Sub-Scalp Implantable Telemetric EEG (SITE) for the Management of Neurological and Behavioral Disorders beyond Epilepsy
Abstract
:1. Introduction
2. Background and Rationale
3. EEG Studies of Neurological and Behavioral Disorders
3.1. Depression
3.2. Attentional Disorders
3.3. Schizophrenia and Psychosis
3.4. Obsessive Compulsive Disorder (OCD)
3.5. Dementia
3.6. Parkinson’s Disease
3.7. Obstructive Sleep Apnea (OSA)
3.8. Syncope
3.9. Brain Tumor
3.10. Traumatic Brain Injury (TBI)
Disorder | EEG Biomarkers * |
---|---|
Depression | Absolute theta and beta band power elevation [14] Frontal theta band power elevation [15] HFOs [20,21] ML features [4,22,23] |
Attentional Disorders | TBR elevation [14] APF reduction [25] |
Schizophrenia | Absolute delta and theta band power elevation [28] Absolute alpha band power reduction [14] Gamma band power elevation [30] |
OCD | Absolute and relative delta and theta band power elevation [31,32] |
Dementia (including AD and PD) | Alpha and beta band power reduction [37] Theta and delta band power elevation [37] |
PD (motor dysfunction) | Central spectral delta and low-beta band power elevation (FOG) [46] Beta coherence excess [47] |
OSA | Beta and delta band power elevation [48,49] |
Syncope | Theta and delta slowing [55] Background suppression [54] |
Brain Tumor | Theta and gamma power elevation [59] |
TBI | ML features [61,62] |
4. SITE for the Management of Neurological Disorders
4.1. SITE Device and Electrode Implantation
4.2. Data Collection and Analysis
4.3. Therapeutic Monitoring
4.4. Overcoming Spatial Sampling Limitations
4.5. Sleep EEG Analysis
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fisher, R.S.; Blum, D.E.; DiVentura, B.; Vannest, J.; Hixson, J.D.; Moss, R.; Herman, S.T.; Fureman, B.E.; French, J.A. Seizure diaries for clinical research and practice: Limitations and future prospects. Epilepsy Behav. 2012, 24, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Pacia, S.V.; Doyle, W.K.; Friedman, D.; Bacher, D.H.; Kuzniecky, R.I. Intracranial EEG Validation of Single-Channel Subgaleal EEG for Seizure Identification. J. Clin. Neurophysiol. 2022, 39, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Duun-Henriksen, J.; Baud, M.; Richardson, M.P.; Cook, M.; Kouvas, G.; Heasman, J.M.; Friedman, D.; Peltola, J.; Zibrandtsen, I.C.; Kjaer, T.W. A new era in electroencephalographic monitoring? Subscalp devices for ultra–long-term recordings. Epilepsia 2020, 61, 1805–1817. [Google Scholar] [CrossRef] [PubMed]
- Khodayari-Rostamabad, A.; Reilly, J.P.; Hasey, G.M.; de Bruin, H.; MacCrimmon, D.J. A machine learning approach using EEG data to predict response to SSRI treatment for major depressive disorder. Clin. Neurophysiol. 2013, 124, 1975–1985. [Google Scholar] [CrossRef] [PubMed]
- Arnett, A.B.; Rutter, T.M.; Stein, M.A. Neural Markers of Methylphenidate Response in Children with Attention Deficit Hyperactivity Disorder. Front. Behav. Neurosci. 2022, 16, 887622. [Google Scholar] [CrossRef] [PubMed]
- Popa, L.L.; Dragos, H.; Pantelemon, C.; Rosu, O.V.; Strilciuc, S. The Role of Quantitative EEG in the Diagnosis of Neuropsychiatric Disorders. J. Med. Life 2020, 13, 8–15. [Google Scholar] [CrossRef]
