Spurious Autobiographical Memory of Psychosis: A Mechanistic Hypothesis for the Resolution, Persistence, and Recurrence of Positive Symptoms in Psychotic Disorders
Abstract
:1. Background
Memory Processes in Psychosis
2. The Spurious Autobiographical Memory of Psychosis (SAMP) Hypothesis
- Memory encoding and consolidation are facilitated by salience and mediated by the midbrain dopamine system.
- These memory traces can be explicit or implicit, which are respectively mediated by the hippocampal and striatal systems; although the SAMP hypothesis focuses on the former, interactions between explicit and implicit memory systems are important.
- During the hyperdopaminergic active psychotic state, the heightened registration and consolidation of experiences of psychosis (related to Hebbian processes at glutaminergic pyramidal cell synapses in the hippocampal CA3 and CA1 fields and facilitated by increased extracellular dopamine levels in the same synapses) are expected to result in spurious autobiographical memories that remain as long-term memory traces.
- The contents of these memory traces are often incongruous with premorbid (or remission) memory traces. This results in difficulties in the assimilation and accommodation of memory with existing pre-psychotic memories.
- The inability to integrate SAMP with premorbid/remission memory increases their chances of distinctive retrieval upon presentation of stimuli linked to the original psychotic episode, increasing the risks for future relapse.
- While dopamine-blocking pharmacotherapy can prevent the formation of new spurious autobiographical memories, memory traces that have already been established cannot be erased and can only be replaced by “normal” experiences in a process of extinction, which can happen in remission but at a much slower rate. The speed of normalization is further reduced if there is hyposalience due to a hypodopaminergic state (e.g., negative symptoms or neuroleptic-induced deficit syndrome).
- The risks of relapse and treatment non-responsiveness are hypothesized to be related to the cumulative load of SAMP. SAMP may play an important role in mediating the relationship between “duration of active psychosis” and relapse.
2.1. Longitudinal Evolution of Autobiographical Memory Traces Related to Psychosis
2.2. Neurobiological Underpinnings of the Spurious Autobiographical Memory of Psychosis
2.2.1. Dopamine and Hippocampal Function in Psychosis
2.2.2. Dopamine-Mediated Salience and Hippocampal Interaction
2.2.3. Increased Salience and Consolidation of Spurious Autobiographical Memory of Psychosis
2.3. The Fate of SAMP Traces and Their Failure of Integration
Challenges in the Integration of Spurious Autobiographical Memory of Psychosis into Pre-Existing Non-Psychotic Autobiographical Memory
2.4. Spurious Autobiographical Memory of Psychosis in Relapse
3. Spurious Memories in Related Conditions
3.1. Substance-Induced Psychosis
3.2. Post-Traumatic Stress Disorder (PTSD)
4. Relationship of the SAMP to Related Theories and Constructs
5. Compatibility with Clinical Observations
6. Clinical Implications
7. Future Directions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Charlson, F.J.; Ferrari, A.J.; Santomauro, D.F.; Diminic, S.; Stockings, E.; Scott, J.G.; McGrath, J.J.; Whiteford, H.A. Global epidemiology and burden of schizophrenia: Findings from the global burden of disease study 2016. Schizophr. Bull. 2018, 44, 1195–1203. [Google Scholar] [CrossRef]
- He, H.; Liu, Q.; Li, N.; Guo, L.; Gao, F.; Bai, L.; Gao, F.; Lyu, J. Trends in the incidence and DALYs of schizophrenia at the global, regional and national levels: Results from the Global Burden of Disease Study 2017. Epidemiol. Psychiatr. Sci. 2020, 29, e91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allsopp, K.; Read, J.; Corcoran, R.; Kinderman, P. Heterogeneity in psychiatric diagnostic classification. Psychiatry Res. 2019, 279, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.K. Towards a public health approach to psychotic disorders. Lancet Public Health 2019, 4, e212–e213. [Google Scholar] [CrossRef] [Green Version]
- Lalousis, P.A.; Wood, S.J.; Schmaal, L.; Chisholm, K.; Griffiths, S.L.; Reniers, R.L.; Bertolino, A.; Borgwardt, S.; Brambilla, P.; Kambeitz, J.; et al. Heterogeneity and classification of recent onset psychosis and depression: A multimodal machine learning approach. Schizophr. Bull. 2021, 47, 1130–1140. [Google Scholar] [CrossRef]
- Correll, C.U.; Howes, O.D. Treatment-resistant schizophrenia: Definition, predictors, and therapy options. J. Clin. Psychiatry 2021, 82, 36608. [Google Scholar] [CrossRef]
- Donaldson, K.R.; Jonas, K.G.; Tian, Y.; Larsen, E.M.; Klein, D.N.; Mohanty, A.; Bromet, E.J.; Kotov, R. Dynamic interplay between life events and course of psychotic disorders: 10-year longitudinal study following first admission. Psychol. Med. 2022, 52, 2116–2123. [Google Scholar] [CrossRef]
