The Interaction of Glycemia with Anxiety and Depression Is Related to Altered Cerebellar and Cerebral Functional Correlations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Data Description and Preprocessing
2.3. Group ICA
2.4. Individual Component Timeseries and Creation of Netmats
2.5. Statistical Analyses
3. Results
3.1. Demographics
3.2. Relationship between Anxiety and Depression, Depression, HbA1c, and BMI
3.3. Brain Correlation Results
3.3.1. Unique Relationships with HbA1c and Anxiety and Depression
3.3.2. Unique Relationships with BMI and Anxiety and Depression
3.3.3. Unique Relationships with BMI and Depression
3.3.4. Differences in the Interaction of BMI and HbA1c with Anxiety and Depression
3.3.5. Similarities between Models
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fulton, S.; Décarie-Spain, L.; Fioramonti, X.; Guiard, B.; Nakajima, S. The Menace of Obesity to Depression and Anxiety Prevalence. Trends Endocrinol. Metab. 2022, 33, 18–35. [Google Scholar] [CrossRef]
- Luppino, F.S.; de Wit, L.M.; Bouvy, P.F.; Stijnen, T.; Cuijpers, P.; Penninx, B.W.J.H.; Zitman, F.G. Overweight, Obesity, and Depression: A Systematic Review and Meta-Analysis of Longitudinal Studies. Arch. Gen. Psychiatry 2010, 67, 220. [Google Scholar] [CrossRef]
- Kalin, N.H. The Critical Relationship Between Anxiety and Depression. Am. J. Psychiatry 2020, 177, 365–367. [Google Scholar] [CrossRef]
- Tang, F.; Wang, G.; Lian, Y. Association between Anxiety and Metabolic Syndrome: A Systematic Review and Meta-Analysis of Epidemiological Studies. Psychoneuroendocrinology 2017, 77, 112–121. [Google Scholar] [CrossRef]
- Bin Rakhis, S.A.; AlDuwayhis, N.M.; Aleid, N.; AlBarrak, A.N.; Aloraini, A.A. Glycemic Control for Type 2 Diabetes Mellitus Patients: A Systematic Review. Cureus 2022, 14, e26180. [Google Scholar] [CrossRef]
- Déniz-García, A.; Díaz-Artiles, A.; Saavedra, P.; Alvarado-Martel, D.; Wägner, A.M.; Boronat, M. Impact of Anxiety, Depression and Disease-Related Distress on Long-Term Glycaemic Variability among Subjects with Type 1 Diabetes Mellitus. BMC Endocr. Disord. 2022, 22, 122. [Google Scholar] [CrossRef]
- Zhu, L.; Chandran, S.R.; Tan, W.B.; Xin, X.; Goh, S.-Y.; Gardner, D.S.-L. Persistent Anxiety Is Associated with Higher Glycemia Post-Transition to Adult Services in Asian Young Adults with Diabetes. Diabetes Metab. J. 2021, 45, 67–76. [Google Scholar] [CrossRef]
- Munda, A.; Fekonja, U.; Pongrac Barlovič, D. Prevalence of Depressive and Anxiety Symptoms in Women with Gestational Diabetes: A Longitudinal Cohort Study. Acta Diabetol. 2021, 58, 1091–1100. [Google Scholar] [CrossRef]
- Herrera, P.A.; Campos-Romero, S.; Szabo, W.; Martínez, P.; Guajardo, V.; Rojas, G. Understanding the Relationship between Depression and Chronic Diseases Such as Diabetes and Hypertension: A Grounded Theory Study. Int. J. Environ. Res. Public. Health 2021, 18, 12130. [Google Scholar] [CrossRef]
- Sharma, S.; Fulton, S. Diet-Induced Obesity Promotes Depressive-like Behaviour That Is Associated with Neural Adaptations in Brain Reward Circuitry. Int. J. Obes. 2013, 37, 382–389. [Google Scholar] [CrossRef] [Green Version]