- Jobert, M.; Wilson, F.J.; Ruigt, G.S.; Brunovsky, M.; Prichep, L.S.; Drinkenburg, W.H. Boeijinga The IPEG Pharmaco-EEG Guideline Committee Guidelines for the Recording and Evaluation of Pharmaco-EEG Data in Man: The International Pharmaco-EEG Society (IPEG). Neuropsychobiology 2012, 66, 201–220. [Google Scholar] [CrossRef] [Green Version]
- Brito, R.; Baltar, A.; Berenguer-Rocha, M.; Shirahige, L.; Rocha, S.; Fonseca, A.; Piscitelli, D.; Monte-Silva, K. Intrahemispheric EEG: A New Perspective for Quantitative EEG Assessment in Poststroke Individuals. Neural Plast. 2021, 2021, 5664647. [Google Scholar] [CrossRef]
- Babiloni, C.; Barry, R.J.; Başar, E.; Blinowska, K.J.; Cichocki, A.; Drinkenburg, W.H.I.M.; Klimesch, W.; Knight, R.T.; da Silva, F.L.; Nunez, P.; et al. International Federation of Clinical Neurophysiology (IFCN)—EEG research workgroup: Recommendations on frequency and topographic analysis of resting state EEG rhythms. Part 1: Applications in clinical research studies. Clin. Neurophysiol. 2020, 131, 285–307. [Google Scholar] [CrossRef]
- Nuwer, M.R.; Comi, G.; Emerson, R.; Fuglsang-Frederiksen, A.; Guérit, J.M.; Hinrichs, H.; Ikeda, A.; Luccas, F.J.; Rappelsberger, P. IFCN standards for digital recording of clinical EEG. Int. Fed. Clin. Neurophysiol. Electroencephalogr. Clin. Neurophysiol. Suppl. 1999, 52, 11–14. [Google Scholar] [CrossRef]
- Kanda, P.A.d.M.; Anghinah, R.; Smidth, M.T.; Silva, J.M. The clinical use of quantitative EEG in cognitive disorders. Dement. Neuropsychol. 2009, 3, 195–203. [Google Scholar] [CrossRef] [Green Version]
- de Aguiar Neto, F.S.; Rosa, J.L.G. Depression biomarkers using non-invasive EEG: A review. Neurosci. Biobehav. Rev. 2019, 105, 83–93. [Google Scholar] [CrossRef]
- Čukić, M.; López, V.; Pavón, J. Classification of Depression Through Resting-State Electroencephalogram as a Novel Practice in Psychiatry: Review. J. Med. Internet Res. 2020, 22, e19548. [Google Scholar] [CrossRef]
- Newson, J.J.; Thiagarajan, T.C. EEG Frequency Bands in Psychiatric Disorders: A Review of Resting State Studies. Front. Hum. Neurosci. 2019, 12, 521. [Google Scholar] [CrossRef] [Green Version]
- Arns, M.; Etkin, A.; Hegerl, U.; Williams, L.M.; DeBattista, C.; Palmer, D.M.; Fitzgerald, P.B.; Harris, A.; deBeuss, R.; Gordon, E. Frontal and rostral anterior cingulate (rACC) theta EEG in depression: Implications for treatment outcome? Eur. Neuropsychopharmacol. 2015, 25, 1190–1200. [Google Scholar] [CrossRef]
- Hunter, A.M.; Cook, I.A.; Leuchter, A.F. The Promise of the Quantitative Electroencephalogram as a Predictor of Antidepressant Treatment Outcomes in Major Depressive Disorder. Psychiatr. Clin. N. Am. 2007, 30, 105–124. [Google Scholar] [CrossRef]
- Spronk, D.D.; Arns, M.; Bootsma, A.; van Ruth, R.; Fitzgerald, P.B. Long Term Effects of Left Frontal rTMS on EEG and ERPs in Patients with Depression. Clin. EEG Neurosci. 2008, 39, 118–124. [Google Scholar] [CrossRef]
- Kwon, J.S.; Youn, T.; Jung, H.Y. Right hemisphere abnormalities in major depression: Quantitative electroencephalographic findings before and after treatment. J. Affect. Disord. 1996, 40, 169–173. [Google Scholar] [CrossRef]
- Koek, R.J.; Yerevanian, B.I.; Tachiki, K.H.; Smith, J.C.; Alcock, J.; Kopelowicz, A. Hemispheric asymmetry in depression and mania. A longitudinal QEEG study in bipolar disorder. J. Affect. Disord. 1999, 53, 109–122. [Google Scholar] [CrossRef]
