Relation of MRI-Visible Perivascular Spaces and Other MRI Markers of Cerebral Small Vessel Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. IRB Statement and Informed Consent
2.2. Sample
2.3. Brain MRI
2.4. MRI-Visible Perivascular Spaces (PVS) Rating
2.5. Cerebral Microbleeds
2.6. Covariates
2.7. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Descriptive Statistics of Brain MRI Measures
3.3. Multivariable Analysis
3.3.1. MRI-Visible Perivascular Spaces and Covert Brain Infarcts (CBI) (Table 3A,B)
3.3.2. MRI-Visible PVS and White Matter Hyperintensity Volume (Table 4)
3.3.3. MRI-Visible Perivascular Spaces and Cerebral Microbleeds (Table 5A,B)
3.3.4. MRI-Visible Perivascular Spaces and Hippocampal and Total Brain Volumes (Table 6)
3.3.5. MRI-Visible Perivascular Spaces and Total and Regional Cortical Gray Volumes (Table 7A,B)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BG | Basal Ganglia |
CAA | Cerebral Amyloid Angiopathy |
CBI | Covert Brain Infarct |
CMB | Cerebral Microbleed |
CSF | Cerebrospinal Fluid |
CSO | Centrum Semiovale |
CSVD | Cerebral Small Vessel Disease |
DBP | Diastolic Blood Pressure |
FHS | Framingham Heart Study |
MRI | Magnetic Resonance Imaging |
PVS | Perivascular spaces |
SBP | Systolic Blood Pressure |
TCBV | Total Cranial Brain Volume |
WMH | White Matter Hyperintensity |
References
- Li, Q.; Yang, Y.; Reis, C.; Tao, T.; Li, W.; Li, X.; Zhang, J.H. Cerebral Small Vessel Disease. Cell Transplant. 2018, 27, 1711–1722. [Google Scholar] [CrossRef]
- Chutinet, A.; Rost, N.S. White Matter Disease as a Biomarker for Long-Term Cerebrovascular Disease and Dementia. Curr. Treat. Options Cardiovasc. Med. 2014, 16, 292. [Google Scholar] [CrossRef]
- MacLullich, A.M.J.; Wardlaw, J.M.; Ferguson, K.J.; Starr, J.M.; Seckl, J.R.; Deary, I.J. Enlarged perivascular spaces are associated with cognitive function in healthy elderly men. J. Neurol. Neurosurg. Psychiatry 2004, 75, 1519–1523. [Google Scholar] [CrossRef]
- Martinez-Ramirez, S.; Greenberg, S.M.; Viswanathan, A. Cerebral microbleeds: Overview and implications in cognitive impairment. Alzheimer’s Res. Ther. 2014, 6, 33. [Google Scholar] [CrossRef]
- Kwee, R.M.; Kwee, T.C. Virchow-Robin Spaces at MR Imaging. Radiographics 2007, 27, 1071–1086. [Google Scholar] [CrossRef] [PubMed]
- Schley, D.; Carare-Nnadi, R.; Please, C.P.; Perry, V.H.; Weller, R.O. Mechanisms to explain the reverse perivascular transport of solutes out of the brain. J. Theor. Biol. 2006, 238, 962–974. [Google Scholar] [CrossRef] [PubMed]
- Wardlaw, J.M.; Smith, E.E.; Biessels, G.J.; Cordonnier, C.; Fazekas, F.; Frayne, R.; Lindley, R.I.; O’Brien, J.T.; Barkhof, F.; Benavente, O.R.; et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013, 12, 822–838. [Google Scholar] [CrossRef] [PubMed]
- Shoamanesh, A.; Kwok, C.; Benavente, O. Cerebral Microbleeds: Histopathological Correlation of Neuroimaging. Cerebrovasc. Dis. 2011, 32, 528–534. [Google Scholar] [CrossRef]
- Graff-Radford, J.; Lesnick, T.G.; Mielke, M.M.; Constantopoulos, E.; Rabinstein, A.A.; Przybelski, S.A.; Vemuri, P.; Botha, H.; Jones, D.T.; Ramanan, V.K.; et al. Cerebral Amyloid Angiopathy Burden and Cerebral Microbleeds: Pathological Evidence for Distinct Phenotypes. J. Alzheimer’s Dis. 2021, 81, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Chabriat, H. Covert Brain Infarcts: Look at Extra and Intracranial Vessels. Stroke 2020, 51, 2–3. [Google Scholar] [CrossRef]
- Massaro, J.M.; Srem, R.B.D.; Sullivan, L.M.; Beiser, A.; DeCarli, C.; Au, R.; Elias, M.F.; A Wolf, P. Managing and analysing data from a large-scale study on Framingham Offspring relating brain structure to cognitive function. Stat. Med. 2004, 23, 351–367. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, E.; DeCarli, C.; Fan, A.P.; Knaack, A. Convolutional Neural Net Learning Can Achieve Production-Level Brain Segmentation in Structural Magnetic Resonance Imaging. Front. Neurosci. 2021, 15, 683426. [Google Scholar] [CrossRef]
