Clinical Anatomy and Physiology of the Visual System; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Weissert, R.; Hugosson, T.; Petzold, A. Upregulated Retinal Neurofilament Expression in Experimental Optic Neuritis. Neuroophthalmology 2022, 46, 215–219. [Google Scholar] [CrossRef]
- Petzold, A.; Jünemann, A.; Rejdak, K.; Zarnowski, T.; Thaler, S.; Grieb, P.; Kruse, F.; Zrenner, E.; Rejdak, R. A novel biomarker for retinal degeneration: Vitreous body neurofilament proteins. J. Neural. Transm. 2009, 116, 1601–1606. [Google Scholar] [CrossRef]
- Subramanian, I.; Verma, S.; Kumar, S.; Jere, A.; Anamika, K. Multi-omics Data Integration, Interpretation, and Its Application. Bioinform. Biol. Insights 2020, 14, 1177932219899051. [Google Scholar] [CrossRef]
- Woltsche, N.; Valentin, K.; Hoeflechner, L.; Guttmann, A.; Horwath-Winter, J.; Schneider, M.R.; Ivastinovic, D.; Lindner, M.; Schmetterer, L.; Singh, N.; et al. Neurofilament light chain: A new marker for neuronal decay in the anterior chamber fluid of patients with glaucoma. Br. J. Ophthalmol. 2022, 107, 1432–1437. [Google Scholar] [CrossRef]
- Wostyn, P.; Gibson, C.R.; Mader, T.H. Peripapillary Hyper-Reflective Ovoid Mass-Like Structures in Astronauts. Ann. Neurol. 2021, 89, 849. [Google Scholar] [CrossRef] [PubMed]
- Wostyn, P.; Mader, T.H.; Gibson, C.R.; Nedergaard, M. The effect of long-duration spaceflight on perivascular spaces within the brain. Proc. Natl. Acad. Sci. USA 2022, 119, e2207724119. [Google Scholar] [CrossRef] [PubMed]
MS Patients N = 290 | HCs N = 85 | p-Value | |
---|---|---|---|
Age (years) | 51.5 (±10.1) | 49.3 (±8.2) | 0.039 |
Sex (Female:Male) | 195:95 | 53:32 | 0.402 |
Disease duration (years) | 17.9 (±7.0) | N/A | N/A |
Time since diagnosis (years) | 12.33 (±6.6) | N/A | N/A |
Disease course | N/A | N/A | |
Relapsing–remitting | 200 (69.0%) | ||
Secondary progressive | 59 (20.3%) | ||
Primary progressive | 31 (10.7%) | ||
Medication use at time of visit | N/A | N/A | |
First-line medication | 123 (42.4%) | ||
Second-line medication | 38 (13.1%) | ||
Unknown | 129 (44.5%) | ||
Impairment using EDSS score | N/A | N/A | |
Mild (0.0–3.5) | 164 (56.6%) | ||
Moderate (4.0–5.5) | 64 (22.1%) | ||
Severe (≥6.0) | 63 (21.7%) | ||
Optic neuritis | N/A | N/A | |
No MSON | 157 (54.1%) | ||
Unilateral MSON | 81 (27.9%) | ||
Bilateral MSON | 39 (13.4%) | ||
Unknown | 13 (4.5%) | ||
Relapses in year prior to assessment | N/A | N/A | |
Yes | 34 (11.7%) | ||
No | 256 (88.3%) | ||
EDSS, median [range] | 3.5 [0–8.0] | N/A | N/A |
pRNFL thickness (µm) | 84.6 (±14.4) | 95.1 (±7.9) | <0.001 |
mGCIPL thickness (µm) | 77.5 (±14.3) | 92.2 (±6.0) | <0.001 |
mINL thickness (µm) | 40.4 (±3.3) | 39.4 (±2.9) | 0.003 |
NGMV (mL) | 759.0 (±58.4) | 795.5 (±53.3) | <0.001 |
NWMV (mL) | 665.2 (±43.8) | 696.3 (±33.8) | <0.001 |
Vitreous haze score RR SP PP No MSON Yes MSON EDSS mild EDSS moderate EDSS severe | 0.17 (±0.21) 0.18 (0.20) 0.16 (0.22) 0.15 (0.22) 0.17 (0.19) 0.17 (0.25) 0.18 (0.21) 0.19 (0.22) 0.14 (0.18) | 0.16 (±0.14) | 0.629 |
VH Scores (log) in MS Patients | VH Scores (log) in HC Patients | |||||||