- Xia, G.; Han, Y.; Meng, F.; He, Y.; Srisai, D.; Farias, M.; Dang, M.; Palmiter, R.D.; Xu, Y.; Wu, Q. Reciprocal Control of Obesity and Anxiety-Depressive Disorder via a GABA and Serotonin Neural Circuit. Mol. Psychiatry 2021, 26, 2837–2853. [Google Scholar] [CrossRef]
- Apps, M.A.J.; Rushworth, M.F.S.; Chang, S.W.C. The Anterior Cingulate Gyrus and Social Cognition: Tracking the Motivation of Others. Neuron 2016, 90, 692–707. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.K.; Leslie, S.M.; Packer, M.M.; Zaiko, Y.V.; Phillips, O.R.; Weisman, E.F.; Wall, D.M.; Jo, B.; Rasgon, N. Brain and Behavioral Correlates of Insulin Resistance in Youth with Depression and Obesity. Horm. Behav. 2019, 108, 73–83. [Google Scholar] [CrossRef]
- Sun, K.L.; Watson, K.T.; Angal, S.; Bakkila, B.F.; Gorelik, A.J.; Leslie, S.M.; Rasgon, N.L.; Singh, M.K. Neural and Endocrine Correlates of Early Life Abuse in Youth with Depression and Obesity. Front. Psychiatry 2018, 9, 721. [Google Scholar] [CrossRef]
- Schrammen, E.; Roesmann, K.; Rosenbaum, D.; Redlich, R.; Harenbrock, J.; Dannlowski, U.; Leehr, E.J. Functional Neural Changes Associated with Psychotherapy in Anxiety Disorders—A Meta-Analysis of Longitudinal FMRI Studies. Neurosci. Biobehav. Rev. 2022, 142, 104895. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, J.; Yan, X.; Tang, M.; Zhe, X.; Cheng, M.; Chen, W.; Zhang, X. Altered Functional Connectivity of Brain Regions Based on a Meta-Analysis in Patients with T2DM: A Resting-State FMRI Study. Brain Behav. 2020, 10, e01725. [Google Scholar] [CrossRef]
- Meng, X.; Huang, D.; Ao, H.; Wang, X.; Gao, X. Food Cue Recruits Increased Reward Processing and Decreased Inhibitory Control Processing in the Obese/Overweight: An Activation Likelihood Estimation Meta-Analysis of FMRI Studies. Obes. Res. Clin. Pract. 2020, 14, 127–135. [Google Scholar] [CrossRef]
- Keren, H.; O’Callaghan, G.; Vidal-Ribas, P.; Buzzell, G.A.; Brotman, M.A.; Leibenluft, E.; Pan, P.M.; Meffert, L.; Kaiser, A.; Wolke, S.; et al. Reward Processing in Depression: A Conceptual and Meta-Analytic Review Across FMRI and EEG Studies. Am. J. Psychiatry 2018, 175, 1111–1120. [Google Scholar] [CrossRef] [Green Version]
- Kure Liu, C.; Joseph, P.V.; Feldman, D.E.; Kroll, D.S.; Burns, J.A.; Manza, P.; Volkow, N.D.; Wang, G.-J. Brain Imaging of Taste Perception in Obesity: A Review. Curr. Nutr. Rep. 2019, 8, 108–119. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.M.; Beckmann, C.F.; Andersson, J.; Auerbach, E.J.; Bijsterbosch, J.; Douaud, G.; Duff, E.; Feinberg, D.A.; Griffanti, L.; Harms, M.P.; et al. Resting-State FMRI in the Human Connectome Project. Neuroimage 2013, 80, 144–168. [Google Scholar] [CrossRef]
- Sadler, J.R.; Shearrer, G.E.; Burger, K.S. Alterations in Ventral Attention Network Connectivity in Individuals with Prediabetes. Nutr. Neurosci. 2019, 1–8. [Google Scholar] [CrossRef]
- Shearrer, G.E.; Sadler, J.R.; Papantoni, A.; Burger, K.S. Earlier Onset of Menstruation Is Related to Increased Body Mass Index in Adulthood and Altered Functional Correlations between Visual, Task Control and Somatosensory Brain Networks. J. Neuroendocrinol. 2020, 32, e12891. [Google Scholar] [CrossRef]