- Inoue, T.; Nakagawa, S.; Kitaichi, Y.; Izumi, T.; Tanaka, T.; Masui, T.; Kusumi, I.; Denda, K.; Koyama, T. Long-term outcome of antidepressant-refractory depression: The relevance of unrecognized bipolarity. J. Affect. Disord. 2006, 95, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Taipale, H.; Tanskanen, A.; Correll, C.U.; Tiihonen, J. Real-world effectiveness of antipsychotic doses for relapse prevention in patients with first-episode schizophrenia in Finland: A nationwide, register-based cohort study. Lancet Psychiatry 2022, 9, 271–279. [Google Scholar] [CrossRef]
- Howes, O.D.; Montgomery, A.J.; Asselin, M.C.; Murray, R.M.; Grasby, P.M.; Mcguire, P.K. Molecular imaging studies of the striatal dopaminergic system in psychosis and predictions for the prodromal phase of psychosis. Br. J. Psychiatry 2007, 191, s13–s18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howes, O.D.; Shatalina, E. Integrating the neurodevelopmental and dopamine hypotheses of schizophrenia and the role of cortical excitation-inhibition balance. Biol. Psychiatry 2022, 92, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Howes, O.D.; Kapur, S. The dopamine hypothesis of schizophrenia: Version III—The final common pathway. Schizophr. Bull. 2009, 35, 549–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCutcheon, R.A.; Krystal, J.H.; Howes, O.D. Dopamine and glutamate in schizophrenia: Biology, symptoms and treatment. World Psychiatry 2020, 19, 15–33. [Google Scholar] [CrossRef] [Green Version]
- Rubio, J.M.; Lencz, T.; Barber, A.; Moyett, A.; Ali, S.; Bassaw, F.; Ventura, G.; Germano, N.; Malhotra, A.K.; Kane, J.M. Striatal functional connectivity in psychosis relapse: A hypothesis generating study. Schizophr. Res. 2022, 243, 342–348. [Google Scholar] [CrossRef]
- Bentall, R.P.; de Sousa, P.; Varese, F.; Wickham, S.; Sitko, K.; Haarmans, M.; Read, J. From adversity to psychosis: Pathways and mechanisms from specific adversities to specific symptoms. Soc. Psychiatry Psychiatr. Epidemiol. 2014, 49, 1011–1022. [Google Scholar] [CrossRef] [PubMed]
- Corlett, P.R.; Taylor, J.R.; Wang, X.J.; Fletcher, P.C.; Krystal, J.H. Toward a neurobiology of delusions. Prog. Neurobiol. 2010, 92, 345–369. [Google Scholar] [CrossRef] [Green Version]
- Coyle, J.T. Glutamate and schizophrenia: Beyond the dopamine hypothesis. Cell. Mol. Neurobiol. 2006, 26, 363–382. [Google Scholar] [CrossRef]
- Salavati, B.; Rajji, T.K.; Price, R.; Sun, Y.; Graff-Guerrero, A.; Daskalakis, Z.J. Imaging-based neurochemistry in schizophrenia: A systematic review and implications for dysfunctional long-term potentiation. Schizophr. Bull. 2015, 41, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Stahl, S.M. Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: Dopamine, serotonin, and glutamate. CNS Spectr. 2018, 23, 187–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beards, S.; Gayer-Anderson, C.; Borges, S.; Dewey, M.E.; Fisher, H.L.; Morgan, C. Life events and psychosis: A review and meta-analysis. Schizophr. Bull. 2013, 39, 740–747. [Google Scholar] [CrossRef] [Green Version]
- Morgan, C.; Gayer-Anderson, C. Childhood adversities and psychosis: Evidence, challenges, implications. World Psychiatry 2016, 15, 93–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Winkel, R.; Stefanis, N.C.; Myin-Germeys, I. Psychosocial stress and psychosis. A review of the neurobiological mechanisms and the evidence for gene-stress interaction. Schizophr. Bull. 2008, 34, 1095–1105. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.M.; Hui, C.L.; Wong, C.S.; Suen, Y.N.; Chan, S.K.; Lee, E.H.; Chang, W.C.; Wong, G.H.; Chen, E.Y. Induced ideas of reference during social unrest and pandemic in Hong Kong. Schizophr. Res. 2021, 229, 46–52. [Google Scholar] [CrossRef]
- Rowland, L.M.; Krause, B.W.; Wijtenburg, S.A.; McMahon, R.P.; Chiappelli, J.; Nugent, K.L.; Nisonger, S.J.; Korenic, S.A.; Kochunov, P.; Hong, L.E. Medial frontal GABA is lower in older schizophrenia: A MEGA-PRESS with macromolecule suppression study. Mol. Psychiatry 2016, 21, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Emsley, R.; Chiliza, B.; Asmal, L.; Harvey, B.H. The nature of relapse in schizophrenia. BMC Psychiatry 2013, 13, 50. [Google Scholar] [CrossRef] [Green Version]
- Potkin, S.G.; Kane, J.M.; Correll, C.U.; Lindenmayer, J.P.; Agid, O.; Marder, S.R.; Olfson, M.; Howes, O.D. The neurobiology of treatment-resistant schizophrenia: Paths to antipsychotic resistance and a roadmap for future research. NPJ Schizophr. 2020, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Sonnenschein, S.F.; Grace, A. Emerging therapeutic targets for schizophrenia: A framework for novel treatment strategies for psychosis. Expert Opin. Ther. Targets 2021, 25, 15–26. [Google Scholar] [CrossRef]
- Kahn, R.S.; Keefe, R.S. Schizophrenia is a cognitive illness: Time for a change in focus. JAMA Psychiatry 2013, 70, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- McCutcheon, R.A.; Keefe, R.S.; McGuire, P.K. Cognitive impairment in schizophrenia: Aetiology, pathophysiology, and treatment. Mol. Psychiatry 2023, 1–7. [Google Scholar] [CrossRef]