- Jefferson, A.L.; Massaro, J.M.; Wolf, P.A.; Seshadri, S.; Au, R.; Vasan, R.S.; Larson, M.G.; Meigs, J.B.; Keaney, J.F., Jr.; Lipinska, I.; et al. Inflammatory biomarkers are associated with total brain volume: The Framingham Heart Study. Neurology 2007, 68, 1032–1038. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, E.; Singh, B.; Harvey, D.; Carmichael, O.; De Carli, C. Adaptive image segmentation for robust measurement of longitudinal brain tissue change. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; Volume 2012, pp. 5319–5322. [Google Scholar] [CrossRef]
- Maillard, P.; Lu, H.; Arfanakis, K.; Gold, B.T.; Bauer, C.E.; Zachariou, V.; Stables, L.; Wang, D.J.; Jann, K.; Seshadri, S.; et al. Instrumental validation of free water, peak-width of skeletonized mean diffusivity, and white matter hyperintensities: MarkVCID neuroimaging kits. Alzheimer’s Dement. 2022, 14, e12261. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, E.; Carmichael, O.; DeCarli, C. MRI non-uniformity correction through interleaved bias estimation and B-spline deformation with a template. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; Volume 2012, pp. 106–109. [Google Scholar] [CrossRef]
- Bocchetta, M.; Boccardi, M.; Ganzola, R.; Apostolova, L.G.; Preboske, G.; Wolf, D.; Ferrari, C.; Pasqualetti, P.; Robitaille, N.; Duchesne, S.; et al. Harmonized benchmark labels of the hippocampus on magnetic resonance: The EADC-ADNI project. Alzheimer’s Dement. 2014, 11, 151–160. [Google Scholar] [CrossRef]
- Rueckert, D.; Aljabar, P.; Heckemann, R.A.; Hajnal, J.V.; Hammers, A. Diffeomorphic Registration Using B-Splines. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2006, Copenhagen, Denmark, 1–6 October 2006; Volume 9, pp. 702–709. [Google Scholar] [CrossRef]
- Desikan, R.S.; Ségonne, F.; Fischl, B.; Quinn, B.T.; Dickerson, B.C.; Blacker, D.; Buckner, R.L.; Dale, A.M.; Maguire, R.P.; Hyman, B.T.; et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 2006, 31, 968–980. [Google Scholar] [CrossRef]
- Aljabar, P.; Heckemann, R.; Hammers, A.; Hajnal, J.; Rueckert, D. Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy. NeuroImage 2009, 46, 726–738. [Google Scholar] [CrossRef]
- DeCarli, C.; Massaro, J.; Harvey, D.; Hald, J.; Tullberg, M.; Au, R.; Beiser, A.; D’agostino, R.; Wolf, P.A. Measures of brain morphology and infarction in the framingham heart study: Establishing what is normal. Neurobiol. Aging 2005, 26, 491–510. [Google Scholar] [CrossRef]
- Au, R.; Massaro, J.M.; Wolf, P.A.; Young, M.E.; Beiser, A.; Seshadri, S.; D’agostino, R.B.; DeCarli, C. Association of White Matter Hyperintensity Volume With Decreased Cognitive Functioning: The Framingham Heart Study. Arch. Neurol. 2006, 63, 246–250. [Google Scholar] [CrossRef]
- Lara, F.R.; Scruton, A.L.; Pinheiro, A.; Demissie, S.; Parva, P.; Charidimou, A.; Francis, M.; Himali, J.J.; DeCarli, C.; Beiser, A.; et al. Aging, prevalence and risk factors of MRI-visible enlarged perivascular spaces. Aging 2022, 14, 6844–6858. [Google Scholar] [CrossRef]
- Potter, G.M.; Chappell, F.M.; Morris, Z.; Wardlaw, J.M. Cerebral Perivascular Spaces Visible on Magnetic Resonance Imaging: Development of a Qualitative Rating Scale and its Observer Reliability. Cerebrovasc. Dis. 2015, 39, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, S.M.; Vernooij, M.W.; Cordonnier, C.; Viswanathan, A.; Salman, R.A.-S.; Warach, S.; Launer, L.J.; A Van Buchem, M.; Breteler, M.M.; Microbleed Study, G. Cerebral microbleeds: A guide to detection and interpretation. Lancet Neurol. 2009, 8, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Romero, J.R.; Beiser, A.; Himali, J.J.; Shoamanesh, A.; DeCarli, C.; Seshadri, S. Cerebral microbleeds and risk of incident dementia: The Framingham Heart Study. Neurobiol. Aging 2017, 54, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Kapeller, P.; Barber, R.; Vermeulen, R.; Adèr, H.; Scheltens, P.; Freidl, W.; Almkvist, O.; Moretti, M.; del Ser, T.; Vaghfeldt, P.; et al. Visual Rating of Age-Related White Matter Changes on Magnetic Resonance Imaging: Scale comparison, interrater agreement, and correlations with quantitative measurements. Stroke 2003, 34, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Baradaran, H.; Gialdini, G.; Mtui, E.; Askin, G.; Kamel, H.; Gupta, A. Silent Brain Infarction in Patients With Asymptomatic Carotid Artery Atherosclerotic Disease. Stroke 2016, 47, 1368–1370. [Google Scholar] [CrossRef] [PubMed]