- Fitzgerald, P.J.; Watson, B.O. Gamma oscillations as a biomarker for major depression: An emerging topic. Transl. Psychiatry 2018, 8, 177. [Google Scholar] [CrossRef] [Green Version]
- Arikan, M.K.; Gunver, M.G.; Tarhan, N.; Metin, B. High-Gamma: A biological marker for suicide attempt in patients with depression. J. Affect. Disord. 2019, 254, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Iznak, A.F.; Iznak, E.V. EEG-prediktory terapevticheskogo otveta v psikhiatrii [EEG predictors of therapeutic response in psychiatry]. Zh. Nevrol. Psikhiatr. Im. SS Korsakova 2021, 121, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Mumtaz, W.; Xia, L.; Yasin, M.A.M.; Ali, S.S.A.; Malik, A.S. A wavelet-based technique to predict treatment outcome for Major Depressive Disorder. PLoS ONE 2017, 12, e0171409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slater, J.; Joober, R.; Koborsy, B.L.; Mitchell, S.; Sahlas, E.; Palmer, C. Can electroencephalography (EEG) identify ADHD subtypes? A systematic review. Neurosci. Biobehav. Rev. 2022, 139, 104752. [Google Scholar] [CrossRef]
- Arns, M.; Vollebregt, M.A.; Palmer, D.; Spooner, C.; Gordon, E.; Kohn, M.; Clarke, S.; Elliott, G.R.; Buitelaar, J.K. Electroencephalographic biomarkers as predictors of methylphenidate response in attention-deficit/hyperactivity disorder. Eur. Neuropsychopharmacol. 2018, 28, 881–891. [Google Scholar] [CrossRef]
- Gokten, E.S.; Tulay, E.E.; Beser, B.; Yuksel, M.E.; Arikan, K.; Tarhan, N.; Metin, B. Predictive Value of Slow and Fast EEG Oscillations for Methylphenidate Response in ADHD. Clin. EEG Neurosci. 2019, 50, 332–338. [Google Scholar] [CrossRef]
- Singh, G.; Arun, P.; Das, S.; Kaur, D. Can EEG Predict Response to Atomoxetine in attention deficit hyperactivity disorder at 1 Week? J. Atten. Disord. 2021, 25, 758–767. [Google Scholar] [CrossRef]
- Galderisi, S.; Mucci, A.; Volpe, U.; Boutros, N. Evidence-Based Medicine and Electrophysiology in Schizophrenia. Clin. EEG Neurosci. 2009, 40, 62–77. [Google Scholar] [CrossRef]
- Venables, N.C.; Bernat, E.M.; Sponheim, S.R. Genetic and Disorder-Specific Aspects of Resting State EEG Abnormalities in Schizophrenia. Schizophr. Bull. 2009, 35, 826–839. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.; Nizamie, S.H.; Das, B.; Das, J.; Tikka, S.K. Resting state quantitative electroencephalogram gamma power spectra in patients with first episode psychosis: An observational study. Asian J. Psychiatry 2021, 57, 102550. [Google Scholar] [CrossRef]
- Kamaradova, D.; Prasko, J.; Taborsky, J.; Grambal, A.; Latalova, K.; Hajda, M.; Ociskova, M.; Brunovsky, M.; Hlustik, P. Cognitive deficits in patients with obsessive–compulsive disorder—Electroencephalography correlates. Neuropsychiatr. Dis. Treat. 2016, 12, 1119–1125. [Google Scholar] [CrossRef] [Green Version]
- Pogarell, O.; Juckel, G.; Mavrogiorgou, P.; Mulert, C.; Folkerts, M.; Hauke, W.; Zaudig, M.; Möller, H.-J.; Hegerl, U. Symptom-specific EEG power correlations in patients with obsessive–compulsive disorder. Int. J. Psychophysiol. 2006, 62, 87–92. [Google Scholar] [CrossRef]
- Brem, S.; Grünblatt, E.; Drechsler, R.; Riederer, P.; Walitza, S. The neurobiological link between OCD and ADHD. Atten. Defic. Hyperact. Disord. 2014, 6, 175–202. [Google Scholar] [CrossRef] [Green Version]