- Kapur, S. Psychosis as a state of aberrant salience: A framework linking biology, phenomenology, and pharmacology in schizophrenia. Am. J. Psychiatry 2003, 160, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Pankow, A.; Katthagen, T.; Diner, S.; Deserno, L.; Boehme, R.; Kathmann, N.; Gleich, T.; Gaebler, M.; Walter, H.; Heinz, A.; et al. Aberrant salience is related to dysfunctional self-referential processing in psychosis. Schizophr. Bull. 2016, 42, 67–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, B.; Whitford, T.J.; Lavoie, S.; Sass, L.A. What are the neurocognitive correlates of basic self-disturbance in schizophrenia?: Integrating phenomenology and neurocognition: Part 2 (Aberrant salience). Schizophr. Res. 2014, 152, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Powers III, A.R.; Kelley, M.; Corlett, P.R. Hallucinations as top-down effects on perception. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2016, 1, 393–400. [Google Scholar] [CrossRef] [Green Version]
- Howes, O.D.; Murray, R.M. Schizophrenia: An integrated sociodevelopmental-cognitive model. Lancet 2014, 383, 1677–1687. [Google Scholar] [CrossRef] [Green Version]
- Steel, C. (Ed.) CBT for Schizophrenia: Evidence-Based Interventions and Future Directions; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Gaddy, M.A.; Ingram, R.E. A meta-analytic review of mood-congruent implicit memory in depressed mood. Clin. Psychol. Rev. 2014, 34, 402–416. [Google Scholar] [CrossRef] [PubMed]
- Graf, P.; Schacter, D.L. Implicit and explicit memory for new associations in normal and amnesic subjects. J. Exp. Psychol. Learn. Mem. Cogn. 1985, 11, 501. [Google Scholar] [CrossRef]
- Tulving, E. Synergistic ecphory in recall and recognition. Can. J. Psychol. 1982, 36, 130. [Google Scholar] [CrossRef]
- Squire, L.R. Memory and Brain; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Ey, H. Hughlings Jackson’s principles and the organo-dynamic concept of psychiatry. Am. J. Psychiatry 1962, 118, 673–682. [Google Scholar] [CrossRef]
- Luria, A.R. The functional organization of the brain. Sci. Am. 1970, 222, 66–79. [Google Scholar] [CrossRef]
- McGaugh, J.L. The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu. Rev. Neurosci. 2004, 27, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Phelps, E.A. Human emotion and memory: Interactions of the amygdala and hippocampal complex. Curr. Opin. Neurobiol. 2004, 14, 198–202. [Google Scholar] [CrossRef]
- Preston, A.R.; Eichenbaum, H. Interplay of hippocampus and prefrontal cortex in memory. Curr. Biol. 2013, 23, R764–R773. [Google Scholar] [CrossRef] [Green Version]
- Gilboa, A.; Marlatte, H. Neurobiology of schemas and schema-mediated memory. Trends Cogn. Sci. 2017, 21, 618–631. [Google Scholar] [CrossRef] [PubMed]
- Piaget, J. Construction of Reality in the Child; Routledge: London, UK, 2013; Volume 82, pp. 80–86. [Google Scholar]
- Addante, R.J. A critical role of the human hippocampus in an electrophysiological measure of implicit memory. NeuroImage 2015, 109, 515–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H. Neural correlates of explicit and implicit memory at encoding and retrieval: A unified framework and meta-analysis of functional neuroimaging studies. Biol. Psychol. 2019, 145, 96–111. [Google Scholar] [CrossRef]
- Reber, P.J. The neural basis of implicit learning and memory: A review of neuropsychological and neuroimaging research. Neuropsychologia 2013, 51, 2026–2042. [Google Scholar] [CrossRef]
- Berna, F.; Potheegadoo, J.; Aouadi, I.; Ricarte, J.J.; Alle, M.C.; Coutelle, R.; Boyer, L.; Cuervo-Lombard, C.V.; Danion, J.M. A meta-analysis of autobiographical memory studies in schizophrenia spectrum disorder. Schizophr. Bull. 2016, 42, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Kwok, S.C.; Xu, X.; Duan, W.; Wang, X.; Tang, Y.; Allé, M.C.; Berna, F. Autobiographical and episodic memory deficits in schizophrenia: A narrative review and proposed agenda for research. Clin. Psychol. Rev. 2021, 83, 101956. [Google Scholar] [CrossRef]
- Spataro, P.; Saraulli, D.; Cestari, V.; Costanzi, M.; Sciarretta, A.; Rossi-Arnaud, C. Implicit memory in schizophrenia: A meta-analysis. Compr. Psychiatry 2016, 69, 136–144. [Google Scholar] [CrossRef]
- Tan, E.J.; Neill, E.; Tomlinson, K.; Rossell, S.L. Semantic memory impairment across the schizophrenia continuum: A meta-analysis of category fluency performance. Schizophr. Bull. Open 2020, 1, sgaa054. [Google Scholar] [CrossRef]
- Demirlek, C.; Bora, E. Sleep-dependent memory consolidation in schizophrenia: A systematic review and meta-analysis. Schizophr. Res. 2023, 254, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Lo, L.L.H.; Lee, E.H.M.; Hui, C.L.M.; Chong, C.S.Y.; Chang, W.C.; Chan, S.K.W.; Chen, E.Y.H. Effect of high-endurance exercise intervention on sleep-dependent procedural memory consolidation in individuals with schizophrenia: A randomized controlled trial. Psychol. Med. 2023, 53, 1708–1720. [Google Scholar] [CrossRef]
- Ben Malek, H.; D’Argembeau, A.; Allé, M.C.; Meyer, N.; Danion, J.M.; Berna, F. Temporal processing of past and future autobiographical events in patients with schizophrenia. Sci. Rep. 2019, 9, 13858. [Google Scholar] [CrossRef] [Green Version]
- Coull, J.T.; Giersch, A. The distinction between temporal order and duration processing, and implications for schizophrenia. Nat. Rev. Psychol. 2022, 1, 257–271. [Google Scholar] [CrossRef]