- Storey, J.D. A direct approach to false discovery rates. J. R. Statist. Soc. Ser. B-Stat. Methodol. 2002, 64, 479–498. [Google Scholar] [CrossRef]
- Martinez-Ramirez, S.; Pontes-Neto, O.M.; Dumas, A.P.; Auriel, E.; Halpin, A.; Quimby, M.; Gurol, M.E.; Greenberg, S.M.; Viswanathan, A. Topography of dilated perivascular spaces in subjects from a memory clinic cohort. Neurology 2013, 80, 1551–1556. [Google Scholar] [CrossRef]
- Yakushiji, Y.; Charidimou, A.; Hara, M.; Noguchi, T.; Nishihara, M.; Eriguchi, M.; Nanri, Y.; Nishiyama, M.; Werring, D.J.; Hara, H. Topography and associations of perivascular spaces in healthy adults: The Kashima Scan Study. Neurology 2014, 83, 2116–2123. [Google Scholar] [CrossRef]
- Zhu, Y.-C.; Tzourio, C.; Soumaré, A.; Mazoyer, B.; Dufouil, C.; Chabriat, H. Severity of Dilated Virchow-Robin Spaces Is Associated With Age, Blood Pressure, and MRI Markers of Small Vessel Disease: A population-based study. Stroke 2010, 41, 2483–2490. [Google Scholar] [CrossRef]
- Ding, J.; Sigurðsson, S.; Jónsson, P.V.; Eiriksdottir, G.; Charidimou, A.; Lopez, O.L.; A van Buchem, M.; Guðnason, V.; Launer, L.J. Large Perivascular Spaces Visible on Magnetic Resonance Imaging, Cerebral Small Vessel Disease Progression, and Risk of Dementia: The Age, Gene/Environment Susceptibility-Reykjavik Study. JAMA Neurol. 2017, 74, 1105–1112. [Google Scholar] [CrossRef]
- Doubal, F.N.; MacLullich, A.M.; Ferguson, K.J.; Dennis, M.S.; Wardlaw, J.M. Enlarged Perivascular Spaces on MRI Are a Feature of Cerebral Small Vessel Disease. Stroke 2010, 41, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, M.; Yang, L.; Qin, W.; Yang, S.; Yuan, J.; Jiang, T.; Hu, W. The relationship between blood–brain barrier permeability and enlarged perivascular spaces: A cross-sectional study. Clin. Interv. Aging 2019, 14, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Javierre-Petit, C.; Schneider, J.A.; Kapasi, A.; Makkinejad, N.; Tamhane, A.A.; Leurgans, S.E.; Mehta, R.I.; Barnes, L.L.; Bennett, D.A.; Arfanakis, K. Neuropathologic and Cognitive Correlates of Enlarged Perivascular Spaces in a Community-Based Cohort of Older Adults. Stroke 2020, 51, 2825–2833. [Google Scholar] [CrossRef] [PubMed]
- Fernando, M.S.; Simpson, J.E.; Matthews, F.; Brayne, C.; Lewis, C.E.; Barber, R.; Kalaria, R.N.; Forster, G.; Esteves, F.; Wharton, S.B.; et al. White Matter Lesions in an Unselected Cohort of the Elderly: Molecular pathology suggests origin from chronic hypoperfusion injury. Stroke 2006, 37, 1391–1398. [Google Scholar] [CrossRef] [PubMed]
- Kuriakose, M.; Younger, D.; Ravula, A.R.; Alay, E.; Rao, K.V.R.; Chandra, N. Synergistic Role of Oxidative Stress and Blood-Brain Barrier Permeability as Injury Mechanisms in the Acute Pathophysiology of Blast-induced Neurotrauma. Sci. Rep. 2019, 9, 7717. [Google Scholar] [CrossRef]
- Miyamoto, N.; Maki, T.; Pham, L.-D.D.; Hayakawa, K.; Seo, J.H.; Mandeville, E.T.; Mandeville, J.B.; Kim, K.-W.; Lo, E.H.; Arai, K. Oxidative Stress Interferes With White Matter Renewal After Prolonged Cerebral Hypoperfusion in Mice. Stroke 2013, 44, 3516–3521. [Google Scholar] [CrossRef]
- Arba, F.; Giannini, A.; Piccardi, B.; Biagini, S.; Palumbo, V.; Giusti, B.; Nencini, P.; Gori, A.M.; Nesi, M.; Pracucci, G.; et al. Small vessel disease and biomarkers of endothelial dysfunction after ischaemic stroke. Eur. Stroke J. 2018, 4, 119–126. [Google Scholar] [CrossRef]
- Aribisala, B.S.; Wiseman, S.; Morris, Z.; Valdés-Hernández, M.C.; Royle, N.A.; Maniega, S.M.; Gow, A.J.; Corley, J.; Bastin, M.E.; Starr, J.; et al. Circulating Inflammatory Markers Are Associated With Magnetic Resonance Imaging-Visible Perivascular Spaces But Not Directly With White Matter Hyperintensities. Stroke 2014, 45, 605–607. [Google Scholar] [CrossRef]
- Schain, A.J.; Melo-Carrillo, A.; Strassman, A.M.; Burstein, R. Cortical Spreading Depression Closes Paravascular Space and Impairs Glymphatic Flow: Implications for Migraine Headache. J. Neurosci. 2017, 37, 2904–2915. [Google Scholar] [CrossRef]
- Vilor-Tejedor, N.; Ciampa, I.; Operto, G.; Falcón, C.; Suárez-Calvet, M.; Crous-Bou, M.; Shekari, M.; Arenaza-Urquijo, E.M.; Milà-Alomà, M.; Grau-Rivera, O.; et al. Perivascular spaces are associated with tau pathophysiology and synaptic dysfunction in early Alzheimer’s continuum. Alzheimer’s Res. Ther. 2021, 13, 135. [Google Scholar] [CrossRef]
