Differences in Cortical Area Activity and Motor Imagery Vivid-Ness during Evaluation of Motor Imagery Tasks in Right and Left Hemiplegics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. MI Task
2.3. Experimental Procedure
2.4. NIRS Measurement and Analysis
2.5. Assessment of Paralyzed Upper Extremity Function
2.6. Statistics
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, N.; Pomeroy, V.M.; Baron, J.C. Motor imagery: A backdoor to the motor system after stroke? Stroke 2006, 37, 1941–1952. [Google Scholar] [CrossRef]
- Morris, D.M.; Taub, E.; Mark, V.W. Constraint-induced movement therapy (CI therapy): Characterizing the intervention protocol. Eur. Medicophys. 2006, 42, 257–268. [Google Scholar]
- Buchignani, B.; Beani, E.; Pomeroy, V.; Iacono, O.; Sicola, E.; Perazza, S.; Bieber, E.; Feys, H.; Klingels, K.; Cioni, G.; et al. Action observation training for rehabilitation in brain injuries: A systematic review and meta-analysis. BMC Neurol. 2019, 19, 1. [Google Scholar] [CrossRef]
- Lin, S.H.; Dionne, T.P. Interventions to improve movement and functional outcomes in adult stroke rehabilitation: Review and evidence summary. J. Med. Internet Res. 2018, 10, e8929. [Google Scholar] [CrossRef]
- Nilsen, D.M.; Gillen, G.; Gordon, A.M. Use of mental practice to improve upper-limb recovery after stroke: A systematic review. Am. J. Occup. Ther. 2010, 64, 695–708. [Google Scholar] [CrossRef] [PubMed]
- Hétu, S.; Grégoire, M.; Saimpont, A.; Coll, M.P.; Eugène, F.; Michon, P.E.; Jackson, P.L. The neural network of motor imagery: An ALE meta-analysis. Neurosci. Biobehav. Rev. 2013, 37, 930–949. [Google Scholar] [CrossRef] [PubMed]
- Zanona, A.D.F.; Piscitelli, D.; Seixas, V.M.; Scipioni, K.R.D.D.S.; Bastos, M.S.C.; de Sá, L.C.K.; Monte-Silva, K.; Bolivar, M.; Solnik, S.; De Souza, R.F. Brain-computer interface combined with mental practice and occupational therapy enhances upper limb motor recovery, activities of daily living, and participation in subacute stroke. Front. Neurol. 2023, 13, 1041978. [Google Scholar] [CrossRef]
- Ruffino, C.; Papaxanthis, C.; Lebon, F. Neural plasticity during motor learning with motor imagery practice: Review and perspectives. Neuroscience 2017, 341, 61–78. [Google Scholar] [CrossRef]
- Ruby, P.; Decety, J. Effect of subjective perspective taking during simulation of action: A PET investigation of agency. Nat. Neurosci. 2001, 4, 546–550. [Google Scholar] [CrossRef] [PubMed]
- Bonda, E.; Petrides, M.; Frey, S.; Evans, A. Neural correlates of mental transformations of the body-in-space. Proc. Natl. Acad. Sci. USA 1995, 92, 11180–11184. [Google Scholar] [CrossRef]
- Vargas, C.D.; Olivier, E.; Craighero, L.; Fadiga, L.; Duhamel, J.R.; Sirigu, A. The Influence of Hand Posture on Corticospinal Excitability during Motor Imagery: A Transcranial Magnetic Stimulation Study. Cereb. Cortex 2004, 14, 1200–1206. [Google Scholar] [CrossRef]
- Mizuguchi, N.; Sakamoto, M.; Muraoka, T.; Kanosue, K. Influence of touching an object on corticospinal excitability during motor imagery. Exp. Brain Res. 2009, 196, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Vogt, S.; Di Rienzo, F.; Collet, C.; Collins, A.; Guillot, A. Multiple roles of motor imagery during action observation. Front. Hum. Neurosci. 2013, 7, 807. [Google Scholar] [CrossRef] [PubMed]
- Taube, W.; Mouthon, M.; Leukel, C.; Hoogewoud, H.-M.; Annoni, J.-M.; Keller, M. Brain activity during observation and motor imagery of different balance tasks: An fMRI study. Cortex 2015, 64, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Eaves, D.L.; Riach, M.; Holmes, P.S.; Wright, D.J. Motor Imagery during Action Observation: A Brief Review of Evidence, Theory and Future Research Opportunities. Front. Neurosci. 2016, 10, 514. [Google Scholar] [CrossRef] [PubMed]
