The Impact of Demographic and Clinical Factors on the Quality of Life in Patients with Neurodegenerative Cerebellar Ataxias
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Selection of Participants
2.3. Instruments
2.4. Composite Cerebellar Functional Severity Score—CCFS
2.5. Click Test
2.6. Spinocerebellar Ataxia Functional Index—SCAFI
2.7. Inventory of Non-Ataxia Signs—INAS
2.8. Autonomic Symptoms Assessment Questionnaire—SCOPA AUT
2.9. Assessment of Anxiety
2.10. Assessment of Depression
2.11. Assessment of Apathy
2.12. 36-Item Short Form Health Survey (SF-36)
2.13. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosenthal, L.S. Neurodegenerative Cerebellar Ataxia. Contin. Minneap. Minn. 2022, 28, 1409–1434. [Google Scholar] [CrossRef] [PubMed]
- Pellerin, D.; Danzi, M.C.; Wilke, C.; Renaud, M.; Fazal, S.; Dicaire, M.J.; Scriba, C.K.; Ashton, C.; Yanick, C.; Beijer, D.; et al. Deep Intronic FGF14 GAA Repeat Expansion in Late-Onset Cerebellar Ataxia. N. Engl. J. Med. 2023, 388, 128–141. [Google Scholar] [CrossRef] [PubMed]
- Rafehi, H.; Read, J.; Szmulewicz, D.J.; Davies, K.C.; Snell, P.; Fearnley, L.G.; Scott, L.; Thomsen, M.; Gillies, G.; Pope, K.; et al. An intronic GAA repeat expansion in FGF14 causes the autosomal-dominant adult-onset ataxia SCA50/ATX-FGF14. Am. J. Hum. Genet. 2023, 110, 105–119. [Google Scholar] [CrossRef] [PubMed]
- Claassen, D.O. Multiple System Atrophy. Contin. Minneap. Minn. 2022, 28, 1350–1363. [Google Scholar] [CrossRef] [PubMed]
- Tamaš, O.; Kostić, M.; Kačar, A.; Stefanova, E.; Ðokić, B.S.; Stanisavljević, D.; Milovanović, A.; Ðorđević, M.; Glumbić, N.; Dragašević-Mišković, N. Social Cognition in Patients with Cerebellar Neurodegenerative Disorders. Front. Syst. Neurosci. 2021, 15, 664223. [Google Scholar] [CrossRef]
- Schmitz-Hübsch, T.; Du Montcel, S.T.; Baliko, L.; Berciano, J.; Boesch, S.; Depondt, C.; Giunti, P.; Globas, C.; Infante, J.; Kang, J.-S.; et al. Scale for the assessment and rating of ataxia: Development of a new clinical scale. Neurology 2006, 66, 1717–1720. [Google Scholar] [CrossRef] [PubMed]
- Schmitz-Hübsch, T.; Giunti, P.; Stephenson, D.A.; Globas, C.; Baliko, L.; Saccà, F.; Mariotti, C.; Rakowicz, M.; Szymanski, S.; Infante, J.; et al. SCA Functional Index: A useful compound performance measure for spinocerebellar ataxia. Neurology 2008, 71, 486–492. [Google Scholar] [CrossRef]
- du Montcel, S.T.; Charles, P.; Ribai, P.; Goizet, C.; Le Bayon, A.; Labauge, P.; Guyant-Maréchal, L.; Forlani, S.; Jauffret, C.; Vandenberghe, N.; et al. Composite cerebellar functional severity score: Validation of a quantitative score of cerebellar impairment. Brain J. Neurol. 2008, 131 Pt 5, 1352–1361. [Google Scholar] [CrossRef]
- Jacobi, H.; Rakowicz, M.; Rola, R.; Fancellu, R.; Mariotti, C.; Charles, P.; Dürr, A.; Küper, M.; Timmann, D.; Linnemann, C.; et al. Inventory of Non-Ataxia Signs (INAS): Validation of a new clinical assessment instrument. Cerebellum 2013, 12, 418–428. [Google Scholar] [CrossRef]
- Visser, M.; Marinus, J.; Stiggelbout, A.M.; Van Hilten, J.J. Assessment of autonomic dysfunction in Parkinson’s disease: The SCOPA-AUT. Mov. Disord. Off. J. Mov. Disord. Soc. 2004, 19, 1306–1312. [Google Scholar] [CrossRef]