- Jiménez-Balado, J.; Riba-Llena, I.; Garde, E.; Valor, M.; Gutiérrez, B.; Pujadas, F.; Delgado, P. Prevalence of hippocampal enlarged perivascular spaces in a sample of patients with hypertension and their relation with vascular risk factors and cognitive function. J. Neurol. Neurosurg. Psychiatry 2018, 89, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Riba-Llena, I.; Nafría, C.; Mundet, X.; López-Rueda, A.; Fernández-Cortiñas, I.; Jarca, C.I.; Jiménez-Balado, J.; Domingo, M.; Tovar, J.L.; Orfila, F.; et al. Assessment of enlarged perivascular spaces and their relation to target organ damage and mild cognitive impairment in patients with hypertension. Eur. J. Neurol. 2016, 23, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.; Kim, J.; Park, K.; Han, S. Association between arterial stiffness and the presence of cerebral small vessel disease markers. Brain Behav. 2021, 11, e01935. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, L.; Yang, L.; Qin, W.; Yuan, J.; Li, S.; Hu, W. Brain Atrophy Correlates with Severe Enlarged Perivascular Spaces in Basal Ganglia among Lacunar Stroke Patients. PLoS ONE 2016, 11, e0149593. [Google Scholar] [CrossRef]
- Liu, S.; Hou, B.; You, H.; Zhang, Y.; Zhu, Y.; Ma, C.; Zuo, Z.; Feng, F. The Association Between Perivascular Spaces and Cerebral Blood Flow, Brain Volume, and Cardiovascular Risk. Front. Aging Neurosci. 2021, 13, 599724. [Google Scholar] [CrossRef] [PubMed]
- De Guio, F.; Duering, M.; Fazekas, F.; De Leeuw, F.-E.; Greenberg, S.M.; Pantoni, L.; Aghetti, A.; E Smith, E.; Wardlaw, J.; Jouvent, E. Brain atrophy in cerebral small vessel diseases: Extent, consequences, technical limitations and perspectives: The HARNESS initiative. J. Cereb. Blood Flow Metab. 2020, 40, 231–245. [Google Scholar] [CrossRef]
- Jie, W.; Lin, G.; Liu, Z.; Zhou, H.; Lin, L.; Liang, G.; Ou, M.; Lin, M. The Relationship Between Enlarged Perivascular Spaces and Cognitive Function: A Meta-Analysis of Observational Studies. Front. Pharmacol. 2020, 11, 715. [Google Scholar] [CrossRef]
- Paradise, M.; Crawford, J.D.; Lam, B.C.; Wen, W.; Kochan, N.A.; Makkar, S.; Dawes, L.; Trollor, J.; Draper, B.; Brodaty, H.; et al. Association of Dilated Perivascular Spaces With Cognitive Decline and Incident Dementia. Neurology 2021, 96, e1501–e1511. [Google Scholar] [CrossRef]
- Romero, J.R.; Pinheiro, A.; Aparicio, H.J.; DeCarli, C.S.; Demissie, S.; Seshadri, S. MRI-Visible Perivascular Spaces and Risk of Incident Dementia. Neurology 2022, 99, e2561–e2571. [Google Scholar] [CrossRef]
- Kövari, E.; Charidimou, A.; Herrmann, F.R.; Giannakopoulos, P.; Bouras, C.; Gold, G. No neuropathological evidence for a direct topographical relation between microbleeds and cerebral amyloid angiopathy: The Framingham Heart Study. Acta Neuropathol. Commun. 2015, 3, 49. [Google Scholar] [CrossRef]
- Moses, J.; Sinclair, B.; Law, M.; O’Brien, T.J.; Vivash, L. Automated Methods for Detecting and Quantitation of Enlarged Perivascular spaces on MRI. J. Magn. Reson. Imaging 2023, 57, 11–24. [Google Scholar] [CrossRef] [PubMed]
Clinical Characteristics | All N = 2452 |
---|---|
Male, n (%) | 1178 (48) |
Age at MRI, years, mean (SD) | 54.1 (12.1) |
Age at clinic exam, years, mean (SD) | 52.1 (12.4) |
Time interval between MRI and clinic exam, years, mean (SD) | 1.4 (1.0) |
FHS Cohort, n (%) | |
Offspring | 649 (26) |
Third Generation | 1803 (74) |
Vascular risk factors | |
Systolic blood pressure, mm Hg, mean (SD) | 119.6 (15.6) |
Diastolic blood pressure, mm Hg, mean (SD) | 74.1 (9.6) |
Hypertension a, n (%) | 758 (31) |
Current smoker, n (%) | 208 (8) |
Diabetes mellitus, n (%) | 180 (7) |
Body mass index, kg/m2, mean (SD) | 28.0 (5.5) |
APOE-ɛ4 (N = 2348), n (%) | 541 (23) |
Lipid-lowering medication use, n (%) | 564 (23) |
Antihypertensive use, n (%) | 594 (24) |
MRI-visible Perivascular Spaces | |
Centrum Semiovale (CSO), n (%) | |
Grade I | 1205 (49) |
Grade II | 986 (40) |
Grade III | 204 (8) |
Grade IV | 57 (2) |
Basal Ganglia (BG), n (%) | |
Grade I | 1372 (56) |
Grade II | 967 (39) |
Grade III | 106 (4) |
Grade IV | 7 (1) |
Mixed region high PVS burden b,n (%) | |