- Sadler, J.R.; Shearrer, G.E.; Burger, K.S. Body Mass Variability Is Represented by Distinct Functional Connectivity Patterns. Neuroimage 2018, 181, 55–63. [Google Scholar] [CrossRef]
- Glasser, M.F.; Sotiropoulos, S.N.; Wilson, J.A.; Coalson, T.S.; Fischl, B.; Andersson, J.L.; Xu, J.; Jbabdi, S.; Webster, M.; Polimeni, J.R.; et al. The Minimal Preprocessing Pipelines for the Human Connectome Project. Neuroimage 2013, 80, 105–124. [Google Scholar] [CrossRef] [Green Version]
- Robinson, E.C.; Jbabdi, S.; Glasser, M.F.; Andersson, J.; Burgess, G.C.; Harms, M.P.; Smith, S.M.; Van Essen, D.C.; Jenkinson, M. MSM: A New Flexible Framework for Multimodal Surface Matching. Neuroimage 2014, 100, 414–426. [Google Scholar] [CrossRef] [Green Version]
- Van Essen, D.C.; Smith, S.M.; Barch, D.M.; Behrens, T.E.J.; Yacoub, E.; Ugurbil, K.; Consortium, W.-M.H. The WU-Minn Human Connectome Project: An Overview. Neuroimage 2013, 80, 62–79. [Google Scholar] [CrossRef] [Green Version]
- Barch, D.M.; Burgess, G.C.; Harms, M.P.; Petersen, S.E.; Schlaggar, B.L.; Corbetta, M.; Glasser, M.F.; Curtiss, S.; Dixit, S.; Feldt, C.; et al. Function in the Human Connectome: Task-FMRI and Individual Differences in Behavior. Neuroimage 2013, 80, 169–189. [Google Scholar] [CrossRef] [Green Version]
- de Vries, L.P.; van de Weijer, M.P.; Ligthart, L.; Willemsen, G.; Dolan, C.V.; Boomsma, D.I.; Baselmans, B.M.L.; Bartels, M. A Comparison of the ASEBA Adult Self Report (ASR) and the Brief Problem Monitor (BPM/18-59). Behav. Genet. 2020, 50, 363–373. [Google Scholar] [CrossRef]
- Bucholz, K.K.; Cadoret, R.; Cloninger, C.R.; Dinwiddie, S.H.; Hesselbrock, V.M.; Nurnberger, J.I.; Reich, T.; Schmidt, I.; Schuckit, M.A. A New, Semi-Structured Psychiatric Interview for Use in Genetic Linkage Studies: A Report on the Reliability of the SSAGA. J. Stud. Alcohol 1994, 55, 149–158. [Google Scholar] [CrossRef]
- WU-Minn HCP 900 Subjects Data Release: Reference Manual 2015. Available online: https://www.humanconnectome.org/storage/app/media/documentation/s900/HCP_S900_Release_Reference_Manual.pdf (accessed on 1 February 2017).
- Hyvärinen, A. Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Trans. Neural Netw. 1999, 10, 626–634. [Google Scholar] [CrossRef] [Green Version]
- Yeo, B.T.; Krienen, F.M.; Sepulcre, J.; Sabuncu, M.R.; Lashkari, D.; Hollinshead, M.; Roffman, J.L.; Smoller, J.W.; Zöllei, L.; Polimeni, J.R.; et al. The Organization of the Human Cerebral Cortex Estimated by Intrinsic Functional Connectivity. J. Neurophysiol. 2011, 106, 1125–1165. [Google Scholar] [CrossRef]
- Gordon, E.M.; Laumann, T.O.; Adeyemo, B.; Huckins, J.F.; Kelley, W.M.; Petersen, S.E. Generation and Evaluation of a Cortical Area Parcellation from Resting-State Correlations. Cereb. Cortex 2016, 26, 288–303. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Enviroment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Khaledi, M.; Haghighatdoost, F.; Feizi, A.; Aminorroaya, A. The Prevalence of Comorbid Depression in Patients with Type 2 Diabetes: An Updated Systematic Review and Meta-Analysis on Huge Number of Observational Studies. Acta Diabetol. 2019, 56, 631–650. [Google Scholar] [CrossRef]