- Mathiowetz, V.; Weber, K.; Kashman, N.; Volland, G. Adult Norms for the Nine Hole Peg Test of Finger Dexterity. Occup. Ther. J. Res. 1985, 5, 24–38. [Google Scholar] [CrossRef]
- Mioshi, E.; Dawson, K.; Mitchell, J.; Arnold, R.; Hodges, J.R. The Addenbrooke’s Cognitive Examination Revised (ACE-R): A brief cognitive test battery for dementia screening. Int. J. Geriatr. Psychiatry 2006, 21, 1078–1085. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M. The assessment of anxiety states by rating. Br. J. Med. Psychol. 1959, 32, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Starkstein, S.E.; Mayberg, H.S.; Preziosi, T.J.; Andrezejewski, P.; Leiguarda, R.; Robinson, R.G. Reliability, validity, and clinical correlates of apathy in Parkinson’s disease. J. Neuropsychiatry Clin. Neurosci. 1992, 4, 134–139. [Google Scholar] [CrossRef]
- Lyon: ProQuolid Patient-Reported Outcome and Quality of Life Instruments Database SF-36 Health Serbian Version. Available online: http://www.proqolid.org (accessed on 3 September 2023).
- López Castro, J.; Cid Conde, L.; Fernández Rodríguez, V.; Failde Garrido, J.M.; Almazán Ortega, R. Analysis of quality of life using the generic SF-36 questionnaire in patients with heart failure. Rev. Calid. Asist. 2013, 28, 355–360. [Google Scholar] [CrossRef]
- Ware, J.E. Measuring patients’ views: The optimum outcome measure. Br. Med. J. 1993, 306, 1429–1430. [Google Scholar] [CrossRef]
- Abele, M.; Klockgether, T. Health-related quality of life in sporadic adult-onset ataxia. Mov. Disord. Off. J. Mov. Disord. Soc. 2007, 22, 348–352. [Google Scholar] [CrossRef]
- Schmitz-Hübsch, T.; Coudert, M.; Giunti, P.; Globas, C.; Baliko, L.; Fancellu, R.; Mariotti, C.; Filla, A.; Rakowicz, M.; Charles, P.; et al. Self-rated health status in spinocerebellar ataxia—Results from a European multicenter study. Mov. Disord. Off. J. Mov. Disord. Soc. 2010, 25, 587–595. [Google Scholar] [CrossRef]
- López-Bastida, J.; Perestelo-Pérez, L.; Montón-Alvarez, F.; Serrano-Aguilar, P. Social economic costs and health-related quality of life in patients with degenerative cerebellar ataxia in Spain. Mov. Disord. Off. J. Mov. Disord. Soc. 2008, 23, 212–217. [Google Scholar] [CrossRef] [PubMed]
- D’Ambrosio, R.; Leone, M.; Rosso, M.G.; Mittino, D.; Brignolio, F. Disability and quality of life in hereditary ataxias: A self-administered postal questionnaire. Int. Disabil. Stud. 1987, 9, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Lynch, D.R.; Farmer, J.M.; Tsou, A.Y.; Perlman, S.; Subramony, S.H.; Gomez, C.M.; Ashizawa, T.; Wilmot, G.R.; Wilson, R.B.; Balcer, L.J. Measuring Friedreich ataxia: Complementary features of examination and performance measures. Neurology 2006, 66, 1711–1716. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.L.; Fahey, M.C.; Corben, L.A.; Collins, V.R.; Churchyard, A.J.; Lamont, P.J.; Delatycki, M.B. Quality of life in Friedreich ataxia: What clinical, social and demographic factors are important? Eur. J. Neurol. 2007, 14, 1040–1047. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Flores, J.; Hernández-Torres, A.; Montón, F.; Nieto, A. Health-related quality of life and depressive symptoms in Friedreich ataxia. Qual. Life Res. 2020, 29, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Bolzan, G.; Leotti, V.B.; de Oliveira, C.M.; Ecco, G.; Cappelli, A.H.; Rocha, A.G.; Kersting, N.; Rieck, M.; de Sena, L.S.; Martins, A.C.; et al. Quality of Life since Pre-Ataxic Phases of Spinocerebellar Ataxia Type 3/Machado–Joseph Disease. Cerebellum 2022, 21, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Epstein, E.; Farmer, J.M.; Tsou, A.; Perlman, S.; Subramony, S.H.; Gomez, C.M.; Ashizawa, T.; Wilmot, G.R.; Mathews, K.; Wilson, R.B.; et al. Health related quality of life measures in Friedreich Ataxia. J. Neurol. Sci. 2008, 272, 123–128. [Google Scholar] [CrossRef]
- Schmahmann, J.D. An Emerging Concept: The Cerebellar Contribution to Higher Function. Arch. Neurol. 1991, 48, 1178–1187. [Google Scholar] [CrossRef]
- Hoche, F.; Guell, X.; Vangel, M.G.; Sherman, J.C.; Schmahmann, J.D. The cerebellar cognitive affective/Schmahmann syndrome scale. Brain 2018, 141, 248–270. [Google Scholar] [CrossRef]
- Schmahmann, J.D. From movement to thought: Anatomic substrates of the cerebellar contribution to cognitive processing. Hum. Brain Mapp. 1996, 4, 174–198. [Google Scholar] [CrossRef]
- Middleton, F.A.; Strick, P.L. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 1994, 266, 458–461. [Google Scholar] [CrossRef] [PubMed]
- Koziol, L.F.; Budding, D.; Andreasen, N.; D’Arrigo, S.; Bulgheroni, S.; Imamizu, H.; Ito, M.; Manto, M.; Marvel, C.; Parker, K.; et al. Consensus paper: The cerebellum’s role in movement and cognition. Cerebellum 2014, 13, 151–177. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wu, C.; Lei, J.; Zhang, X. Cognitive impairments in patients with spinocerebellar ataxia types 1, 2 and 3 are positively correlated to the clinical severity of ataxia symptoms. Int. J. Clin. Exp. Med. 2014, 7, 5765–5771. [Google Scholar]
- Fancellu, R.; Paridi, D.; Tomasello, C.; Panzeri, M.; Castaldo, A.; Genitrini, S.; Soliveri, P.; Girotti, F. Longitudinal study of cognitive and psychiatric functions in spinocerebellar ataxia types 1 and 2. J. Neurol. 2013, 260, 3134–3143. [Google Scholar] [CrossRef] [PubMed]
- Cooper, F.E.; Grube, M.; Elsegood, K.J.; Welch, J.L.; Kelly, T.P.; Chinnery, P.F.; Griffiths, T.D. The contribution of the cerebellum to cognition in Spinocerebellar Ataxia Type 6. Behav. Neurol. 2010, 23, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Silveri, M.C. Contribution of the Cerebellum and the Basal Ganglia to Language Production: Speech, Word Fluency, and Sentence Construction-Evidence from Pathology. Cerebellum 2021, 20, 282–294. [Google Scholar] [CrossRef] [PubMed]
- Ahmadian, N.; van Baarsen, K.; van Zandvoort, M.; Robe, P.A. The Cerebellar Cognitive Affective Syndrome—A Meta-analysis. Cerebellum 2019, 18, 941–950. [Google Scholar] [CrossRef] [PubMed]
- Olchik, M.R.; Ayres, A.; Ghisi, M.; Schuh, A.F.S.; Rieder, C.R.M. The impact of cognitive performance on quality of life in individuals with Parkinson’s disease. Dement Neuropsychol. 2016, 10, 303–309. [Google Scholar] [CrossRef]