None | 2153 (88) |
Basal Ganglia Only | 38 (2) |
Centrum Semiovale Only | 186 (8) |
Both | 75 (3) |
Cerebral Microbleeds, n (%) | |
Any (≥1) | 128 (5) |
Only Lobar (N = 2416) | 92 (4) |
Lobar and Deep (N = 2336) | 12 (1) |
Only Deep (N = 2348) | 24 (1) |
Deep or Mixed (N = 2360) | 36 (2) |
Covert Brain Infarcts | |
Any (≥1) | 165 (7) |
Small | 142 (6) |
White Matter Hyperintensity | |
Severe White Matter Hyperintensity, n (%) | 274 (11) |
White Matter Hyperintensity Volume c, mean (SD) | 0.03 (0.85) |
Other Volumes | |
Hippocampal volume cm3, mean (SD) | 6.81 (0.74) |
Cortical gray volume cm3, mean (SD) | 501.92 (51.22) |
Total brain volume cm3, mean (SD) | 1006.66 (107.96) |
Frontal cortical gray volume cm3, mean (SD) | 194.02 (21.27) |
Temporal cortical gray volume cm3, mean (SD) | 133.88 (13.96) |
Parietal cortical gray volume cm3, mean (SD) | 107.00 (11.32) |
Occipital cortical gray volume cm3, mean (SD) | 67.02 (8.83) |
(A) | |||||||||
---|---|---|---|---|---|---|---|---|---|
MRI-Visible Perivascular Spaces a N = 2452 | |||||||||
Centrum Semiovale | Basal Ganglia | ||||||||
I | II | III | IV | I | II | III | IV | ||
Cerebral Microbleeds (CMB) | None N (%) | 1155 (96) | 935 (95) | 185 (91) | 49 (86) | 1314 (96) | 911 (94) | 93 (88) | 6 (86) |
Any (≥1), N (%) | 50 (4) | 51 (5) | 19 (9) | 8 (14) | 58 (4) | 56 (6) | 13 (12) | 1 (14) | |
Only Lobar, N (%) | 37 (3) | 42 (4) | 10 (5) | 3 (6) | 48 (4) | 36 (4) | 7 (7) | 1 (14) | |
Lobar and Deep, N (%) | 4 (0) | 1 (0) | 4 (2) | 3 (6) | 2 (0) | 6 (1) | 4 (4) | 0 (0) | |
Only Deep, N (%) | 9 (1) | 8 (1) | 5 (3) | 2 (4) | 8 (1) | 14 (2) | 2 (2) | 0 (0) | |
Deep or Mixed, N (%) | 13 (1) | 9 (1) | 9 (5) | 5 (9) | 10 (1) | 20 (2) | 6 (6) | 0 (0) | |
Covert Brain Infarcts (CBI) | None N (%) | 1160 (96) | 912 (92) | 164 (80) | 51 (89) | 1317 (96) | 896 (93) | 69 (65) | 5 (71) |
Any (≥1), N (%) | 45 (4) | 74 (8) | 40 (20) | 6 (11) | 55 (4) | 71 7) | 37 (35) | 2 (29) | |
Small CBI, N (%) | 40 (3) | 65 (7) | 32 (16) | 5 (9) | 48 (3) | 6 (6) | 31 (29) | 2 (29) | |
White Matter Hyperintensities (WMH) | No Severe WMH, N (%) | 1116 (93) | 871 (88) | 148 (73) | 43 (75) | 1245 (91) | 856 (89) | 73 (69) | 4 (57) |
Severe WMH, N (%) | 89 (7) | 115 (12) | 56 (27) | 14 (25) | 127 (9) | 111 (11) | 33 (31) | 3 (43) | |
WMH Volume ‡, Mean (SD) | −0.12 (0.82) | 0.07 (0.83) | 0.51 (0.89) | 0.55 (0.85) | −0.02 (0.81) | 0.03 (0.87) | 0.52 (0.87) | 1.16 (1.02) | |
Other Volumes | Hippocampal Volume cm3, Mean (SD) | 6.87 (0.73) | 6.79 (0.71) | 6.64 (0.77) | 6.49 (0.90) | 6.84 (0.72) | 6.81 (0.73) | 6.50 (0.86) | 6.36 (0.67) |
Cortical Gray Volume cm3, Mean (SD) | 507.04 (50.55) | 500.76 (50.79) | 486.03 (49.86) | 470.74 (54.78) | 504.63 (49.79) | 501.55 (52.10) | 473.61 (51.68) | 452.77 (53.35) | |
Total brain volume cm3, mean (SD) | 1015.76 (106.71) | 1005.3 (106.9) | 976.24 (108.19) | 946.67 (114.06) | 1011.45 (105.53) | 1006.82 (109.26) | 949.19 (110.19) | 915.55 (93.39) | |
Frontal cortical gray volume cm3, mean (SD) | 196.9 (20.92) | 192.93 (20.93) | 186.45 (20.9) | 179.13 (21.52) | 195.2 (20.4) | 193.89 (21.84) | 181.2 (22.27) | 174.29 (23.44) | |
Temporal cortical gray volume cm3, mean (SD) | 134.81 (14.02) | 133.7 (13.77) | 130.72 (13.64) | 128.52 (14.71) | 134.26 (13.73) | 134.01 (14.23) | 128.48 (13.34) | 121.83 (12.51) | |
Parietal cortical gray volume cm3, mean (SD) | 107.79 (11.05) | 106.98 (11.28) | 104.06 (11.7) | 101.29 (13.14) | 107.63 (11.02) | 106.84 (11.49) | 101 (11.63) | 98.34 (13.5) | |
Occipital cortical gray volume cm3, mean (SD) | 67.54 (8.66) | 67.15 (8.99) | 64.81 (8.33) | 61.8 (8.69) | 67.53 (8.77) | 66.81 (8.82) | 62.93 (8.5) | 58.3 (7.69) | |
(B) | |||||||||
High-Burden PVS Regions a N = 2452 | |||||||||
None N = 2153 | Only Basal Ganglia N = 38 | Only Centrum Semiovale N = 186 | Both N =75 | ||||||
Cerebral Microbleeds (CMB) | None N (%) | 2054 (95) | 36 (95) | 171 (92) | 63(84) | ||||
Any (≥1) N (%) | 99 (5) | 2 (5) | 15 (8) | 12 (16) | |||||
Only Lobar N (%) | 77 (4) | 2 (5) | 7 (4) | 6 (9) | |||||
Lobar and Deep N (%) | 5 (0) | 0 (0) | 3 (2) | 4 (6) | |||||
Only Deep N (%) | 17 (1) | 0 (0) | 5 (3) | 2 (3) | |||||
Deep or Mixed N (%) | 22 (1) | 0 (0) | 8 (4) | 6 (9) | |||||