- Ruby, P.; Decety, J. What you believe versus what you think they believe: A neuroimaging study of conceptual perspective-taking. Eur. J. Neurosci. 2003, 17, 2475–2480. [Google Scholar] [CrossRef]
- Stinear, C.M.; Fleming, M.K.; Byblow, W.D. Lateralization of unimanual and bimanual motor imagery. Brain Res. 2006, 1095, 139–147. [Google Scholar] [CrossRef]
- Sabaté, M.; González, B.; Rodríguez, M. Brain lateralization of motor imagery: Motor planning asymmetry as a cause of movement lateralization. Neuropsychologia 2004, 42, 1041–1049. [Google Scholar] [CrossRef] [PubMed]
- Roland, P.E.; Larsen, B.; Lassen, N.A.; Skinhoj, E. Supplementary motor area and other cortical areas in organization of voluntary movements in man Supplementary Motor Area and Other Cortical Areas in Organization of Voluntary Movements in Man. J. Neurophysiol. 1980, 43, 118–136. [Google Scholar] [CrossRef]
- Avanzino, L.; Lagravinese, G.; Bisio, A.; Perasso, L.; Ruggeri, P.; Bove, M. Action observation: Mirroring across our spontaneous movement tempo. Sci. Rep. 2015, 5, 10325. [Google Scholar] [CrossRef]
- Amemiya, K.; Ishizu, T.; Ayabe, T.; Kojima, S. Effects of motor imagery on intermanual transfer: A near-infrared spectroscopy and behavioural study. Brain Res. 2010, 1343, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, M.; Dan, H.; Sakamoto, K.; Takeo, K.; Shimizu, K.; Kohno, S.; Oda, I.; Isobe, S.; Suzuki, T.; Kohyama, K.; et al. Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. Neuroimage 2004, 21, 99–111. [Google Scholar] [CrossRef]
- Cope, M.; Delpy, D.T. System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-redtransillumination. Med. Biol. Eng. Comput. 1988, 26, 289–294. [Google Scholar] [CrossRef]
- Obrig, H.; Villringer, A. Beyond the visible—Imaging the human brain with light. J. Cereb. Blood Flow Metab. 2003, 23, 1–18. [Google Scholar] [CrossRef]
- Baker, W.B.; Parthasarathy, A.B.; Busch, D.R.; Mesquita, R.C.; Greenberg, J.H.; Yodh, A. Modified Beer-Lambert law for blood flow. Biomed. Opt. Express 2014, 5, 4053–4075. [Google Scholar] [CrossRef]
- Hatakenaka, M.; Miyai, I.; Mihara, M.; Sakoda, S.; Kubota, K. Frontal regions involved in learning of motor skill A functional NIRS study. Neuroimage 2007, 34, 109–116. [Google Scholar] [CrossRef]
- Sagari, A.; Iso, N.; Moriuchi, T.; Ogahara, K.; Kitajima, E.; Tanaka, K.; Tabira, T.; Higashi, T. Changes in cerebral hemodynamics during complex motor learning by character entry into touch screen terminals. PLoS ONE 2015, 20, e0140552. [Google Scholar] [CrossRef] [PubMed]
- Iso, N.; Moriuchi, T.; Sagari, A.; Kitajima, E.; Iso, F.; Tanaka, K.; Kikuchi, Y.; Tabira, T.; Higashi, T. Monitoring local regional hemodynamic signal changes during motor execution and motor imagery using near-infrared spectroscopy. Front. Physiol. 2015, 6, 416. [Google Scholar] [CrossRef]
- Nakayama, H.; Jørgensen, H.S.; Raaschou, H.O.; Olsen, T.S. Recovery of upper extremity function in stroke patients: The Copenhagen Stroke Study. Arch. Phys. Med. Rehabil. 1994, 75, 394–398. [Google Scholar] [CrossRef]
- Yoko, H.; Norio Kobayashi, A. Interpretation of near-infrared spectroscopy signals: A study with a newly developed perfused rat brain model Interpretation of near-infrared spectroscopy signals: A study with a newly developed perfused rat brain model. J. Appl. Physiol. 2001, 90, 1657–1662. [Google Scholar]