- Cunill, R.; Castells, X.; Simeon, D. Relationships between obsessive-compulsive symptomatology and severity of psychosis in schizophrenia: A systematic review and meta-analysis. J. Clin. Psychiatry. 2009, 70, 70–82. [Google Scholar] [CrossRef]
- de Waal, H.; Stam, C.J.; Blankenstein, M.A.; Pijnenburg, Y.A.L.; Scheltens, P.; van der Flier, W.M. EEG abnormalities in early and late onset Alzheimer’s disease: Understanding heterogeneity. J. Neurol. Neurosurg. Psychiatry 2011, 82, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, J.W.; Gawel, M.; Pfeffer, A.; Barcikowska, M. The diagnostic value of EEG in Alzheimer disease: Correlation with the severity of mental impairment. J. Clin. Neurophysiol. 2001, 18, 570–575. [Google Scholar] [CrossRef]
- Bennys, K.; Rondouin, G.; Vergnes, C.; Touchon, J. Diagnostic value of quantitative EEG in Alzheimer’s disease. Neurophysiol. Clin. 2001, 31, 153–160. [Google Scholar] [CrossRef]
- Rossini, P.; Del Percio, C.; Pasqualetti, P.; Cassetta, E.; Binetti, G.; Forno, G.D.; Ferreri, F.; Frisoni, G.; Chiovenda, P.; Miniussi, C.; et al. Conversion from mild cognitive impairment to Alzheimer’s disease is predicted by sources and coherence of brain electroencephalography rhythms. Neuroscience 2006, 143, 793–803. [Google Scholar] [CrossRef]
- Claus, J.J.; Kwa, V.I.H.; Teunisse, S.; Walstra, G.J.M.; van Gool, W.A.; Koelman, J.H.T.M.; Bour, L.J.; de Visser, B.W.O. Slowing on quantitative spectral EEG is a marker for rate of subsequent cognitive and functional decline in early Alzheimer disease. Alzheimer Dis. Assoc. Disord. 1998, 12, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Kwak, Y.T. Quantitative EEG Findings in Different Stages of Alzheimer’s Disease. J. Clin. Neurophysiol. 2006, 23, 457–462. [Google Scholar] [CrossRef] [Green Version]
- Perez, V.; Garrido-Chaves, R.; Zapater-Fajarí, M.; Pulopulos, M.M.; Hidalgo, V.; Salvador, A. EEG markers and subjective memory complaints in young and older people. Int. J. Psychophysiol. 2022, 182, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, G.; Bakardjian, H.; Schwartz, D.; Potier, M.-C.; Habert, M.-O.; Levy, M.; Dubois, B.; George, N.; on behalf of the INSIGHT-preAD Study Group. Theta Band-Power Shapes Amyloid-Driven Longitudinal EEG Changes in Elderly Subjective Memory Complainers At-Risk for Alzheimer’s Disease. J. Alzheimer’s Dis. 2022, 90, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Jennings, J.L.; Peraza, L.R.; Baker, M.; Alter, K.; Taylor, J.-P.; Bauer, R. Investigating the power of eyes open resting state EEG for assisting in dementia diagnosis. Alzheimer’s Res. Ther. 2022, 14, 109. [Google Scholar] [CrossRef] [PubMed]
- Law, Z.K.; Todd, C.; Mehraram, R.; Schumacher, J.; Baker, M.R.; LeBeau, F.E.N.; Yarnall, A.; Onofrj, M.; Bonanni, L.; Thomas, A.; et al. The Role of EEG in the Diagnosis, Prognosis and Clinical Correlations of Dementia with Lewy Bodies-A Systematic Review. Diagnostics 2020, 10, 616. [Google Scholar] [CrossRef] [PubMed]
- Caviness, J.N.; Beach, T.G.; Hentz, J.G.; Shill, H.A.; Driver-Dunckley, E.D.; Adler, C.H. Association Between Pathology and Electroencephalographic Activity in Parkinson’s Disease. Clin. EEG Neurosci. 2018, 49, 321–327. [Google Scholar] [CrossRef]