- Koller, W.N.; Cannon, T.D. Aberrant memory and delusional ideation: A pernicious partnership? Clin. Psychol. Rev. 2022, 102231. [Google Scholar] [CrossRef] [PubMed]
- Moritz, S.; Woodward, T.S. The contribution of metamemory deficits to schizophrenia. J. Abnorm. Psychol. 2006, 115, 15. [Google Scholar] [CrossRef] [Green Version]
- Newcomer, J.W.; Farber, N.B.; Jevtovic-Todorovic, V.; Selke, G.; Melson, A.K.; Hershey, T.; Craft, S.; Olney, J.W. Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology 1999, 20, 106–118. [Google Scholar] [CrossRef]
- Seabury, R.D.; Cannon, T.D. Memory impairments and psychosis prediction: A scoping review and theoretical overview. Neuropsychol. Rev. 2020, 30, 521–545. [Google Scholar] [CrossRef]
- Guo, J.Y.; Ragland, J.D.; Carter, C.S. Memory and cognition in schizophrenia. Mol. Psychiatry 2019, 24, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Shanks, D.R. The Psychology of Associative Learning; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Chen, E.Y. A neurocomputational model of early psychosis. In Knowledge-Based Intelligent Information and Engineering Systems. In Proceedings of the 7th International Conference, KES 2003, Oxford, UK, 3–5 September 2003; Proceedings, Part II.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 7, pp. 1149–1155. [Google Scholar]
- Miller, R. The time course of neuroleptic therapy for psychosis: Role of learning processes and implications for concepts of psychotic illness. Psychopharmacology 1987, 92, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Turrigiano, G. Homeostatic synaptic plasticity: Local and global mechanisms for stabilizing neuronal function. Cold Spring Harb. Perspect. Biol. 2012, 4, a005736. [Google Scholar] [CrossRef] [Green Version]
- Correll, C.U.; Schooler, N.R. Negative symptoms in schizophrenia: A review and clinical guide for recognition, assessment, and treatment. Neuropsychiatr. Dis. Treat. 2020, 16, 519–534. [Google Scholar] [CrossRef] [Green Version]
- Grace, A.A. Dopamine system dysregulation by the hippocampus: Implications for the pathophysiology and treatment of schizophrenia. Neuropharmacology 2012, 62, 1342–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamminga, C.A. Psychosis is emerging as a learning and memory disorder. Neuropsychopharmacology 2013, 38, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, P.W.C.; Chang, W.C.; Lo, G.G.; Chan, K.W.S.; Lee, H.M.E.; Hui, L.M.C.; Suen, Y.N.; Leung, Y.L.E.; Au Yeung, K.M.P.; Chen, S.; et al. The role of dopamine dysregulation and evidence for the transdiagnostic nature of elevated dopamine synthesis in psychosis: A positron emission tomography (PET) study comparing schizophrenia, delusional disorder, and other psychotic disorders. Neuropsychopharmacology 2020, 45, 1870–1876. [Google Scholar] [CrossRef]
- Jauhar, S.; Nour, M.M.; Veronese, M.; Rogdaki, M.; Bonoldi, I.; Azis, M.; Turkheimer, F.l.; McGuire, P.; Young, A.H.; Howes, O.D. A test of the transdiagnostic dopamine hypothesis of psychosis using positron emission tomographic imaging in bipolar affective disorder and schizophrenia. JAMA Psychiatry 2017, 74, 1206–1213. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, J.N.; Wickens, J.R. Dopamine-dependent plasticity of corticostriatal synapses. Neural Netw. 2002, 15, 507–521. [Google Scholar] [CrossRef]
- Wickens, J.R.; Budd, C.S.; Hyland, B.I.; Arbuthnott, G.W. Striatal contributions to reward and decision making: Making sense of regional variations in a reiterated processing matrix. Ann. N. Y. Acad. Sci. 2007, 1104, 192–212. [Google Scholar] [CrossRef]
- Kraus, M.; Rapisarda, A.; Lam, M.; Thong, J.Y.; Lee, J.; Subramaniam, M.; Collinson, S.L.; Chong, S.A.; Keefe, R.S. Disrupted latent inhibition in individuals at ultra high-risk for developing psychosis. Schizophr. Res. Cogn. 2016, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Millard, S.J.; Bearden, C.E.; Karlsgodt, K.H.; Sharpe, M.J. The prediction-error hypothesis of schizophrenia: New data point to circuit-specific changes in dopamine activity. Neuropsychopharmacology 2022, 47, 628–640. [Google Scholar] [CrossRef] [PubMed]
- Serra, A.M.; Jones, S.H.; Toone, B.; Gray, J.A. Impaired associative learning in chronic schizophrenics and their first-degree relatives: A study of latent inhibition and the Kamin blocking effect. Schizophr. Res. 2001, 48, 273–289. [Google Scholar] [CrossRef] [PubMed]
- Weiner, I. The “two-headed” latent inhibition model of schizophrenia: Modeling positive and negative symptoms and their treatment. Psychopharmacology 2003, 169, 257–297. [Google Scholar] [CrossRef] [PubMed]
- Frick, A.; Björkstrand, J.; Lubberink, M.; Eriksson, A.; Fredrikson, M.; Åhs, F. Dopamine and fear memory formation in the human amygdala. Mol. Psychiatry 2022, 27, 1704–1711. [Google Scholar] [CrossRef]
- Kamiński, J.; Mamelak, A.N.; Birch, K.; Mosher, C.P.; Tagliati, M.; Rutishauser, U. Novelty-sensitive dopaminergic neurons in the human substantia nigra predict success of declarative memory formation. Curr. Biol. 2018, 28, 1333–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liberzon, I.; Abelson, J.L. Context processing and the neurobiology of post-traumatic stress disorder. Neuron 2016, 92, 14–30. [Google Scholar] [CrossRef] [Green Version]
