Application of Original Therapy for Stimulation of Oral Areas Innervated by the Trigeminal Nerve in a Child with Beckwith–Wiedemann Syndrome
Abstract
:1. Introduction
2. Case Presentation
Speech Pathology Assessment and Intervention
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Eggermann, T.; de Nanclares, G.P.; Maher, E.R.; Temple, I.K.; Tümer, Z.; Monk, D.; Mackay, D.J.G.; Grønskov, K.; Riccio, A.; Linglart, A.; et al. Imprinting disorders: A group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci. Clin. Epigenet. 2015, 7, 123. [Google Scholar] [CrossRef] [PubMed]
- Mussa, A.; Russo, S.; Crescenzo, A.; Chiesa, N.; Molinatto, C. Prevalence of beckwith-wiedemann syndrome in North West of Italy. Am. J. Med. Genet. Part A 2013, 161, 2481–2486. [Google Scholar] [CrossRef] [PubMed]
- Weksberg, R.; Shuman, C.; Beckwith, J.B. Beckwith-Wiedemann syndrome. Eur. J. Hum. Genet. 2010, 18, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.; Kirby, G.; Hardy, C.; Dias, R.D.; Tee, L.; Lim, D.; Berg, J.; MacDonald, F.; Nightingale, P.; Maher, E.R. Methylation analysis and diagnostics of Beckwith-Wiedemann syndrome in 1,000 subjects. Clin. Epigenet. 2014, 6, 11. [Google Scholar] [CrossRef]
- Elliott, M.R.; Cole, B.T.; Temple, I.T.; Maher, E.R. Clinical Features and Natural History of Beckwith-Wiedemann Syndrome: Presentation of 74 New Cases; StatPearls: Tampa, FL, USA, 1994; pp. 168–174. [Google Scholar]
- Vansenne, F.; Kadouch, D.J.M.; Ibrahim, A.; Bliekk, J.; Hopmann, S.; Mannens, M.; Merks, J.H.M.; Eamon, R.; Maher, E.R.; Hennekam, R.C. Phenotype, cancer risk, and surveillance in Beckwith-Wiedemann syndrome depending on molecular genetic subgroups. Am. J. Med. Genet. A 2016, 170, 2248–2260. [Google Scholar]
- Brioude, F.; Lacoste, A.; Netchine, I.; Vazquez, M.-P.; Auber, F.; Audry, G.; Gauthier-Villars, M.; Brugieres, L.; Gicquel, C.; Le Bouc, Y.; et al. Beckwith-wiedemann syndrome: Growth pattern and tumor risk according to molecular mechanism, and guidelines for tumor surveillance. Horm. Res. Paediatr. 2014, 80, 457–465. [Google Scholar] [CrossRef]
- Mussa, A.; Russo, S.; Larizza, L.; Riccio, A.; Ferrero, G.B. (Epi)genotype-phenotype correlations in Beckwith-Wiedemann syndrome: A paradigm for genomic medicine. Clin. Genet. 2015, 89, 403–415. [Google Scholar] [CrossRef]
- Mussa, A.; Russo, S.; De Crescenzo, A.; Freschi, A.; Calzari, L.; Maitz, S.; Macchiaiolo, M.; Molinatto, C.; Baldassarre, G.; Mariani, M.; et al. (Epi)genotype–phenotype correlations in Beckwith–Wiedemann syndrome. Eur. J. Hum. Genet. 2015, 24, 183–190. [Google Scholar] [CrossRef]
- Prada, C.E.; Zarate, Y.A.; Hopkin, R.J. Genetic causes of macroglossia: Diagnostic approach. Pediatrics 2012, 129, e431–e437. [Google Scholar] [CrossRef]
- Gasparini, G.; Saltarel, A.; Carboni, A.; Maggiulli, F.; Becelli, R. Surgical management of macroglossia: Discussion of 7 cases. Oral Surg. Oral. Med. Oral Pathol. Oral Radiol. Endod. 2002, 94, 566–571. [Google Scholar] [CrossRef]