- Cao, Z.; John, A.R.; Chen, H.-T.; Martens, K.E.; Georgiades, M.; Gilat, M.; Nguyen, H.T.; Lewis, S.J.G.; Lin, C.-T. Identification of EEG Dynamics During Freezing of Gait and Voluntary Stopping in Patients with Parkinson’s Disease. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 1774–1783. [Google Scholar] [CrossRef]
- Waninger, S.; Berka, C.; Karic, M.S.; Korszen, S.; Mozley, P.D.; Henchcliffe, C.; Kang, Y.; Hesterman, J.; Mangoubi, T.; Verma, A. Neurophysiological Biomarkers of Parkinson’s Disease. J. Park. Dis. 2020, 10, 471–480. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.M.; Kim, S.T.; Mariani, S.; Cho, S.E.; Winkelman, J.W.; Park, K.H.; Kang, S.G. Difference in spectral power density of sleep EEG between patients with simple snoring and those with obstructive sleep apnoea. Sci. Rep. 2020, 10, 6135. [Google Scholar] [CrossRef] [Green Version]
- Vakulin, A.; D’rozario, A.; Kim, J.-W.; Watson, B.; Cross, N.; Wang, D.; Coeytaux, A.; Bartlett, D.; Wong, K.; Grunstein, R. Quantitative sleep EEG and polysomnographic predictors of driving simulator performance in obstructive sleep apnea. Clin. Neurophysiol. 2016, 127, 1428–1435. [Google Scholar] [CrossRef]
- Liu, S.; Shen, J.; Li, Y.; Wang, J.; Wang, J.; Xu, J.; Wang, Q.; Chen, R. EEG Power Spectral Analysis of Abnormal Cortical Activations During REM/NREM Sleep in Obstructive Sleep Apnea. Front. Neurol. 2021, 12, 643855. [Google Scholar] [CrossRef]
- Kang, J.M.; Cho, S.-E.; Na, K.-S.; Kang, S.-G. Spectral Power Analysis of Sleep Electroencephalography in Subjects with Different Severities of Obstructive Sleep Apnea and Healthy Controls. Nat. Sci. Sleep 2021, 13, 477–486. [Google Scholar] [CrossRef]
- Ganzeboom, K.S.; Mairuhu, G.; Reitsma, J.B.; Linzer, M.; Wieling, W.; van Dijk, N. Lifetime Cumulative Incidence of Syncope in the General Population A Study of 549 Dutch Subjects Aged 35?60 Years. J. Cardiovasc. Electrophysiol. 2006, 17, 1172–1176. [Google Scholar] [CrossRef]
- Kenny, R.A.; Bhangu, J.; King-Kallimanis, B.L. Epidemiology of Syncope/Collapse in Younger and Older Western Patient Populations. Prog. Cardiovasc. Dis. 2013, 55, 357–363. [Google Scholar] [CrossRef]
- Ammirati, F.; Colivicchi, F.; Battista, G.; Garelli, F.F.; Pandozi, C.; Santini, M. Variable Cerebral Dysfunction During Tilt Induced Vasovagal Syncope. Pacing Clin. Electrophysiol. 1998, 21, 2420–2425. [Google Scholar] [CrossRef]
- Sheldon, R.S.; Koshman, M.L.; Murphy, W.F. Electroencephalographic findings during presyncope and syncope induced by tilt table testing. Can. J. Cardiol. 1998, 14, 811–816. [Google Scholar]
- Brenner, R.P. Electroencephalography in syncope. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 1997, 14, 197–209. [Google Scholar] [CrossRef]
- McKeon, A.; Vaughan, C.; Delanty, N. Seizure versus syncope. Lancet Neurol. 2006, 5, 171–180. [Google Scholar] [CrossRef]
- Selvam, V.S.; Devi, S.S. Analysis of Spectral Features of EEG signal in Brain Tumor Condition. Meas. Sci. Rev. 2015, 15, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Chen, J.; Xiang, J.; Liu, H.; Zou, Y.; Kan, W.; Liu, Y.; Li, L. Histopathologic and Clinical Correlation of Aberrant Neuromagnetic Activities with Low to High Frequency of Gliomas. World Neurosurg. 2019, 123, e609–e620. [Google Scholar] [CrossRef]