- Murphy, T.H.; Corbett, D. Plasticity during stroke recovery: From synapse to behaviour. Nat. Rev. Neurosci. 2009, 10, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, M.; Iso, N.; Fujiwara, K.; Moriuchi, T.; Tanaka, G.; Honda, S.; Matsuda, D.; Higashi, T. Cerabral haemodynamics during motor imagery of self-feeding with chopsticks: Differences between dominant and non-dominant hand. Somatosens. Mot. Res. 2019, 37, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Takikawa, Y.; Kawagoe, R.; Shibuya, S.; Iwano, T.; Kitazawa, S. Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task. Neuroimage 2011, 57, 991–1002. [Google Scholar] [CrossRef] [PubMed]
- Moriuchi, T.; Nakashima, A.; Nakamura, J.; Anan, K.; Nishi, K.; Matsuo, T.; Hasegawa, T.; Mitsunaga, W.; Iso, N.; Higashi, T. The vividness of motor imagery is correlated with corticospinal excitability during combined motor imagery and action observation. Front. Hum. Neurosci. 2020, 14, 581652. [Google Scholar] [CrossRef] [PubMed]
- Maeda, F.; Chang, V.Y.; Mazziotta, J.; Iacoboni, M. Experience-dependent modulation of motor corticospinal excitability during action observation. Exp. Brain Res. 2001, 140, 241–244. [Google Scholar] [CrossRef] [PubMed]
- ter Horst, A.C.; van Lier, R.; Steenbergen, B. Mental rotation task of hands: Differential influence number of rotational axes. Exp. Brain Res. 2010, 203, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Nagashima, I.; Takeda, K.; Shimoda, N.; Harada, Y.; Mochizuki, H. Variation in performance strategies of a hand mental rotation task on elderly. Front. Hum. Neurosci. 2019, 13, 252. [Google Scholar] [CrossRef] [PubMed]
- Kengo, F.; Rikako, S.; Masatomo, S.; Yoshinaga, A.; Koji, S.; Toshio, H. A Method for Using Video Presentation to ncrease Cortical Region Activity during Motor Imagery Tasks in Stroke Patients. Brain Sci. 2022, 13, 29. [Google Scholar] [CrossRef]
- Fujiwara, K.; Shibata, M.; Awano, Y.; Shibayama, K.; Iso, N.; Matsuo, M.; Nakashima, A.; Moriuchi, T.; Mitsunaga, W.; Higashi, T. A method for using video presentation to increase the vividness and activity of cortical regions during motor imagery tasks. Neural Regen. Res. 2021, 16, 2431. [Google Scholar] [CrossRef]
- Wright, D.J.; Wood, G.; Eaves, D.L.; Bruton, A.M.; Frank, C.; Franklin, Z.C. Corticospinal excitability is facilitated by combined action observation and motor imagery of a basketball free throw. Psychol. Sport Exerc. 2018, 39, 114–121. [Google Scholar] [CrossRef]
- Smith, S.R.; Wood, G.; Coyles, G.; Roberts, J.W.; Wakefield, C.J. The effect of action observation and motor imagery combinations on upper limb kinematics and EMG during dart-throwing. Scand. J. Med. Sci. Sport 2019, 29, 1917–1929. [Google Scholar] [CrossRef]
- McNeill, E.; Ramsbottom, N.; Toth, A.J.; Campbell, M.J. Kinaesthetic imagery ability moderates the effect of an AO+MI intervention on golf putt performance: A pilot study. Psychol. Sport Exerc. 2020, 46, 101610. [Google Scholar] [CrossRef]
- McNeill, E.; Toth, A.J.; Ramsbottom, N.; Campbell, M.J. Self-modelled versus skilled-peer modelled AO+MI effects on skilled sensorimotor performance. Psychol. Sport Exerc. 2020, 49, 101683. [Google Scholar] [CrossRef]
- Perin, C.; Bolis, M.; Limonta, M.; Meroni, R.; Ostasiewicz, K.; Cornaggia, C.M.; Alouche, S.R.; Matuti, G.d.S.; Cerri, C.G.; Piscitelli, D. Differences in Rehabilitation. Needs after Stroke: A Similarity Analysis on the ICF Core Set for Stroke. Int. J. Environ. Res. Public Health 2020, 17, 4291. [Google Scholar] [CrossRef] [PubMed]