- Shohamy, D.; Adcock, R.A. Dopamine and adaptive memory. Trends Cogn. Sci. 2010, 14, 464–472. [Google Scholar] [CrossRef]
- Horner, A.J.; Bisby, J.A.; Bush, D.; Lin, W.J.; Burgess, N. Evidence for holistic episodic recollection via hippocampal pattern completion. Nat. Commun. 2015, 6, 7462. [Google Scholar] [CrossRef] [Green Version]
- Nordin, K.; Nyberg, L.; Andersson, M.; Karalija, N.; Riklund, K.; Bäckman, L.; Salami, A. Distinct and common large-scale networks of the hippocampal long axis in older age: Links to episodic memory and dopamine D2 receptor availability. Cereb. Cortex 2021, 31, 3435–3450. [Google Scholar] [CrossRef]
- Nyberg, L.; Karalija, N.; Salami, A.; Andersson, M.; Wåhlin, A.; Kaboovand, N.; Köhncke, Y.; Axelsson, J.; Rieckmann, A.; Papenberg, G. Dopamine D2 receptor availability is linked to hippocampal–caudate functional connectivity and episodic memory. Proc. Natl. Acad. Sci. USA 2016, 113, 7918–7923. [Google Scholar] [CrossRef]
- Prince, L.Y.; Bacon, T.J.; Tigaret, C.M.; Mellor, J.R. Neuromodulation of the feedforward dentate gyrus-CA3 microcircuit. Front. Synaptic Neurosci. 2016, 8, 32. [Google Scholar] [CrossRef] [Green Version]
- O’Carroll, C.M.; Martin, S.J.; Sandin, J.; Frenguelli, B.; Morris, R.G. Dopaminergic modulation of the persistence of one-trial hippocampus-dependent memory. Learn. Mem. 2006, 13, 760–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duszkiewicz, A.J.; McNamara, C.G.; Takeuchi, T.; Genzel, L. Novelty and dopaminergic modulation of memory persistence: A tale of two systems. Trends Neurosci. 2019, 42, 102–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brewin, C.R.; Gregory, J.D.; Lipton, M.; Burgess, N. Intrusive images in psychological disorders: Characteristics, neural mechanisms, and treatment implications. Psychol. Rev. 2010, 117, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bisby, J.A.; Burgess, N.; Brewin, C.R. Reduced memory coherence for negative events and its relationship to posttraumatic stress disorder. Curr. Dir. Psychol. Sci. 2020, 29, 267–272. [Google Scholar] [CrossRef]
- Bisby, J.A.; Horner, A.J.; Bush, D.; Burgess, N. Negative emotional content disrupts the coherence of episodic memories. J. Exp. Psychol. 2018, 147, 243. [Google Scholar] [CrossRef]
- Bisby, J.A.; Horner, A.J.; Hørlyck, L.D.; Burgess, N. Opposing effects of negative emotion on amygdalar and hippocampal memory for items and associations. Soc. Cogn. Affect. Neurosci. 2016, 11, 981–990. [Google Scholar] [CrossRef] [Green Version]
- Addis, D.R.; Wong, A.T.; Schacter, D.L. Remembering the past and imagining the future: Common and distinct neural substrates during event construction and elaboration. Neuropsychologia 2007, 45, 1363–1377. [Google Scholar] [CrossRef] [Green Version]
- Zacks, J.M. Event perception and memory. Annu. Rev. Psychol. 2020, 71, 165–191. [Google Scholar] [CrossRef]
- Diederen, K.M.; Fletcher, P.C. Dopamine, prediction error and beyond. Neuroscientist 2021, 27, 30–46. [Google Scholar] [CrossRef]
- Parr, T.; Friston, K.J. Attention or salience? Curr. Opin. Psychol. 2019, 29, 1–5. [Google Scholar] [CrossRef]
- Heinz, A.; Schlagenhauf, F. Dopaminergic dysfunction in schizophrenia: Salience attribution revisited. Schizophr. Bull. 2010, 36, 472–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howes, O.D.; Nour, M.M. Dopamine and the aberrant salience hypothesis of schizophrenia. World Psychiatry 2016, 15, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winton-Brown, T.T.; Fusar-Poli, P.; Ungless, M.A.; Howes, O.D. Dopaminergic basis of salience dysregulation in psychosis. Trends Neurosci. Educ. 2014, 37, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, R.; Laws, K.R.; McKenna, P.J. False memory in schizophrenia patients with and without delusions. Psychiatry Res. 2010, 178, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Caligiuri, M.P.; Hellige, J.B.; Cherry, B.J.; Kwok, W.; Lulow, L.L.; Lohr, J.B. Lateralized cognitive dysfunction and psychotic symptoms in schizophrenia. Schizophr. Res. 2005, 80, 151–161. [Google Scholar] [CrossRef]
- Ibanez-Casas, I.; De Portugal, E.; Gonzalez, N.; McKenney, K.A.; Haro, J.M.; Usall, J.; Perez-Gracia, M.; Cervilla, J.A. Deficits in executive and memory processes in delusional disorder: A case-control study. PLoS ONE 2013, 8, e67341. [Google Scholar] [CrossRef] [Green Version]
- Schott, B.H.; Voss, M.; Wagner, B.; Wüstenberg, T.; Düzel, E.; Behr, J. Fronto-limbic novelty processing in acute psychosis: Disrupted relationship with memory performance and potential implications for delusions. Front. Behav. Neurosci. 2015, 9, 144. [Google Scholar] [CrossRef] [Green Version]
- Stip, E.; Corbière, M.; Boulay, L.J.; Lesage, A.; Lecomte, T.; Leclerc, C.; Guillem, F. Intrusion errors in explicit memory: Their differential relationship with clinical and social outcome in chronic schizophrenia. Cogn. Neuropsychiatry 2007, 12, 112–127. [Google Scholar] [CrossRef]