- Shipster, C.; Morgan, O.B. Speech and oral motor skills in children with Beckwith Wiedemann Syndrome: Pre and Post-tongue reduction surgery. Adv. Speech Lang. Pathol. 2009, 8, 45–55. [Google Scholar] [CrossRef]
- Shipster, C.; Morgan, A.; Dunaway, D. Psychosocial, feeding, and drooling outcomes in children with Beckwith Wiedemann syndrome following tongue reduction surgery. Cleft Palate Craniofac. J. 2012, 49, e25–e34. [Google Scholar] [CrossRef] [PubMed]
- Kadouch, D.J.M.; Maas, S.M.; Dubois, L.; van der Horst, C.M.A.M. Surgical treatment of macroglossia in patients with Beckwith–Wiedemann syndrome: A 20-year experience and review of the literature. Int. J. Oral Maxillofac. Surg. 2012, 41, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Meazzini, M.C.; Besana, M.; Tortora, C.; Cohen, N.; Rezzonico, A.; Ferrari, M.; Autelitano, L. Long-term longitudinal evalutation of mandibular growth in patients with Beckwith-Wiedemann syndrome treated and not treated with glossectomy. J. Craniomaxillofac. Surg. 2020, 48, 1126–1131. [Google Scholar] [CrossRef] [PubMed]
- Gardon, M.A.; Andre, C.V.; Ernenwein, D.; Teissier, N.; Bennaceur, S. New surgical method of tongue reduction for macroglossia: Technical note. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. 2019, 127, e1–e7. [Google Scholar] [CrossRef]
- Freddi, T.A.L.; Ottaiano, A.C.; Lucio, L.L.; Corrêa, D.G.; Hygino da Cruz, L.C., Jr. The Trigeminal Nerve: Anatomy and Pathology. Semin. Ultrasound CT MR 2022, 43, 403–413. [Google Scholar] [CrossRef]
- Smith, A.; McFarland, D.H.; Weber, C.M.; Moore, C.A. Spatial organization of human perioral reflexes. Exp. Neurol. 1987, 98, 233–248. [Google Scholar] [CrossRef]
- Edin, B.B.; Johansson, N. Skin strain patterns provide kinesthetic information to the human central nervous system. J. Physiol. 1995, 487, 243–254. [Google Scholar] [CrossRef]
- Johansson, R.S.; Trulsson, M.; Olsson, M.K.; Abbs, J.H. Mechanoreceptive afferent activity in the infraorbital nerve in man during speech and chewing movements. Exp. Brain Res. 1988, 72, 209–214. [Google Scholar] [CrossRef]
- Trulsson, M.; Essick, G.K. Low-threshold mechanoreceptive afferents in the human lingual nerve. J. Neurophysiol. 1997, 77, 737–748. [Google Scholar] [CrossRef]
- Barlow, S.M.; Dusick, A.; Finan, D.S.; Coltart, S.; Biswas, A. Mechanically evoked perioral reflexes in premature and term human infants. Brain Res. 2000, 899, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Barlow, S.M.; Bradford, P.T. Comparison of perioral reflex modulation in the upper and lower lip. J. Speech Heart Res. 1996, 39, 55–75. [Google Scholar] [CrossRef]
- Yasui, Y.; Yokota, S.; Ono, K.; Tsumori, T. Projections from the red nucleus to the parvicelluar reticular formation and the cervical spinal cord in the rat, with special reference to innervation by branching axons. Brain Res. 2001, 923, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Dehmel, S.; Cui, Y.L.; Shore, S.E. Modulatory influences of red nucleus stimulation on the somatosensory responses of cat trigeminal subnucleus oralis neurons. Exp. Neurol. 1986, 91, 80–101. [Google Scholar]