- van Klink, N.E.C.; Zweiphenning, W.J.E.M.; Ferrier, C.H.; Gosselaar, P.H.; Miller, K.J.; Aronica, E.; Braun, K.P.J.; Zijlmans, M. Can we use intraoperative high-frequency oscillations to guide tumor-related epilepsy surgery? Epilepsia 2021, 62, 997–1004. [Google Scholar] [CrossRef]
- Di Gregorio, F.; La Porta, F.; Petrone, V.; Battaglia, S.; Orlandi, S.; Ippolito, G.; Romei, V.; Piperno, R.; Lullini, G. Accuracy of EEG Biomarkers in the Detection of Clinical Outcome in Disorders of Consciousness after Severe Acquired Brain Injury: Preliminary Results of a Pilot Study Using a Machine Learning Approach. Biomedicines 2022, 10, 1897. [Google Scholar] [CrossRef] [PubMed]
- Tewarie, P.K.; Beernink, T.M.; Eertman-Meyer, C.J.; Cornet, A.D.; Beishuizen, A.; van Putten, M.J.; Tjepkema-Cloostermans, M.C. Early EEG monitoring predicts clinical outcome in patients with moderate to severe traumatic brain injury. NeuroImage Clin. 2023, 37, 103350. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Alosco, M.L.; Armañanzas, R.; Martin, B.M.; Tripodis, Y.; Stern, R.A.; Prichep, L.S. Long-Term Changes in Brain Connectivity Reflected in Quantitative Electrophysiology of Symptomatic Former National Football League Players. J. Neurotrauma 2023, 40, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, S.; Ge, W.; Jing, J.; Chen, H.Y.; Doherty, D.; Herman, A.; Kaleem, S.; Ding, K.; Osman, G.; et al. Quantitative epileptiform burden and electroencephalography background features predict post-traumatic epilepsy. J. Neurol. Neurosurg. Psychiatry 2022, 94, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Haneef, Z.; Yang, K.; Sheth, S.A.; Aloor, F.Z.; Aazhang, B.; Krishnan, V.; Karakas, C. Sub-scalp electroencephalography: A next-generation technique to study human neurophysiology. Clin. Neurophysiol. 2022, 141, 77–87. [Google Scholar] [CrossRef]
- Weisdorf, S.; Duun-Henriksen, J.; Kjeldsen, M.J.; Poulsen, F.R.; Gangstad, S.W.; Kjær, T.W. Ultra-long-term subcutaneous home monitoring of epilepsy-490 days of EEG from nine patients. Epilepsia. 2019, 60, 2204–2214. [Google Scholar] [CrossRef] [Green Version]
- Castillo Rodriguez, M.L.A.; Brandt, A.; Schulze-Bonhage, A. Differentiation of subclinical and clinical electrographic events in long-term electroencephalographic recordings. Epilepsia 2022. [Google Scholar] [CrossRef]
- Stirling, R.E.; Maturana, M.I.; Karoly, P.J.; Nurse, E.S.; McCutcheon, K.; Grayden, D.B.; Ringo, S.G.; Heasman, J.M.; Hoare, R.J.; Lai, A.; et al. Seizure Forecasting Using a Novel Sub-Scalp Ultra-Long Term EEG Monitoring System. Front. Neurol. 2021, 12, 713794. [Google Scholar] [CrossRef]
- Bacher, D.; Amini, A.; Friedman, D.; Doyle, W.; Pacia, S.; Kuzniecky, R. Validation of an EEG seizure detection paradigm optimized for clinical use in a chronically implanted subcutaneous device. J. Neurosci. Methods 2021, 358, 109220. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S.M.; Choi, S. Automatic sleep stages classification using multi-level fusion. Biomed. Eng. Lett. 2022, 12, 413–420. [Google Scholar] [CrossRef]
- Chaudhry, F.; Hunt, R.J.; Hariharan, P.; Anand, S.K.; Sanjay, S.; Kjoller, E.E.; Bartlett, C.M.; Johnson, K.W.; Levy, P.D. Machine Learning Applications in the Neuro ICU: A Solution to Big Data Mayhem? Front. Neurol. 2020, 11, 554633. [Google Scholar] [CrossRef]