ID | Sex | Age | Days since Onset | Region of Damage | Stroke Side | MMSE | FMA | MAL (AOU) | MAL (QOM) | VAS1 | VAS2 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | M | 78 | 20 | Left anterior cephalic lobe, lateral lobe subcortical | R | 25 | 40 | 0.8 | 0.7 | 50 | 56 |
2 | M | 57 | 54 | Left anterior cephalic lobe | R | 28 | 42 | 0.4 | 0.4 | 48 | 60 |
3 | M | 87 | 22 | Left paraventricular white matter | R | 29 | 49 | 2.8 | 2.2 | 100 | 100 |
4 | F | 86 | 33 | Left side of the pons | R | 24 | 63 | 5.0 | 4.4 | 100 | 100 |
5 | M | 72 | 24 | Left thalamus | R | 28 | 51 | 1.2 | 1.3 | 100 | 97 |
6 | M | 68 | 31 | Left intension | R | 24 | 65 | 4.6 | 3.9 | 21 | 24 |
7 | M | 67 | 18 | Left crown of radiation | R | 29 | 56 | 2.9 | 2.6 | 21 | 23 |
8 | M | 68 | 22 | Left intension | R | 30 | 62 | 3.5 | 3.8 | 60 | 75 |
9 | M | 67 | 30 | Left intension | R | 28 | 4 | 0.0 | 0.0 | 52 | 41 |
10 | F | 61 | 35 | Pons | R | 26 | 50 | 2.0 | 2.0 | 100 | 100 |
11 | F | 77 | 18 | Left thalamus | R | 29 | 30 | 0.6 | 0.6 | 70 | 80 |
12 | F | 78 | 21 | Right internal hind leg | L | 27 | 61 | 1.5 | 1.5 | 25 | 50 |
13 | F | 70 | 23 | Right lentiform nucleus | L | 30 | 48 | 1.4 | 1.0 | 100 | 100 |
14 | M | 84 | 35 | Right anterior cephalic lobe | L | 24 | 57 | 3.0 | 3.5 | 28 | 45 |
15 | M | 65 | 31 | Right internal hind leg | L | 30 | 55 | 0.7 | 1.2 | 51 | 52 |
16 | F | 61 | 25 | Right putamen | L | 24 | 23 | 0.0 | 0.1 | 54 | 63 |
17 | M | 38 | 24 | Right temporal lobe | L | 28 | 14 | 0.0 | 0.0 | 100 | 100 |
18 | F | 63 | 19 | Right internal hind leg | L | 28 | 30 | 2.2 | 1.7 | 69 | 71 |
19 | M | 63 | 21 | Right crown of radiation | L | 28 | 60 | 0.6 | 0.5 | 52 | 66 |
20 | M | 60 | 22 | Right internal hind leg | L | 30 | 5 | 0.0 | 0.0 | 100 | 100 |
21 | M | 64 | 23 | Right anterior cephalic lobe | L | 24 | 64 | 5.0 | 4.5 | 53 | 74 |
22 | M | 67 | 33 | Right thalamus | L | 24 | 60 | 2.3 | 1.8 | 48 | 53 |
23 | M | 67 | 25 | Right crown of radiation | L | 30 | 48 | 1.1 | 1.3 | 86 | 97 |
24 | M | 82 | 19 | Right lentiform nucleus | L | 28 | 4 | 0.0 | 0.0 | 78 | 100 |
25 | M | 53 | 24 | Right internal hind leg | L | 30 | 19 | 0.0 | 0.0 | 50 | 90 |
AVG | 68.1 | 26.1 | 27.4 | 42.4 | 1.7 | 1.6 | 64.6 | 72.7 | |||
SD | 11.0 | 7.9 | 2.3 | 20.3 | 1.6 | 1.5 | 27.3 | 25.2 | |||
SE | 2.2 | 1.6 | 0.5 | 4.1 | 0.3 | 0.3 | 5.5 | 5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujiwara, K.; Shibata, M.; Awano, Y.; Iso, N.; Shibayama, K.; Higashi, T. Differences in Cortical Area Activity and Motor Imagery Vivid-Ness during Evaluation of Motor Imagery Tasks in Right and Left Hemiplegics. Brain Sci. 2023, 13, 748. https://doi.org/10.3390/brainsci13050748
Fujiwara K, Shibata M, Awano Y, Iso N, Shibayama K, Higashi T. Differences in Cortical Area Activity and Motor Imagery Vivid-Ness during Evaluation of Motor Imagery Tasks in Right and Left Hemiplegics. Brain Sciences. 2023; 13(5):748. https://doi.org/10.3390/brainsci13050748
Chicago/Turabian StyleFujiwara, Kengo, Masatomo Shibata, Yoshinaga Awano, Naoki Iso, Koji Shibayama, and Toshio Higashi. 2023. "Differences in Cortical Area Activity and Motor Imagery Vivid-Ness during Evaluation of Motor Imagery Tasks in Right and Left Hemiplegics" Brain Sciences 13, no. 5: 748. https://doi.org/10.3390/brainsci13050748
APA StyleFujiwara, K., Shibata, M., Awano, Y., Iso, N., Shibayama, K., & Higashi, T. (2023). Differences in Cortical Area Activity and Motor Imagery Vivid-Ness during Evaluation of Motor Imagery Tasks in Right and Left Hemiplegics. Brain Sciences, 13(5), 748. https://doi.org/10.3390/brainsci13050748