- Mediavilla, R.; López-Arroyo, M.; Gómez-Arnau, J.; Wiesepape, C.; Lysaker, P.H.; Lahera, G. Autobiographical memory in schizophrenia: The role of metacognition. Compr. Psychiatry 2021, 109, 152254. [Google Scholar] [CrossRef]
- Ricarte, J.J.; Ros, L.; Latorre, J.M.; Watkins, E. Mapping autobiographical memory in schizophrenia: Clinical implications. Clin. Psychol. Rev. 2017, 51, 96–108. [Google Scholar] [CrossRef]
- Habermas, T.; Bluck, S. Getting a life: The emergence of the life story in adolescence. Psychol. Bull. 2000, 126, 748. [Google Scholar] [CrossRef]
- Pasupathi, M.; Mansour, E.; Brubaker, J.R. Developing a life story: Constructing relations between self and experience in autobiographical narratives. Hum. Dev. 2007, 50, 85–110. [Google Scholar] [CrossRef]
- Camia, C.; Zafar, R. Autobiographical meaning making protects the sense of self-continuity past forced migration. Front. Psychol. 2021, 12, 618343. [Google Scholar] [CrossRef]
- Singer, J.; Rexhaj, B.; Baddeley, J. Older, wiser, and happier? Comparing older adults’ and college students’ self-defining memories. Memory 2007, 15, 886–898. [Google Scholar] [CrossRef]
- Conway, M.A.; Anderson, S.J.; Larsen, S.F.; Donnelly, C.M.; McDaniel, M.A.; McClelland, A.G.; Rawles, R.E.; Logie, R.H. The formation of flashbulb memories. Mem. Cogn. 1994, 22, 326–343. [Google Scholar] [CrossRef]
- Bauer, P.J.; Larkina, M.; Güler, E.; Burch, M. Long-term autobiographical memory across middle childhood: Patterns, predictors, and implications for conceptualizations of childhood amnesia. Memory 2019, 27, 1175–1193. [Google Scholar] [CrossRef]
- Habermas, T.; Köber, C. Autobiographical reasoning in life narratives buffers the effect of biographical disruptions on the sense of self-continuity. Memory 2015, 23, 664–674. [Google Scholar] [CrossRef] [PubMed]
- Allé, M.C.; Rubin, D.C.; Berntsen, D. Autobiographical memory and the self on the psychosis continuum: Investigating their relationship with positive-and negative-like symptoms. Memory 2023, 31, 518–529. [Google Scholar] [CrossRef] [PubMed]
- Humpston, C.S. Perplexity and meaning: Toward a phenomenological “core” of psychotic experiences. Schizophr. Bull. 2014, 40, 240–243. [Google Scholar] [CrossRef] [Green Version]
- Barry, T.J.; Hallford, D.J.; Takano, K. Autobiographical memory impairments as a transdiagnostic feature of mental illness: A meta-analytic review of investigations into autobiographical memory specificity and overgenerality among people with psychiatric diagnoses. Psychol. Bull. 2021, 147, 1054. [Google Scholar] [CrossRef]
- Sumner, J.A. The mechanisms underlying overgeneral autobiographical memory: An evaluative review of evidence for the CaR-FA-X model. Clin. Psychol. Rev. 2012, 32, 34–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raffard, S.; D’Argembeau, A.; Lardi, C.; Bayard, S.; Boulenger, J.P.; Van der Linden, M. Narrative identity in schizophrenia. Conscious. Cogn. 2010, 19, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Cuervo-Lombard, C.; Jovenin, N.; Hedelin, G.U.Y.; Rizzo-Peter, L.; Conway, M.A.; Danion, J.M. Autobiographical memory of adolescence and early adulthood events: An investigation in schizophrenia. J. Int. Neuropsychol. Soc. 2007, 13, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Danion, J.M.; Cuervo, C.; Piolino, P.; Huron, C.; Riutort, M.; Peretti, C.S.; Eustache, F. Conscious recollection in autobiographical memory: An investigation in schizophrenia. Conscious. Cogn. 2005, 14, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Appelbaum, P.S.; Robbins, P.C.; Vesselinov, R. Persistence and stability of delusions over time. Compr. Psychiatry 2004, 45, 317–324. [Google Scholar] [CrossRef]
- Chadwick, P.K. Peer-professional first-person account: Schizophrenia from the inside—Phenomenology and the integration of causes and meanings. Schizophr. Bull. 2007, 33, 166–173. [Google Scholar] [CrossRef] [Green Version]
- Chapman, R.K. First person account: Eliminating delusions. Schizophr. Bull. 2002, 28, 545–553. [Google Scholar] [CrossRef] [Green Version]
- Powell, J. First Person Account: Paranoid Schizophrenia—A Daughter’s Story. Schizophr. Bull. 1998, 24, 175–177. [Google Scholar] [CrossRef] [Green Version]
- Sinha, V.K.; Chaturvedi, S.K. Consistency of delusions in schizophrenia and affective disorder. Schizophr. Res. 1990, 3, 347–350. [Google Scholar] [CrossRef]
- Hardt, O.; Einarsson, E.Ö.; Nader, K. A bridge over troubled water: Reconsolidation as a link between cognitive and neuroscientific memory research traditions. Annu. Rev. Psychol. 2010, 61, 141–167. [Google Scholar] [CrossRef] [Green Version]
- Schwabe, L.; Nader, K.; Pruessner, J.C. Reconsolidation of human memory: Brain mechanisms and clinical relevance. Biol. Psychiatry 2014, 76, 274–280. [Google Scholar] [CrossRef] [Green Version]
- Bramness, J.G.; Gundersen, Ø.H.; Guterstam, J.; Rognli, E.B.; Konstenius, M.; Løberg, E.M.; Medhus, S.; Tanum, L.; Franck, J. Amphetamine-induced psychosis-a separate diagnostic entity or primary psychosis triggered in the vulnerable? BMC Psychiatry 2012, 12, 221. [Google Scholar] [CrossRef] [Green Version]