- Strandberg, R.B.; Graue, M.; Wentzel-Larsen, T.; Peyrot, M.; Rokne, B. Relationships of Diabetes-Specific Emotional Distress, Depression, Anxiety, and Overall Well-Being with HbA1c in Adult Persons with Type 1 Diabetes. J. Psychosom. Res. 2014, 77, 174–179. [Google Scholar] [CrossRef] [Green Version]
- Langberg, J.; Mueller, A.; Rodriguez de la Vega, P.; Castro, G.; Varella, M. The Association of Hemoglobin A1c Levels and Depression among Adults with Diabetes in the United States. Cureus 2022, 14, e22688. [Google Scholar] [CrossRef]
- Kim, H.J.; An, S.-Y.; Han, S.J.; Kim, D.J.; Hong, C.H.; Kim, Y.H.; Shin, D.H.; Kim, N.H.; Seo, J.A.; Ahn, Y.-B.; et al. The Association of Diabetes Duration and Glycemic Control with Depression in Elderly Men with Type 2 Diabetes Mellitus. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2019, 24, 17. [Google Scholar] [CrossRef]
- Darand, M.; Amirinejad, A.; Salehi-Abargouei, A.; Davies, I.G.; Mirzaei, M.; Mazidi, M.; Khayyatzadeh, S.S. The Association between Dietary Insulin Index and Load with Mental Health. BMC Psychol. 2022, 10, 218. [Google Scholar] [CrossRef]
- Sahu, M.K.; Dubey, R.K.; Chandrakar, A.; Kumar, M.; Kumar, M. A Systematic Review and Meta-Analysis of Serum and Plasma Cortisol Levels in Depressed Patients versus Control. Indian J. Psychiatry 2022, 64, 440–448. [Google Scholar] [CrossRef]
- Di Polito, N.; Stylianakis, A.A.; Richardson, R.; Baker, K.D. Real-World Intake of Dietary Sugars Is Associated with Reduced Cortisol Reactivity Following an Acute Physiological Stressor. Nutrients 2023, 15, 209. [Google Scholar] [CrossRef]
- Milstein, J.L.; Ferris, H.A. The Brain as an Insulin-Sensitive Metabolic Organ. Mol. Metab. 2021, 52, 101234. [Google Scholar] [CrossRef]
- Bakirtzi, K.; Belfort, G.; Lopez-Coviella, I.; Kuruppu, D.; Cao, L.; Abel, E.D.; Brownell, A.-L.; Kandror, K.V. Cerebellar Neurons Possess a Vesicular Compartment Structurally and Functionally Similar to Glut4-Storage Vesicles from Peripheral Insulin-Sensitive Tissues. J. Neurosci. 2009, 29, 5193–5201. [Google Scholar] [CrossRef] [Green Version]
- Buckner, R.L. The Cerebellum and Cognitive Function: 25 Years of Insight from Anatomy and Neuroimaging. Neuron 2013, 80, 807–815. [Google Scholar] [CrossRef] [Green Version]
- Buckner, R.L.; Krienen, F.M.; Castellanos, A.; Diaz, J.C.; Yeo, B.T.T. The Organization of the Human Cerebellum Estimated by Intrinsic Functional Connectivity. J. Neurophysiol. 2011, 106, 2322–2345. [Google Scholar] [CrossRef] [Green Version]
- Magielse, N.; Heuer, K.; Toro, R.; Schutter, D.J.L.G.; Valk, S.L. A Comparative Perspective on the Cerebello-Cerebral System and Its Link to Cognition. Cerebellum 2022, 1–15. [Google Scholar] [CrossRef]
- Qin, C.; Liang, Y.; Tan, X.; Leng, X.; Lin, H.; Zeng, H.; Zhang, C.; Yang, J.; Li, Y.; Zheng, Y.; et al. Altered Whole-Brain Functional Topological Organization and Cognitive Function in Type 2 Diabetes Mellitus Patients. Front. Neurol. 2019, 10, 599. [Google Scholar] [CrossRef] [Green Version]