---|---|---|---|---|---|---|---|---|
Covariable | n | Regression Coefficient | 95% Confidence Interval | p | n | Regression Coefficient | 95% Confidence Interval | p |
Age | 520 | −0.007 | −0.011 to −0.003 | 0.001 | 161 | 0.005 | −0.001 to 0.012 | 0.129 |
Disease duration | 520 | −0.009 | −0.015 to −0.003 | 0.004 | NA | NA | NA | NA |
Sex: | ||||||||
Female (reference) | 356 | 1.0 | (reference) | --- | 98 | 1.0 | (reference) | --- |
Male | 164 | 0.014 | −0.073 to 0.101 | 0.748 | 63 | 0.090 | −0.110 to 0.128 | 0.881 |
Cohort: | ||||||||
HC | 161 | 1.0 | (reference | --- | NA | NA | NA | NA |
RRMS | 362 | 0.008 | −0.066 to 0.082 | 0.833 | NA | NA | NA | NA |
SPMS | 102 | −0.087 | −0.210 to 0.036 | 0.164 | NA | NA | NA | NA |
PPMS | 56 | −0.084 | −0.229 to 0.060 | 0.254 | NA | NA | NA | NA |
Retinal layer thickness: | ||||||||
pRNFL | 436 | 0.004 | 0.001 to 0.006 | 0.008 | 146 | −0.007 | −0.015 to 0.000 | 0.052 |
mGCIPL | 370 | 0.006 | 0.004 to 0.010 | <0.001 | 115 | 0.007 | −0.006 to 0.020 | 0.294 |
mINL | 370 | −0.005 | −0.019 to 0.009 | 0.492 | 115 | 0.016 | −0.007 to 0.039 | 0.178 |
Brain volumes: | ||||||||
Gray matter volume | 339 | 0.001 | 0.000 to 0.002 | 0.011 | 106 | −0.001 | −0.003 to 0.000 | 0.143 |
White matter volume | 339 | 0.001 | 0.000 to 0.002 | 0.003 | 106 | 0.000 | −0.002 to 0.002 | 0.845 |
Normalized brain volume | 339 | 0.001 | 0.0002 to 0.000 | 0.002 | 174 | 0.000 | −0.002 to 0.001 | 0.394 |
Lesion volume | 339 | −0.058 | −0.199 to 0.082 | 0.416 | 106 | NA | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaçar, S.; Coric, D.; Ometto, G.; Montesano, G.; Denniston, A.K.; Keane, P.A.; Uitdehaag, B.M.J.; Crabb, D.P.; Schoonheim, M.M.; Petzold, A.; et al. Exploring Vitreous Haze as a Potential Biomarker for Accelerated Glymphatic Outflow and Neurodegeneration in Multiple Sclerosis: A Cross-Sectional Study. Brain Sci. 2024, 14, 36. https://doi.org/10.3390/brainsci14010036
Kaçar S, Coric D, Ometto G, Montesano G, Denniston AK, Keane PA, Uitdehaag BMJ, Crabb DP, Schoonheim MM, Petzold A, et al. Exploring Vitreous Haze as a Potential Biomarker for Accelerated Glymphatic Outflow and Neurodegeneration in Multiple Sclerosis: A Cross-Sectional Study. Brain Sciences. 2024; 14(1):36. https://doi.org/10.3390/brainsci14010036
Chicago/Turabian StyleKaçar, Sezgi, Danko Coric, Giovanni Ometto, Giovanni Montesano, Alastair K. Denniston, Pearse A. Keane, Bernard M. J. Uitdehaag, David P. Crabb, Menno M. Schoonheim, Axel Petzold, and et al. 2024. "Exploring Vitreous Haze as a Potential Biomarker for Accelerated Glymphatic Outflow and Neurodegeneration in Multiple Sclerosis: A Cross-Sectional Study" Brain Sciences 14, no. 1: 36. https://doi.org/10.3390/brainsci14010036
APA StyleKaçar, S., Coric, D., Ometto, G., Montesano, G., Denniston, A. K., Keane, P. A., Uitdehaag, B. M. J., Crabb, D. P., Schoonheim, M. M., Petzold, A., & Strijbis, E. M. M. (2024). Exploring Vitreous Haze as a Potential Biomarker for Accelerated Glymphatic Outflow and Neurodegeneration in Multiple Sclerosis: A Cross-Sectional Study. Brain Sciences, 14(1), 36. https://doi.org/10.3390/brainsci14010036