- Liszewski, C.M.; O’Hearn, E.; Leroi, I.; Gourley, L.; Ross, C.A.; Margolis, R.L. Cognitive impairment and psychiatric symptoms in 133 patients with diseases associated with cerebellar degeneration. J. Neuropsychiatry Clin. Neurosci. 2004, 16, 109–112. [Google Scholar] [CrossRef]
- Leroi, I.; O’hearn, E.; Marsh, L.; Lyketsos, C.G.; Rosenblatt, A.; Ross, C.A.; Brandt, J.; Margolis, R.L. Psychopathology in patients with degenerative cerebellar diseases: A comparison to Huntington’s disease. Am. J. Psychiatry 2002, 159, 1306–1314. [Google Scholar] [CrossRef]
- Sonni, A.; Kurdziel, L.B.; Baran, B.; Spencer, R.M. The Effects of Sleep Dysfunction on Cognition, Affect, and Quality of Life in Individuals with Cerebellar Ataxia. J. Clin. Sleep Med. 2014, 10, 535–543. [Google Scholar] [CrossRef]
- Srivastava, A.; Dabla, S.; Garg, D.; Aggarwal, R.; Kumar, N.; Faruq, M.; Rajan, R.; Shukla, G.; Goyal, V.; Pandey, R. Spinocerebellar Ataxia 12 Patients have better Quality of Life than Spinocerebellar Ataxia 1 and 2. Ann. Indian Acad. Neurol. 2022, 25, 647–653. [Google Scholar] [CrossRef]
- Hand, C. Measuring health-related quality of life in adults with chronic conditions in primary care settings: Critical review of concepts and 3 tools. Can. Fam. Physician 2016, 62, e375–e383. [Google Scholar]
Variable | Value | Range |
---|---|---|
Sex (%) | ||
Male | 59 (55.1) | |
Female | 48 (44.9) | |
Age (years) | 47.5 ± 12.4 | (19–69) |
BMI (kg/m2) | 23.5 ± 3.2 | (16.4–34.6) |
Marital status (%) | ||
Not married | 30 (28.0) | |
Married | 64 (59.8) | |
Divorced | 11 (10.3) | |
Widowed | 2 (1.9) | |
Children (%) | ||
None | 43 (40.6) | |
One | 15 (14.2) | |
Two | 42 (39.6) | |
Three | 6 (5.7) | |
Handedness (%) | ||
Right-handed | 103 (96.3) | |
Left-handed | 4 (3.7) | |
Education (years) | 11.7 ± 2.5 | (4–20) |
Employed (%) | 33 (30.8%) | |
Unemployed | 56 (52.3%) | |
Retired | 18 (16.8%) |
Variable | Value | Range |
---|---|---|
Age at onset (years) | 35.3 ± 16.2 | (0–68) |
Disease duration (years) | 12.1 ± 9.9 | (1–43) |
Time to walking support tool (years) | 8.7 ± 6.5 | (0.3–25) |
Time to wheelchair (years) | 12.4 ± 5.9 | (1–25) |
SARA total score | 14.9 ± 7.0 | (2–40) |
CCFS total score | 1.0 ± 0.2 | (0–1.78) |
SCAFI total score | 0.0 ± 0.8 | (−2.1–2.4) |
INAS total score | 4.5 ± 1.9 | (1–9) |
SCOPA AUT—total autonomic score | 4.7 ± 6.5 | (0–34) |
ACE-R total score | 79.1 ± 15.8 | (35–100) |
MMSE | 25.1 ± 4.9 | (9–30) |
HAMD | 8.3 ± 6.0 | (0–23) |
HAMA | 8.3 ± 6.8 | (0–25) |
Hamilton apathy | 10.8 ± 8.3 | (0–38) |
Disease (%) | ||
AD | 41 (38.3) | |
AR | 21 (19.6) | |
Sporadic | 35 (32.7) | |
MSAc | 10 (9.3) |
SF-36 Domain | Total |
---|---|
Physical functioning | 34.11 ± 27.97 |
Role limitations due to physical health | 35.38 ± 40.22 |
Role limitations due to emotional problems | 57.58 ± 44.71 |
Energy | 50.24 ± 23.60 |
Emotional wellbeing | 63.43 ± 20.70 |
Social functioning | 59.43 ± 23.07 |
Pain | 70.80 ± 28.31 |
General health | 34.10 ± 14.47 |
Physical health composite | 43.60 ± 20.33 |
Mental health composite | 57.67 ± 23.77 |
Total | 50.63 ± 20.50 |
Age | Sex | Disease Duration | SARA Total | INAS Total | ACE-R Total | HAMD | HAMA | Hamilton Apathy | |
---|---|---|---|---|---|---|---|---|---|