Covert Brain Infarcts (CBI) | None N (%) | 2049 (95) | 23 (61) | 164(88) | 51(68) | ||||
Any (≥1) N (%) | 104 (5) | 15 (39) | 22 (12) | 24 (32) | |||||
Small CBI N (%) | 92 (4) | 13 (34) | 17 (9) | 20 (27) | |||||
White Matter Hyperintensity (WMH) | No Severe WMH, N(%) | 1959 (91) | 28 (74) | 142(76) | 49(65) | ||||
Severe WMH N (%) | 194 (9) | 10 (26) | 44 (24) | 26 (35) | |||||
WMH Volume ‡, Mean (SD) | −0.04 (0.82) | 0.36 (1.02) | 0.46 (0.91) | 0.66 (0.80) | |||||
Other Volumes | Hippocampal cm3, Mean (SD) | 6.84 (0.72) | 6.65 (0.72) | 6.69 (0.75) | 6.41 (0.90) | ||||
Cortical Gray cm3, Mean (SD) | 504.52 (50.70) | 487.04 (50.79) | 489.88 (49.71) | 464.86 (51.00) |
(A) | ||||||
---|---|---|---|---|---|---|
MRI-Visible Perivascular Spaces (PVS) Grading a | Covert Brain Infarcts (CBI) N = 2452 | |||||
Model 1 ‡ OR (95% CI) | ||||||
Any CBI | Small CBI | Any Lobar | Any Deep | |||
Centrum Semiovale | I | Ref | Ref | Ref | Ref | |
II | 1.28 (0.85, 1.92) | 1.27 (0.82, 1.95) | 0.84 (0.45, 1.57) | 1.85 * (1.03, 3.33) | ||
III | 2.08 * (1.22, 3.56) | 1.81 (1.02, 3.22) | 1.62 (0.73, 3.57) | 2.08 (0.98, 4.41) | ||
IV | 0.90 (0.34, 2.36) | 0.85 (0.30, 2.41) | 0.61 (0.13, 2.94) | 0.65 (0.14, 3.07) | ||
Basal Ganglia | I | Ref | Ref | Ref | Ref | |
II | 1.44 (0.98, 2.10) | 1.42 (0.95, 2.12) | 1.20 (0.67, 2.13) | 1.81 * (1.06, 3.11) | ||
III | 4.96 ** (2.86, 8.60) | 4.52 ** (2.52, 8.09) | 2.71 * (1.18, 6.25) | 6.17 ** (3.04, 12.52) | ||
IV | 2.76 (0.49, 15.64) | 3.38 (0.59, 19.32) | 2.84 (0.30, 26.82) | 2.79 (0.30, 25.66) | ||
Mixed Region High PVS Burden | None | Ref | Ref | Ref | Ref | |
Only BG | 5.52 ** (2.63, 11.57) | 5.00 ** (2.33, 10.76) | 2.62 (0.82, 8.35) | 7.20 ** (3.20, 16.19) | ||
Only CSO | 1.28 (0.75, 2.18) | 1.10 (0.61, 1.99) | 1.36 (0.61, 3.04) | 1.01 (0.48, 2.11) | ||
Both | 3.46 ** (1.90, 6.30) | 3.06 ** (1.63, 5.77) | 2.68 * (1.12, 6.42) | 2.66 * (1.23, 5.76) | ||
(B) | ||||||
MRI-Visible Perivascular Spaces (PVS) Grading a | Covert Brain Infarcts (CBI) N = 2452 | |||||
Model 2 ‡ OR (95% CI) | ||||||
Any CBI | Small CBI | Any Lobar | Any Deep | |||
Centrum Semiovale (CSO) | I | Ref | Ref | Ref | Ref | |
II | 1.28 (0.85, 1.93) | 1.27 (0.82, 1.96) | 0.83 (0.44, 1.57) | 1.85 * (1.02, 3.33) | ||
III | 1.99 * (1.16, 3.43) | 1.71 (0.96, 3.07) | 1.62 (0.73, 3.61) | 1.90 (0.89, 4.07) | ||
IV | 0.95 (0.36, 2.52) | 0.90 (0.31, 2.57) | 0.66 (0.14, 3.16) | 0.66 (0.14, 3.13) | ||
Basal Ganglia (BG) | I | Ref | Ref | Ref | Ref | |
II | 1.43 (0.98, 2.10) | 1.42 (0.94, 2.12) | 1.20 (0.68, 2.15) | 1.79 * (1.04, 3.08) | ||
III | 5.27 ** (3.01, 9.22) | 4.74 ** (2.63, 8.55) | 2.81 * (1.21, 6.54) | 6.58 ** (3.22, 13.47) | ||
IV | 2.79 (0.49, 15.95) | 3.40 (0.59, 19.59) | 2.74 (0.28, 26.50) | 3.01 (0.33, 27.73) | ||
Mixed Region High PVS Burden | None | Ref | Ref | Ref | Ref | |
Only BG | 5.89 ** (2.79, 12.44) | 5.24 ** (2.42, 11.33) | 2.83 (0.88, 9.07) | 7.49 ** (3.31, 16.96) | ||
Only CSO | 1.22 (0.71, 2.09) | 1.03 (0.56, 1.88) | 1.42 (0.64, 3.18) | 0.86 (0.40, 1.87) | ||
Both | 3.57 ** (1.94, 6.56) | 3.11 ** (1.64, 5.91) | 2.73 * (1.13, 6.64) | 2.73 * (1.25, 5.96) |
MRI-Visible Perivascular Spaces (PVS) Grading a | White Matter Hyperintensity (WMH) N = 2452 | ||||
---|---|---|---|---|---|
Model 1 ‡ | Model 2 ‡ | ||||
Severe WMH OR (95% CI) | WMH Volume β (95% CI) | Severe WMH OR (95% CI) | WMH Volume β (95% CI) | ||
Centrum Semiovale (CSO) | I | Ref | Ref | Ref | Ref |
II | 2.01 ** (1.48, 2.73) | 0.28 ** (0.21, 0.35) | 1.96 ** (1.44, 2.67) | 0.27 ** (0.20, 0.34) | |
III | 7.32 ** (4.66, 11.52) | 0.82 ** (0.68, 0.95) | 7.17 ** (4.53, 11.33) | 0.81 ** (0.67, 0.94) | |
IV | 6.74 ** (3.32, 13.68) | 0.89 ** (0.67, 1.12) | 5.58 ** (2.65, 11.75) | 0.85 ** (0.61, 1.08) | |
Basal Ganglia (BG) | I | Ref | Ref | Ref | Ref |
II | 1.39 * (1.06, 1.83) | 0.10 * (0.03, 0.17) | 1.35 * (1.02, 1.78) | 0.09 * (0.02, 0.16) | |
III | 5.58 ** (3.35, 9.29) | 0.65 ** (0.48, 0.82) | 5.46 ** (3.25, 9.18) | 0.65 ** (0.47, 0.83) | |
IV | 9.41 * (1.99, 44.41) | 1.29 ** (0.67, 1.91) | 9.05 * (1.92, 42.81) | 1.28 ** (0.66, 1.9) | |
Mixed Region High PVS Burden | None | Ref | Ref | Ref | Ref |
Only BG | 5.18 ** (2.38, 11.29) | 0.53 ** (0.26, 0.8) | 5.30 ** (2.42, 11.60) | 0.55 ** (0.28, 0.82) | |