- Liao, X.-L.; Yuan, Q.; Shi, W.-Q.; Li, B.; Su, T.; Lin, Q.; Min, Y.-L.; Zhu, P.-W.; Ye, L.; Shao, Y. Altered Brain Activity in Patients with Diabetic Retinopathy Using Regional Homogeneity: A Resting-State fmri Study. Endocr. Pract. Off. J. Am. Coll. Endocrinol. Am. Assoc. Clin. Endocrinol. 2019, 25, 320–327. [Google Scholar] [CrossRef]
- Lee, Y.J.; Guell, X.; Hubbard, N.A.; Siless, V.; Frosch, I.R.; Goncalves, M.; Lo, N.; Nair, A.; Ghosh, S.S.; Hofmann, S.G.; et al. Functional Alterations in Cerebellar Functional Connectivity in Anxiety Disorders. Cerebellum Lond. Engl. 2021, 20, 392–401. [Google Scholar] [CrossRef]
- Dixon, M.L.; De La Vega, A.; Mills, C.; Andrews-Hanna, J.; Spreng, R.N.; Cole, M.W.; Christoff, K. Heterogeneity within the Frontoparietal Control Network and Its Relationship to the Default and Dorsal Attention Networks. Proc. Natl. Acad. Sci. USA 2018, 115, E1598–E1607. [Google Scholar] [CrossRef] [Green Version]
- Holmes, S.E.; Scheinost, D.; DellaGioia, N.; Davis, M.T.; Matuskey, D.; Pietrzak, R.H.; Hampson, M.; Krystal, J.H.; Esterlis, I. Cerebellar and Prefrontal Cortical Alterations in PTSD: Structural and Functional Evidence. Chronic Stress 2018, 2, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Flory, J.D.; Yehuda, R. Comorbidity between Post-Traumatic Stress Disorder and Major Depressive Disorder: Alternative Explanations and Treatment Considerations. Dialogues Clin. Neurosci. 2015, 17, 141–150. [Google Scholar] [CrossRef]
- Ceravolo, L.; Schaerlaeken, S.; Frühholz, S.; Glowinski, D.; Grandjean, D. Frontoparietal, Cerebellum Network Codes for Accurate Intention Prediction in Altered Perceptual Conditions. Cereb. Cortex Commun. 2021, 2, tgab031. [Google Scholar] [CrossRef]
- Bathina, K.C.; ten Thij, M.; Lorenzo-Luaces, L.; Rutter, L.A.; Bollen, J. Individuals with Depression Express More Distorted Thinking on Social Media. Nat. Hum. Behav. 2021, 5, 458–466. [Google Scholar] [CrossRef]
- Gutiérrez García, A.G.; Contreras, C.M. Anxiety Constitutes an Early Sign of Acute Hypoglycemia. Neuropsychobiology 2023, 82, 33–39. [Google Scholar] [CrossRef]
- Silva, D.; Ferriani, L.; Viana, M.C. Depression, Anthropometric Parameters, and Body Image in Adults: A Systematic Review. Rev. Assoc. Médica Bras. 2019, 65, 731–738. [Google Scholar] [CrossRef]
- Olfert, M.D.; Barr, M.L.; Charlier, C.M.; Famodu, O.A.; Zhou, W.; Mathews, A.E.; Byrd-Bredbenner, C.; Colby, S.E. Self-Reported vs. Measured Height, Weight, and BMI in Young Adults. Int. J. Environ. Res. Public. Health 2018, 15, 2216. [Google Scholar] [CrossRef] [Green Version]
- Dong, D.; Wang, Y.; Long, Z.; Jackson, T.; Chang, X.; Zhou, F.; Chen, H. The Association between Body Mass Index and Intra-Cortical Myelin: Findings from the Human Connectome Project. Nutrients 2021, 13, 3221. [Google Scholar] [CrossRef]
- Rolls, E.T.; Feng, R.; Cheng, W.; Feng, J. Orbitofrontal Cortex Connectivity Is Associated With Food Reward and Body Weight in Humans. Soc. Cogn. Affect. Neurosci. 2021, nsab083. [Google Scholar] [CrossRef]