- Yui, K.; Ikemoto, S.; Goto, K. Factors for susceptibility to episode recurrence in spontaneous recurrence of methamphetamine psychosis. Ann. N. Y. Acad. Sci. 2002, 965, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Kittirattanapaiboon, P.; Mahatnirunkul, S.; Booncharoen, H.; Thummawomg, P.; Dumrongchai, U.; Chutha, W. Long-term outcomes in methamphetamine psychosis patients after first hospitalisation. Drug Alcohol Rev. 2010, 29, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Yui, K.; Ishiguro, T.; Goto, K.; Ikemoto, S. Susceptibility to subsequent episodes in spontaneous recurrence of methamphetamine psychosis. Ann. N. Y. Acad. Sci. 2000, 914, 292–302. [Google Scholar] [CrossRef]
- Wearne, D.; Ayalde, J.; Curtis, G.; Gopisetty, A.; Banerjee, A.; Melvill-Smith, P.; Waters, F. Visual phenomenology in schizophrenia and post-traumatic stress disorder: An exploratory study. BJPsych Open 2022, 8, e143. [Google Scholar] [CrossRef]
- Butler, R.W.; Mueser, K.T.; Sprock, J.; Braff, D.L. Positive symptoms of psychosis in posttraumatic stress disorder. Biol. Psychiatry 1996, 39, 839–844. [Google Scholar] [CrossRef]
- Compean, E.; Hamner, M. Posttraumatic stress disorder with secondary psychotic features (PTSD-SP): Diagnostic and treatment challenges. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 88, 265–275. [Google Scholar] [CrossRef]
- Buswell, G.; Haime, Z.; Lloyd-Evans, B.; Billings, J. A systematic review of PTSD to the experience of psychosis: Prevalence and associated factors. BMC Psychiatry 2021, 21, 9. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, A.; Clark, D.M. A cognitive model of posttraumatic stress disorder. Behav. Res. Ther. 2000, 38, 319–345. [Google Scholar] [CrossRef]
- Pitman, R.K.; Rasmusson, A.M.; Koenen, K.C.; Shin, L.M.; Orr, S.P.; Gilbertson, M.W.; Milad, M.R.; Liberzon, I. Biological studies of post-traumatic stress disorder. Nat. Rev. Neurosci. 2012, 13, 769–787. [Google Scholar] [CrossRef] [PubMed]
- Brewin, C.R. Episodic memory, perceptual memory, and their interaction: Foundations for a theory of posttraumatic stress disorder. Psychol. Bull. 2014, 140, 69. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, A.; Hackmann, A.; Michael, T. Intrusive re-experiencing in post-traumatic stress disorder: Phenomenology, theory, and therapy. Memory 2004, 12, 403–415. [Google Scholar] [CrossRef] [PubMed]
- Beierl, E.T.; Böllinghaus, I.; Clark, D.M.; Glucksman, E.; Ehlers, A. Cognitive paths from trauma to posttraumatic stress disorder: A prospective study of Ehlers and Clark’s model in survivors of assaults or road traffic collisions. Psychol. Med. 2020, 50, 2172–2181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleim, B.; Ehlers, A. Reduced autobiographical memory specificity predicts depression and posttraumatic stress disorder after recent trauma. J. Consult. Clin. Psychol. 2008, 76, 231. [Google Scholar] [CrossRef] [Green Version]
- Samuelson, K.W. Post-traumatic stress disorder and declarative memory functioning: A review. Dialogues Clin. 2022, 13, 346–351. [Google Scholar] [CrossRef]
- Postel, C.; Mary, A.; Dayan, J.; Fraisse, F.; Vallée, T.; Guillery-Girard, B.; Viader, F.; De la Sayette, V.; Peschanski, D.; Eustache, F.; et al. Variations in response to trauma and hippocampal subfield changes. Neurobiol. Stress 2021, 15, 100346. [Google Scholar] [CrossRef]
- Behrendt, R.P. Contribution of hippocampal region CA3 to consciousness and schizophrenic hallucinations. Neurosci. Biobehav. Rev. 2010, 34, 1121–1136. [Google Scholar] [CrossRef] [PubMed]
- Kohda, K.; Harada, K.; Kato, K.; Hoshino, A.; Motohashi, J.; Yamaji, T.; Morinobu, S.; Matsuoka, N.; Kato, N. Glucocorticoid receptor activation is involved in producing abnormal phenotypes of single-prolonged stress rats: A putative post-traumatic stress disorder model. Neuroscience 2007, 148, 22–33. [Google Scholar] [CrossRef]
- Diederen, K.M.; Daalman, K.; de Weijer, A.D.; Neggers, S.F.; van Gastel, W.; Blom, J.D.; Kahn, R.S.; Sommer, I.E. Auditory hallucinations elicit similar brain activation in psychotic and nonpsychotic individuals. Schizophr. Bull. 2012, 38, 1074–1082. [Google Scholar] [CrossRef] [Green Version]
- Brewin, C.R. Re-experiencing traumatic events in PTSD: New avenues in research on intrusive memories and flashbacks. Eur. J. Psychotraumatology 2015, 6, 27180. [Google Scholar] [CrossRef] [PubMed]
- Schönfeld, S.; Ehlers, A. Posttraumatic stress disorder and autobiographical memories in everyday life. Clin. Psychol. Sci. 2017, 5, 325–340. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.A. Integrating schizophrenia. Schizophr. Bull. 1998, 24, 249–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rescorla, R.A. A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and non-reinforcement. Class. Cond. Curr. Res. Theory 1972, 2, 64–69. [Google Scholar]
- Sharpe, M.J.; Killcross, S. The prelimbic cortex contributes to the down-regulation of attention toward redundant cues. Cereb. Cortex 2014, 24, 1066–1074. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.H.; Wellman, N.A.; Geaney, D.P.; Cowen, P.J.; Feldon, J.; Rawlins, J.N.P. Antipsychotic drug effects in a model of schizophrenic attentional disorder: A randomized controlled trial of the effects of haloperidol on latent inhibition in healthy people. Biol. Psychiatry 1996, 40, 1135–1143. [Google Scholar] [CrossRef]