Only CSO | 4.13 ** (2.71, 6.28) | 0.60 ** (0.47, 0.73) | 3.97 ** (2.59, 6.08) | 0.58 ** (0.45, 0.71) | |
Both | 8.82 ** (4.96, 15.69) | 0.89 ** (0.69, 1.09) | 8.55 ** (4.75, 15.37) | 0.88 ** (0.68, 1.08) |
(A) | ||||||||
---|---|---|---|---|---|---|---|---|
MRI-Visible Perivascular Spaces (PVS) Grading a | Cerebral Microbleeds (CMB) | |||||||
Model 1 ‡ OR (95% CI) | ||||||||
Any CMB N = 2452 | Only Lobar N = 2416 | Lobar and Deep N = 2336 | Only Deep N = 2348 | Deep or Mixed N = 2360 | ||||
Centrum Semiovale (CSO) | I | Ref | Ref | Ref | Ref | Ref | ||
II | 0.86 (0.56, 1.31) | 1.01 (0.63, 1.63) | ||||||
III | 0.99 (0.52, 1.86) | 0.80 (0.36, 1.79) | 4.89 * (1.28, 18.65) | 1.62 (0.59, 4.44) | 2.40 * (1.09, 5.29) | |||
IV | 1.34 (0.55, 3.23) | 0.79 (0.22, 2.84) | ||||||
Basal Ganglia (BG) | I | Ref | Ref | Ref | Ref | Ref | ||
II | 1.06 (0.71, 1.56) | 0.86 (0.54, 1.36) | ||||||
III | 1.25 (0.62, 2.54) | 0.93 (0.38, 2.28) | 3.28 (0.80, 13.41) | 0.70 (0.15, 3.29) | 1.47 (0.54, 3.95) | |||
IV | 1.20 (0.14, 10.60) | 1.73 (0.19, 15.48) | ||||||
Mixed Region High PVS Burden | None | Ref | Ref | Ref | Ref | Ref | ||
Only BG | 0.52 (0.12, 2.28) | 0.74 (0.17, 3.28) | 2.52 (0.5, 12.73) | 1.29 (0.42, 3.94) | 1.57 (0.62, 3.93) | |||
Only CSO | 0.97 (0.52, 1.78) | 0.64 (0.28, 1.46) | ||||||
Both | 1.53 (0.74, 3.15) | 1.08 (0.42, 2.78) | 8.27 * (1.60, 42.63) | 1.25 (0.25, 6.30) | 2.86 (0.98, 8.38) | |||
(B) | ||||||||
MRI-visible Perivascular Spaces (PVS) Grading a | Cerebral Microbleeds (CMB) | |||||||
Model 2 ‡ OR (95% CI) | ||||||||
Any CMB N = 2452 | Only Lobar N = 2416 | Lobar and Deep N = 2336 | Only Deep N = 2348 | Deep or Mixed N = 2360 | ||||
Centrum Semiovale (CSO) | I | Ref | Ref | Ref | Ref | Ref | ||
II | 0.83 (0.54, 1.29) | 1.01 (0.62, 1.64) | ||||||
III | 0.96 (0.51, 1.84) | 0.82 (0.36, 1.84) | 4.80 * (1.24, 18.62) | 1.33 (0.46, 3.84) | 2.14 (0.95, 4.78) | |||
IV | 1.18 (0.47, 2.99) | 0.84 (0.23, 3.07) | ||||||
Basal Ganglia (BG) | I | Ref | Ref | Ref | Ref | Ref | ||
II | 1.06 (0.71, 1.57) | 0.89 (0.56, 1.41) | ||||||
III | 1.26 (0.62, 2.57) | 0.94 (0.38, 2.32) | 3.20 (0.80, 12.81) | 0.76 (0.16, 3.71) | 1.57 (0.58, 4.24) | |||
IV | 1.12 (0.13, 9.92) | 1.62 (0.18, 14.57) | ||||||
Mixed Region High PVS Burden | None | Ref | Ref | Ref | Ref | |||
Only BG | 0.54 (0.12, 2.36) | 0.76 (0.17, 3.35) | 2.50 (0.49, 12.72) | 1.04 (0.31, 3.43) | 1.35 (0.52, 3.52) | |||
Only CSO | 0.93 (0.5, 1.75) | 0.67 (0.29, 1.55) | ||||||
Both | 1.50 (0.72, 3.09) | 1.07 (0.42, 2.78) | 7.74 * (1.50, 39.93) | 1.21 (0.24, 6.09) | 2.73 (0.93, 8.01) |
MRI-Visible Perivascular Spaces (PVS) Grading a | Volumes N = 2452 | ||||
---|---|---|---|---|---|
Model 1 ‡ | Model 2 ‡ | ||||
Total Cranial to Brain Volume Ratio β (95% CI) | Hippocampal β (95% CI) | Total Cranial to Brain Volume Ratio β (95% CI) | Hippocampal β (95% CI) | ||
Centrum Semiovale (CSO) | I | Ref | Ref | Ref | Ref |
II | −0.06 * (−0.11, −0.01) | −0.09 * (−0.17, −0.02) | −0.04 (−0.09, 0.01) | −0.09 * (−0.17, −0.01) | |
III | −0.24 ** (−0.33, −0.14) | −0.23 * (−0.38, −0.08) | −0.21 ** (−0.31, −0.12) | −0.24 * (−0.38, −0.09) | |
IV | −0.22 * (−0.38, −0.06) | −0.21 (−0.46, 0.04) | −0.17 * (−0.33, −0.01) | −0.23 (−0.48, 0.03) | |
Basal Ganglia (BG) | I | Ref | Ref | Ref | Ref |
II | −0.06 * (−0.11, −0.01) | −0.03 (−0.11, 0.04) | −0.05 * (−0.099, 0.004) | −0.04 (−0.11, 0.04) | |
III | −0.24 ** (−0.36, −0.12) | −0.14 (−0.33, 0.05) | −0.25 ** (−0.37, −0.13) | −0.16 (−0.35, 0.03) | |
IV | −0.42 (−0.85, −0.01) | −0.07 (−0.73, 0.60) | −0.38 (−0.80, 0.05) | −0.07 (−0.73, 0.60) | |
Mixed Region High PVS Burden | None | Ref | Ref | Ref | Ref |
Only BG | −0.30 * (−0.48, −0.11) | −0.13 (−0.42, 0.17) | −0.32 ** (−0.50, −0.13) | −0.09 (−0.39, 0.20) | |
Only CSO | −0.20 ** (−0.29, −0.10) | −0.17 * (−0.31, −0.03) | −0.18 ** (−0.27, −0.09) | −0.17 * (−0.31, −0.02) | |
Both | −0.24 ** (−0.38, −0.11) | −0.17 (−0.39, 0.05) | −0.24 ** (−0.38, −0.10) | −0.21 (−0.43, 0.01) |
MRI-Visible Perivascular Spaces (PVS) Grading a | Volumes N = 2452 | |||||
---|---|---|---|---|---|---|
Model 1 ‡ | ||||||
Cortical Gray β (95% CI) | Cortical Gray Frontal β (95% CI) | Cortical Gray Temporal β (95% CI) | Cortical Gray Parietal β (95% CI) | Cortical Gray Occipital β (95% CI) | ||