PHC | −0.127 | −0.038 | −0.190 * | −0.536 ** | −0.331 ** | 0.440 ** | −0.406 ** | −0.269 ** | −0.345 ** |
MHC | −0.144 | 0.026 | −0.108 | −0.388 ** | −0.203 * | 0.318 ** | −0.579 ** | −0.462 ** | −0.493 ** |
Variable | Model 1 | Model 2 | Model 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
B | SE (B) | β | B | SE (B) | β | B | SE (B) | β | |
Age | −0.21 | 0.16 | −0.13 | −0.41 | 0.15 | −0.25 ** | −0.37 | 0.15 | −0.23 * |
Sex | −1.76 | 4.04 | −0.04 | −2.87 | 3.46 | −0.07 | −2.26 | 3.40 | −0.06 |
Disease duration | −0.35 | 0.20 | −0.17 | 0.08 | 0.18 | 0.04 | 0.16 | 0.19 | 0.08 |
SARA total | −1.53 | 0.32 | −0.49 ** | −1.15 | 0.34 | −0.37 ** | |||
INAS total | −1.40 | 1.08 | −0.13 | −1.02 | 1.06 | −0.10 | |||
ACE-R total | 0.31 | 0.15 | 0.21 * | ||||||
HAMD | −1.10 | 0.62 | −0.32 | ||||||
HAMA | 0.36 | 0.45 | 0.12 | ||||||
Hamilton apathy | 0.22 | 0.34 | 0.09 | ||||||
R2 | 0.04 | 0.32 | 0.39 | ||||||
F for change in R2 | 1.660 | 9.415 ** | 6.774 ** |
Variable | Model 1 | Model 2 | Model 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
B | SE (B) | β | B | SE (B) | β | B | SE (B) | β | |
Age | −0.31 | 0.19 | −0.16 | −0.48 | 0.18 | −0.25 ** | −0.18 | 0.17 | −0.09 |
Sex | 1.27 | 4.70 | 0.03 | 0.12 | 4.31 | 0.00 | −0.48 | 3.83 | −0.01 |
Disease duration | −0.41 | 0.23 | −0.17 | −0.02 | 0.23 | −0.01 | −0.06 | 0.21 | −0.03 |
SARA total | −1.51 | 0.40 | −0.42 ** | −0.67 | 0.39 | −0.19 | |||
INAS total | −0.72 | 1.35 | −0.06 | −0.25 | 1.19 | −0.02 | |||
ACE-R total | 0.06 | 0.17 | 0.03 | ||||||
HAMD | −1.96 | 0.70 | −0.49 ** | ||||||
HAMA | 0.41 | 0.50 | 0.12 | ||||||
Hamilton apathy | −0.38 | 0.38 | −0.13 | ||||||
R2 | 0.06 | 0.23 | 0.43 | ||||||
F for change in R2 | 2.015 | 5.812 ** | 8.059 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamaš, O.; Marić, G.; Kostić, M.; Milovanović, A.; Đurđević, K.; Salak Đokić, B.; Stefanova, E.; Pekmezović, T.; Dragašević-Mišković, N. The Impact of Demographic and Clinical Factors on the Quality of Life in Patients with Neurodegenerative Cerebellar Ataxias. Brain Sci. 2024, 14, 1. https://doi.org/10.3390/brainsci14010001
Tamaš O, Marić G, Kostić M, Milovanović A, Đurđević K, Salak Đokić B, Stefanova E, Pekmezović T, Dragašević-Mišković N. The Impact of Demographic and Clinical Factors on the Quality of Life in Patients with Neurodegenerative Cerebellar Ataxias. Brain Sciences. 2024; 14(1):1. https://doi.org/10.3390/brainsci14010001
Chicago/Turabian StyleTamaš, Olivera, Gorica Marić, Milutin Kostić, Andona Milovanović, Katarina Đurđević, Biljana Salak Đokić, Elka Stefanova, Tatjana Pekmezović, and Nataša Dragašević-Mišković. 2024. "The Impact of Demographic and Clinical Factors on the Quality of Life in Patients with Neurodegenerative Cerebellar Ataxias" Brain Sciences 14, no. 1: 1. https://doi.org/10.3390/brainsci14010001
APA StyleTamaš, O., Marić, G., Kostić, M., Milovanović, A., Đurđević, K., Salak Đokić, B., Stefanova, E., Pekmezović, T., & Dragašević-Mišković, N. (2024). The Impact of Demographic and Clinical Factors on the Quality of Life in Patients with Neurodegenerative Cerebellar Ataxias. Brain Sciences, 14(1), 1. https://doi.org/10.3390/brainsci14010001