- Weise, C.M.; Piaggi, P.; Reinhardt, M.; Chen, K.; Savage, C.R.; Krakoff, J.; Pleger, B. The Obese Brain as a Heritable Phenotype: A Combined Morphometry and Twin Study. Int. J. Obes. 2005 2017, 41, 458–466. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Xia, Y.; Chen, K. The Body Mass Index Is Associated with Increased Temporal Variability of Functional Connectivity in Brain Reward System. Front. Nutr. 2023, 10, 1210726. [Google Scholar] [CrossRef]
- Liu, H.; Liu, J.; Peng, L.; Feng, Z.; Cao, L.; Liu, H.; Shen, H.; Hu, D.; Zeng, L.-L.; Wang, W. Changes in Default Mode Network Connectivity in Different Glucose Metabolism Status and Diabetes Duration. NeuroImage Clin. 2018, 21, 101629. [Google Scholar] [CrossRef]
Metric | Mean (SD) |
---|---|
Age (years) | 28.26 (3.91) |
BMI | 26.11 (4.63) |
HbA1c | 05.26 (0.29) |
SSAGA depressive symptoms | 01.48 (2.76) |
ASR anxiety and depression percentile adjusted for age and gender | 54.69 (7.28) |
ASR DSM depression T-score adjusted for age and gender | 54.60 (6.77) |
Head motion | 0.08 (0.03) |
Gender (F/M) 1 | 144/181 |
Race 1 | |
White | 221 |
Black or African American | 48 |
Asian, Native Hawaiian, Other Pacific Islander | 27 |
Native American, Native Alaskan | 1 |
More than one | 16 |
Unknown or not reported | 12 |
Ethnicity 1 | |
Hispanic/Latinx | 69 |
Not Hispanic/Latinx | 255 |
Not known/Not reported | 1 |
Beta | SE | T | P | |
---|---|---|---|---|
ASR anxiety and depression percentile (AnxDepr) | ||||
HbA1c | −0.14 | 1.31 | −2.59 | 0.01 |
BMI | 0.08 | 0.11 | 1.24 | 0.22 |
SSAGA depressive symptoms | 0.44 | 0.13 | 8.64 | <0.0001 |
Age (y) | −0.02 | 0.09 | −0.48 | 0.63 |
Gender | 0.03 | 0.75 | 0.58 | 0.56 |
Black or African American | −0.03 | 1.08 | −0.57 | 0.56 |
Asian, Native Hawaiian, Other Pacific Islander | −0.08 | 1.37 | −1.61 | 0.11 |
Native American, Native Alaskan | 0.00 | 6.64 | 0.02 | 0.98 |
More than one | 0.09 | 1.70 | 1.81 | 0.07 |
Unknown or not reported | 0.02 | 1.97 | 0.38 | 0.70 |
Head motion | −0.07 | 14.93 | −1.04 | 0.29 |
Beta | SE | T | P | |
ASR DSM depression T-score (Depr) | ||||
HbA1c | −0.11 | 1.21 | −2.13 | 0.03 |
BMI | 0.09 | 0.10 | 1.41 | 0.16 |
SSAGA depressive symptoms | 0.46 | 0.12 | 9.14 | <0.0001 |
Age (y) | −0.05 | 0.09 | −1.09 | 0.26 |
Gender | 0.03 | 0.69 | 0.52 | 0.61 |
Black or African American | −0.03 | 0.10 | −0.54 | 0.59 |
Asian, Native Hawaiian, Other Pacific Islander | −0.07 | 1.27 | −1.31 | 0.19 |
Native American, Native Alaskan | 0.00 | 6.15 | 0.06 | 0.95 |
More than one | 0.06 | 1.58 | 1.24 | 0.21 |
Unknown or not reported | 0.00 | 1.83 | 0.10 | 0.92 |
Head motion | −0.03 | 13.84 | −0.41 | 0.68 |
IC | IC | t | pFWE |
---|---|---|---|
HbA1c × AnxDepr | |||
IC 1 Visual network (Second visual area and dorsal stream visual area) | IC 8 Cerebellum | 3.756 | 0.009 |
IC 1 Visual network (Second visual area and dorsal stream visual area) | IC 11 Somatomotor/dorsal attention (Somatomotor hand) | −3.868 | 0.007 |
IC 1 Visual network (Second visual area and dorsal stream visual area) | IC 13 Somatomotor (Somatomotor mouth) | −4.562 | 0 |