Centrum Semiovale (CSO) | I | Ref | Ref | Ref | Ref | Ref |
II | −0.06 (−0.12, 0.01) | −0.09 * (−0.15, −0.02) | −0.07 (−0.14, 0.01) | −0.01 (−0.09, 0.06) | 0.04 (−0.04, 0.12) | |
III | −0.17 * (−0.29, −0.06) | −0.12 * (−0.24, −0.01) | −0.20 * (−0.34, −0.06) | −0.15 * (−0.29, −0.01) | −0.05 (−0.20, 0.10) | |
IV | −0.19 (−0.39, 0.00) | −0.23 * (−0.43, −0.03) | 0.03 (−0.20, 0.26) | −0.13 (−0.37, 0.10) | −0.23 (−0.48, 0.03) | |
Basal Ganglia (BG) | I | Ref | Ref | Ref | Ref | Ref |
II | −0.04 (−0.10, 0.02) | 0.01 (−0.05, 0.07) | −0.02 (−0.09, 0.05) | −0.07 * (−0.144, −0.003) | −0.09 * (−0.17, −0.02) | |
III | −0.09 (−0.23, 0.06) | −0.01 (−0.16, 0.15) | 0.02 (−0.16, 0.19) | −0.21 * (−0.39, −0.03) | −0.14 (−0.33, 0.05) | |
IV | −0.43 (−0.95, 0.10) | −0.11 (−0.65, 0.43) | −0.49 (−1.11, 0.13) | −0.24 (−0.87, 0.39) | −0.66 (−1.34, 0.02) | |
Mixed Region High PVS Burden | None | Ref | Ref | Ref | Ref | Ref |
Only BG | −0.09 (−0.32, 0.14) | 0.03 (−0.21, 0.27) | −0.16 (−0.43, 0.11) | −0.01 (−0.29, 0.26) | −0.21 (−0.51, 0.08) | |
Only CSO | −0.15 * (−0.26, −0.04) | −0.09 (−0.21, 0.02) | −0.17 * (−0.30, −0.04) | −0.08 (−0.22, 0.05) | −0.13 (−0.27, 0.02) | |
Both | −0.13 (−0.30, 0.04) | −0.08 (−0.25, 0.10) | 0.02 (−0.18, 0.22) | −0.28 * (−0.49, −0.08) | −0.11 (−0.33, 0.11) | |
(B) | ||||||
MRI-Visible Perivascular Spaces (PVS) Grading a | Volumes N = 2452 | |||||
Model 2 ‡ | ||||||
Total Cortical Gray β (95% CI) | Cortical Gray Frontal β (95% CI) | Cortical Gray Temporal β (95% CI) | Cortical Gray Parietal β (95% CI) | Cortical Gray Occipital β (95% CI) | ||
Centrum Semiovale (CSO) | I | Ref | Ref | Ref | Ref | Ref |
II | −0.03 (−0.09, 0.03) | −0.06 (−0.126, 0.002) | −0.05 (−0.12, 0.02) | −0.003 (−0.08, 0.07) | 0.06 (−0.02, 0.14) | |
III | −0.14* (−0.25, −0.02) | −0.10 (−0.22, 0.02) | −0.17 * (−0.3, −0.03) | −0.13 (−0.27, 0.01) | −0.03 (−0.18, 0.13) | |
IV | −0.13 (−0.33, 0.07) | −0.16 (−0.36, 0.04) | 0.09 (−0.14, 0.33) | −0.14 (−0.38, 0.1) | −0.18 (−0.44, 0.08) | |
Basal Ganglia (BG) | I | Ref | Ref | Ref | Ref | Ref |
II | −0.02 (−0.08, 0.03) | 0.03 (−0.03, 0.09) | −0.01 (−0.08, 0.06) | −0.06 (−0.13, 0.01) | −0.09 * (−0.17, −0.01) | |
III | −0.09 (−0.23, 0.06) | 0.005 (−0.15, 0.16) | 0.01 (−0.17, 0.18) | −0.21 * (−0.39, −0.03) | −0.15 (−0.35, 0.04) | |
IV | −0.38 (−0.90, 0.14) | −0.06 (−0.60, 0.48) | −0.45 (−1.07, 0.16) | −0.21 (−0.84, 0.41) | −0.63 (−1.31, 0.05) | |
Mixed Region High PVS Burden | None | Ref | Ref | Ref | Ref | Ref |
Only BG | −0.12 (−0.35, 0.11) | 0.02 (−0.21, 0.26) | −0.21 (−0.48, 0.06) | −0.03 (−0.31, 0.24) | −0.24 (−0.54, 0.06) | |
Only CSO | −0.12 * (−0.23, −0.01) | −0.07 (−0.18, 0.05) | −0.14 * (−0.27, −0.01) | −0.08 (−0.21, 0.06) | −0.11 (−0.25, 0.04) | |
Both | −0.12 (−0.29,0.06) | −0.06 (−0.24, 0.12) | 0.04 (−0.17, 0.24) | −0.28 * (−0.48, −0.07) | −0.11 (−0.34, 0.11) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez Lara, F.; Toro, A.R.; Pinheiro, A.; Demissie, S.; Ekenze, O.; Martinez, O.; Parva, P.; Charidimou, A.; Ghosh, S.; DeCarli, C.; et al. Relation of MRI-Visible Perivascular Spaces and Other MRI Markers of Cerebral Small Vessel Disease. Brain Sci. 2023, 13, 1323. https://doi.org/10.3390/brainsci13091323
Rodriguez Lara F, Toro AR, Pinheiro A, Demissie S, Ekenze O, Martinez O, Parva P, Charidimou A, Ghosh S, DeCarli C, et al. Relation of MRI-Visible Perivascular Spaces and Other MRI Markers of Cerebral Small Vessel Disease. Brain Sciences. 2023; 13(9):1323. https://doi.org/10.3390/brainsci13091323
Chicago/Turabian StyleRodriguez Lara, Frances, Arturo Ruben Toro, Adlin Pinheiro, Serkalem Demissie, Oluchi Ekenze, Oliver Martinez, Pedram Parva, Andreas Charidimou, Saptaparni Ghosh, Charles DeCarli, and et al. 2023. "Relation of MRI-Visible Perivascular Spaces and Other MRI Markers of Cerebral Small Vessel Disease" Brain Sciences 13, no. 9: 1323. https://doi.org/10.3390/brainsci13091323
APA StyleRodriguez Lara, F., Toro, A. R., Pinheiro, A., Demissie, S., Ekenze, O., Martinez, O., Parva, P., Charidimou, A., Ghosh, S., DeCarli, C., Seshadri, S., Habes, M., Maillard, P., & Romero, J. R. (2023). Relation of MRI-Visible Perivascular Spaces and Other MRI Markers of Cerebral Small Vessel Disease. Brain Sciences, 13(9), 1323. https://doi.org/10.3390/brainsci13091323