- Chen, E.Y. A neural network model of cortical information processing in schizophrenia II-role of hippocampal-cortical interaction: A review and a model. Can. J. Psychiatry 1995, 40, 21–26. [Google Scholar] [CrossRef]
- Palaniyappan, L. Inefficient neural system stabilization: A theory of spontaneous resolutions and recurrent relapses in psychosis. J. Psychiatry Neurosci. 2019, 44, 367–383. [Google Scholar] [CrossRef] [Green Version]
- McGlashan, T.H. Recovery style from mental illness and long-term outcome. J. Nerv. Ment. Dis. 1987, 175, 681–685. [Google Scholar] [CrossRef]
- Doughty, O.J.; Done, D.J. Is semantic memory impaired in schizophrenia? A systematic review and meta-analysis of 91 studies. Cogn. Neuropsychiatry 2009, 14, 473–509. [Google Scholar] [CrossRef]
- Hardy, A. Pathways from trauma to psychotic experiences: A theoretically informed model of posttraumatic stress in psychosis. Front. Psychol. 2017, 8, 697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLeod, H.J.; Wood, N.; Brewin, C.R. Autobiographical memory deficits in schizophrenia. Cogn. Emot. 2006, 20, 536–547. [Google Scholar] [CrossRef] [PubMed]
- Woods, S.P.; Weinborn, M.; Posada, C.; O’Grady, J. Preliminary evidence for impaired rapid verb generation in schizophrenia. Brain Lang. 2007, 102, 46–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeuchi, H.; Siu, C.; Remington, G.; Fervaha, G.; Zipursky, R.B.; Foussias, G.; Agid, O. Does relapse contribute to treatment resistance? Antipsychotic response in first-vs. second-episode schizophrenia. Neuropsychopharmacology 2019, 44, 1036–1042. [Google Scholar] [CrossRef]
- Hui, C.L.M.; Lau, W.W.Y.; Leung, C.M.; Chang, W.C.; Tang, J.Y.M.; Wong, G.H.Y.; Chan, S.K.W.; Lee, E.H.M.; Chen, E.Y.H. Clinical and social correlates of duration of untreated psychosis among adult-onset psychosis in Hong Kong Chinese: The JCEP study. Early Interv. Psychiatry 2015, 9, 118–125. [Google Scholar] [CrossRef]
- Penttilä, M.; Jääskeläinen, E.; Hirvonen, N.; Isohanni, M.; Miettunen, J. Duration of untreated psychosis as predictor of long-term outcome in schizophrenia: Systematic review and meta-analysis. Br. J. Psychiatry 2014, 205, 88–94. [Google Scholar] [CrossRef]
- Perkins, D.O.; Lieberman, J.A.; Gu, H.; Tohen, M.; McEvoy, J.; Green, A.I.; Zipursky, R.B.; Strakowski, S.M.; Sharma, T.; Kahn, R.S.; et al. Predictors of antipsychotic treatment response in patients with first-episode schizophrenia, schizoaffective and schizophreniform disorders. Br. J. Psychiatry 2004, 185, 18–24. [Google Scholar] [CrossRef] [Green Version]
- White, C.; Stirling, J.; Hopkins, R.; Morris, J.; Montague, L.; Tantam, D.; Lewis, S. Predictors of 10-year outcome of first-episode psychosis. Psychol. Med. 2009, 39, 1447–1456. [Google Scholar] [CrossRef]
- Cahill, L.; Alkire, M.T. Epinephrine enhancement of human memory consolidation: Interaction with arousal at encoding. Neurobiol. Learn. Mem. 2003, 79, 194–198. [Google Scholar] [CrossRef]
- Camisa, K.M.; Bockbrader, M.A.; Lysaker, P.; Rae, L.L.; Brenner, C.A.; O’Donnell, B.F. Personality traits in schizophrenia and related personality disorders. Psychiatry Res. 2005, 133, 23–33. [Google Scholar] [CrossRef]
- Harvey, P.D.; Keefe, R.S. Studies of cognitive change in patients with schizophrenia following novel antipsychotic treatment. Am. J. Psychiatry 2001, 158, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Fowler, D.; Freeman, D.; Smith, B.E.N.; Kuipers, E.; Bebbington, P.; Bashforth, H.; Coker, S.; Hodgekins, J.; Gracie, A.; Dunn, G.; et al. The Brief Core Schema Scales (BCSS): Psychometric properties and associations with paranoia and grandiosity in non-clinical and psychosis samples. Psychol. Med. 2006, 36, 749–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGlashan, T.H.; Levy, S.T.; Carpenter, W.T. Integration and sealing over: Clinically distinct recovery styles from schizophrenia. Arch. Gen. Psychiatry 1975, 32, 1269–1272. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, E.Y.H.; Wong, S.M.Y.; Tang, E.Y.H.; Lei, L.K.S.; Suen, Y.-n.; Hui, C.L.M. Spurious Autobiographical Memory of Psychosis: A Mechanistic Hypothesis for the Resolution, Persistence, and Recurrence of Positive Symptoms in Psychotic Disorders. Brain Sci. 2023, 13, 1069. https://doi.org/10.3390/brainsci13071069
Chen EYH, Wong SMY, Tang EYH, Lei LKS, Suen Y-n, Hui CLM. Spurious Autobiographical Memory of Psychosis: A Mechanistic Hypothesis for the Resolution, Persistence, and Recurrence of Positive Symptoms in Psychotic Disorders. Brain Sciences. 2023; 13(7):1069. https://doi.org/10.3390/brainsci13071069
Chicago/Turabian StyleChen, Eric Y. H., Stephanie M. Y. Wong, Eric Y. H. Tang, Lauren K. S. Lei, Yi-nam Suen, and Christy L. M. Hui. 2023. "Spurious Autobiographical Memory of Psychosis: A Mechanistic Hypothesis for the Resolution, Persistence, and Recurrence of Positive Symptoms in Psychotic Disorders" Brain Sciences 13, no. 7: 1069. https://doi.org/10.3390/brainsci13071069