IC 4 Visual network (Early visual cortex and superior parietal cortex) | IC 8 Cerebellum | 3.399 | 0.035 |
IC 7 Frontoparietal (Inferior parietal cortex) | IC 8 Cerebellum | −3.451 | 0.027 |
IC 11 Somatomotor/dorsal attention (Somatomotor hand) | IC 8 Cerebellum | 5.339 | 0 |
IC 13 Somatomotor (Somatomotor mouth) | IC 8 Cerebellum | 4.291 | 0 |
IC 11 Somatomotor/dorsal attention (Somatomotor hand) | IC 13 Somatomotor (Somatomotor mouth) | −4.472 | 0.001 |
BMI × AnxDepr | |||
IC 1 Visual network (Second visual area and dorsal stream visual area) | IC 11 Somatomotor/dorsal attention (Predominantly somatomotor hand) | −3.794 | 0.01 |
IC 1 Visual network (Second visual area and dorsal stream visual area) | IC 13 Somatomotor (Predominantly somatomotor mouth) | −3.809 | 0.009 |
IC 2 Default mode network | IC 8 Cerebellum | −3.497 | 0.025 |
IC 4 Visual network (Early visual cortex and superior parietal cortex) | IC 8 Cerebellum | 3.873 | 0.007 |
IC 2 Default mode network | IC 8 Cerebellum | −3.497 | 0.025 |
IC 13 Somatomotor (Somatomotor mouth) | IC 8 Cerebellum | 3.683 | 0.014 |
IC 11 Somatomotor/dorsal attention (Somatomotor hand) | IC 13 Somatomotor (Somatomotor mouth) | −3.351 | 0.037 |
BMI × Depr | |||
IC 1 Visual network (Second visual area and dorsal stream visual area) | IC 13 Somatomotor (Somatomotor mouth) | −3.394 | 0.029 |
IC 4 Visual network (Early visual cortex and superior parietal cortex) | IC 8 Cerebellum | 3.406 | 0.033 |
IC 5 Frontoparietal (Frontal–parietal and dorsal attention) | IC 7 Frontoparietal (Inferior parietal cortex) | 3.37 | 0.036 |
IC 5 Frontoparietal (Frontal–parietal and dorsal attention) | IC 14 Default mode network/frontoparietal (Dorsolateral prefrontal cortex) | 3.565 | 0.018 |
IC 13 Somatomotor (Somatomotor mouth | IC 8 Cerebellum | 4.05 | 0.004 |
IC 13 Somatomotor (Somatomotor mouth) | IC 11 Somatomotor/dorsal attention (Somatomotor hand) | −3.646 | 0.012 |
Correlations | HbA1c AIC | BMI AIC |
---|---|---|
IC 4 and IC 8 | 6559.89 | 6556.45 * |
IC 13 and IC 8 | 7430.92 * | 7435.75 |
IC 1 and IC 11 | 6887.34 * | 6887.90 |
IC 1 and IC 13 | 6622.77 * | 6629.03 |
IC 13 and IC 11 | 6763.75 * | 6772.48 |
Correlations | Depression AIC | Anxiety and Depression AIC |
---|---|---|
IC 4 and IC 8 | 6558.98 | 6556.45 * |
IC 13 and IC 8 | 7432.27 * | 7435.75 |
IC 1 and IC 11 | 6891.25 | 6887.90 * |
IC 1 and IC 13 | 6631.80 | 6629.04 * |
IC 13 and IC 11 | 6770.57 * | 6772.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shearrer, G.E. The Interaction of Glycemia with Anxiety and Depression Is Related to Altered Cerebellar and Cerebral Functional Correlations. Brain Sci. 2023, 13, 1086. https://doi.org/10.3390/brainsci13071086
Shearrer GE. The Interaction of Glycemia with Anxiety and Depression Is Related to Altered Cerebellar and Cerebral Functional Correlations. Brain Sciences. 2023; 13(7):1086. https://doi.org/10.3390/brainsci13071086
Chicago/Turabian StyleShearrer, Grace E. 2023. "The Interaction of Glycemia with Anxiety and Depression Is Related to Altered Cerebellar and Cerebral Functional Correlations" Brain Sciences 13, no. 7: 1086. https://doi.org/10.3390/brainsci13071086