- Katz, P.S.; Calin, R.J. Encyclopedia of Neuroscience; Neuromodulation; Springer: Berlin/Heidelberg, Germany, 2009; pp. 497–503. [Google Scholar]
- Yajima, E.; Satoh, Y.; Ishizuka, K.I.; Iwasaki, S.I.; Terada, K. Suppression of the nociceptive jaw-opening reflex by stimulation of the red nucleus. Brain Res. 2012, 1473, 124–130. [Google Scholar] [CrossRef]
- Mercante, B.; Deriu, F.; Rangon, C.M. Auricular Neuromodulation: The Emerging Concept beyond the Stimulation of Vagus and Trigeminal Nerves. Medicines 2018, 5, 10. [Google Scholar] [CrossRef]
- Lopez, H.S.; Brown, A.M. Neuromodulation. Curr. Opin. Neurobiol. 1992, 2, 317–322. [Google Scholar] [CrossRef]
- Nadim, F.; Bucher, D. Neuromodulation of neurons and synapses. Curr. Opin. Neurobiol. 2014, 29, 48–56. [Google Scholar] [CrossRef]
- Badran, B.W.; Jenkins, D.D.; Cook, D.; Thompson, S.; Dancy, M.; DeVries, W.H.; Mappin, G.; Summers, P.; Bikson, M.; George, M.S. Transcutaneous Auricular Vagus Nerve Stimulation-Paired Rehabilitation for Oromotor Feeding Problems in Newborns: An Open-Label Pilot Study. Front. Hum. Neurosci. 2020, 14, 77. [Google Scholar] [CrossRef]
- Cook, D.N.; Thompson, S.; Firestein, S.S.; Bikson, M.; George, M.S.; Jenkins, D.D.; Badran, B.W. Design and validation of a closed-loop, motor-activated auricular vagus nerve stimulation (MAAVNS) system for neurorehabilitation. Brain Stimul. 2020, 13, 800–803. [Google Scholar] [CrossRef]
- Badran, B.W.; Huffman, S.M.; Dancy, M.; Austelle, C.W.; Bikson, M.; Kautz, S.A.; George, M.S. A pilot randomized controlled trial of supervised, at-home, self-administered transcutaneous auricular vagus nerve stimulation (taVNS) to manage long COVID symptoms. Bioelectron. Med. 2022, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Rangon, C.M.; Niezgoda, A. Understanding the Pivotal Role of the Vagus Nerve in Health from Pandemics. Bioengineering 2022, 9, 352. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawlukowska, W.; Patalan, M.; Bagińska, E.; Giżewska, M.; Masztalewicz, M. Application of Original Therapy for Stimulation of Oral Areas Innervated by the Trigeminal Nerve in a Child with Beckwith–Wiedemann Syndrome. Brain Sci. 2023, 13, 829. https://doi.org/10.3390/brainsci13050829
Pawlukowska W, Patalan M, Bagińska E, Giżewska M, Masztalewicz M. Application of Original Therapy for Stimulation of Oral Areas Innervated by the Trigeminal Nerve in a Child with Beckwith–Wiedemann Syndrome. Brain Sciences. 2023; 13(5):829. https://doi.org/10.3390/brainsci13050829
Chicago/Turabian StylePawlukowska, Wioletta, Michał Patalan, Ewelina Bagińska, Maria Giżewska, and Marta Masztalewicz. 2023. "Application of Original Therapy for Stimulation of Oral Areas Innervated by the Trigeminal Nerve in a Child with Beckwith–Wiedemann Syndrome" Brain Sciences 13, no. 5: 829. https://doi.org/10.3390/brainsci13050829
APA StylePawlukowska, W., Patalan, M., Bagińska, E., Giżewska, M., & Masztalewicz, M. (2023). Application of Original Therapy for Stimulation of Oral Areas Innervated by the Trigeminal Nerve in a Child with Beckwith–Wiedemann Syndrome. Brain Sciences, 13(5), 829. https://doi.org/10.3390/brainsci13050829