- Zhang, K.; Shi, W.; Wang, C.; Li, Y.; Liu, Z.; Liu, T.; Li, J.; Yan, X.; Wang, Q.; Cao, Z.; et al. Reliability of EEG microstate analysis at different electrode densities during propofol-induced transitions of brain states. Neuroimage 2021, 231, 117861. [Google Scholar] [CrossRef]
- Metzen, D.; Genç, E.; Getzmann, S.; Larra, M.F.; Wascher, E.; Ocklenburg, S. Frontal and parietal EEG alpha asymmetry: A large-scale investigation of short-term reliability on distinct EEG systems. Anat. Embryol. 2022, 227, 725–740. [Google Scholar] [CrossRef]
- De Gennaro, L.; Ferrara, M. Sleep spindles: An overview. Sleep Med. Rev. 2003, 7, 423–440. [Google Scholar] [CrossRef]
- Fogel, S.M.; Smith, C.T. The function of the sleep spindle: A physiological index of intelligence and a mechanism for sleep-dependent memory consolidation. Neurosci. Biobehav. Rev. 2011, 35, 1154–1165. [Google Scholar] [CrossRef]
- Katsuki, F.; Gerashchenko, D.; Brown, R.E. Alterations of sleep oscillations in Alzheimer’s disease: A potential role for GABAergic neurons in the cortex, hippocampus, and thalamus. Brain Res. Bull. 2022, 187, 181–198. [Google Scholar] [CrossRef]
- Page, J.; Lustenberger, C.; Fröhlich, F. Nonrapid eye movement sleep and risk for autism spectrum disorder in early development: A topographical electroencephalogram pilot study. Brain Behav. 2020, 10, e01557. [Google Scholar] [CrossRef] [Green Version]
- Latreille, V.; Carrier, J.; Lafortune, M.; Postuma, R.B.; Bertrand, J.-A.; Panisset, M.; Chouinard, S.; Gagnon, J.-F. Sleep spindles in Parkinson’s disease may predict the development of dementia. Neurobiol. Aging 2015, 36, 1083–1090. [Google Scholar] [CrossRef]
- Grigg-Damberger, M.M.; Foldvary-Schaefer, N. Sleep Biomarkers Help Predict the Development of Alzheimer Disease. J. Clin. Neurophysiol. 2022, 39, 327–334. [Google Scholar] [CrossRef]
- Gonzalez, C.; Jiang, X.; Gonzalez-Martinez, J.; Halgren, E. Human Spindle Variability. J. Neurosci. 2022, 42, 4517–4537. [Google Scholar] [CrossRef]
- Stokes, P.A.; Rath, P.; Possidente, T.; He, M.; Purcell, S.; Manoach, D.S.; Stickgold, R.; Prerau, M.J. Transient oscillation dynamics during sleep provide a robust basis for electroencephalographic phenotyping and biomarker identification. Sleep 2022, 46, zsac223. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacia, S.V. Sub-Scalp Implantable Telemetric EEG (SITE) for the Management of Neurological and Behavioral Disorders beyond Epilepsy. Brain Sci. 2023, 13, 1176. https://doi.org/10.3390/brainsci13081176
Pacia SV. Sub-Scalp Implantable Telemetric EEG (SITE) for the Management of Neurological and Behavioral Disorders beyond Epilepsy. Brain Sciences. 2023; 13(8):1176. https://doi.org/10.3390/brainsci13081176
Chicago/Turabian StylePacia, Steven V. 2023. "Sub-Scalp Implantable Telemetric EEG (SITE) for the Management of Neurological and Behavioral Disorders beyond Epilepsy" Brain Sciences 13, no. 8: 1176. https://doi.org/10.3390/brainsci13081176
APA StylePacia, S. V. (2023). Sub-Scalp Implantable Telemetric EEG (SITE) for the Management of Neurological and Behavioral Disorders beyond Epilepsy. Brain Sciences, 13(8), 1176. https://doi.org/10.3390/brainsci13081176