Bipolar Chronobiology in Men and Mice: A Narrative Review
Abstract
:1. Bipolar Disorder
2. Circadian Rhythm
3. Circadian Clocks
4. Circadian Rhythm Disruption and Phase Shifting
5. Sleep
6. Risk Factors and Genetics
7. Environment
8. Bipolar Specificity and Course of Illness
9. Treatment
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCarthy, M.J.; Gottlieb, J.F.; Gonzalez, R.; McClung, C.A.; Alloy, L.B.; Cain, S.; Dulcis, D.; Etain, B.; Frey, B.N.; Garbazza, C.; et al. Neurobiological and behavioral mechanisms of circadian rhythm disruption in bipolar disorder: A critical multi-disciplinary literature review and agenda for future research from the ISBD task force on chronobiology. Bipolar Disord. 2022, 24, 232–263. [Google Scholar] [CrossRef] [PubMed]
- Bisdounis, L.; Saunders, K.E.A.; Farley, H.J.; Lee, C.K.; McGowan, N.M.; Espie, C.A.; Kyle, S.D. Psychological and behavioural interventions in bipolar disorder that target sleep and circadian rhythms: A systematic review of randomised controlled trials. Neurosci. Biobehav. Rev. 2022, 132, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Beyer, D.K.; Freund, N. Animal models for bipolar disorder: From bedside to the cage. Int. J. Bipolar Disord. 2017, 5, 35. [Google Scholar] [CrossRef] [PubMed]
- McCarty, R.; Josephs, T.; Kovtun, O.; Rosenthal, S.J. Enlightened: Addressing circadian and seasonal changes in photoperiod in animal models of bipolar disorder. Transl. Psychiatry 2021, 11, 373. [Google Scholar] [CrossRef]
- Bloch, G.; Barnes, B.M.; Gerkema, M.P.; Helm, B. Animal activity around the clock with no overt circadian rhythms: Patterns, mechanisms and adaptive value. Proc. Biol. Sci. 2013, 280, 20130019. [Google Scholar] [CrossRef]
- van Oort, B.E.H.; Tyler, N.J.C.; Gerkema, M.P.; Folkow, L.; Blix, A.S.; Stokkan, K.-A. Circadian organization in reindeer. Nature 2005, 438, 1095–1096. [Google Scholar] [CrossRef]
- Eban-Rothschild, A.; Belluci, S.; Bloch, G. Maternity-related plasticity in circadian rhythms of bumble-bee queens. Proc. Biol. Sci. 2011, 278, 3510–3516. [Google Scholar] [CrossRef]
- Zantke, J.; Oberlerchner, H.; Tessmar-Raible, K. Circadian and circalunar clock interactions and the impact of light in platynereis dumerilii. In Annual, Lunar, and Tidal Clocks: Patterns and Mechanisms of Nature’s Enigmatic Rhythms; Numata, H., Helm, B., Eds.; Springer: Tokyo, Japan, 2014; pp. 143–162. ISBN 978-4-431-55261-1. [Google Scholar]
- Halberg, F. Circadian (about twenty-four-hour) rhythms in experimental medicine. Proc. R. Soc. Med. 1963, 56, 253–257. [Google Scholar] [CrossRef]
- Bailey, M.; Silver, R. Sex differences in circadian timing systems: Implications for disease. Front. Neuroendocrinol. 2014, 35, 111–139. [Google Scholar] [CrossRef]
- LeGates, T.A.; Fernandez, D.C.; Hattar, S. Light as a central modulator of circadian rhythms, sleep and affect. Nat. Rev. Neurosci. 2014, 15, 443–454. [Google Scholar] [CrossRef]
- Dibner, C.S.; Schibler, U.; Albrecht, U. The mammalian circadian timing system: Organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 2010, 72, 517–549. [Google Scholar] [CrossRef] [PubMed]
- Reppert, S.M.; Weaver, D.R. Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol. 2001, 63, 647–676. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.Y.; Eichler, V.B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 1972, 42, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Stephan, F.K.; Zucker, I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl. Acad. Sci. USA 1972, 69, 1583–1586. [Google Scholar] [CrossRef] [PubMed]
- Weaver, D.R. The suprachiasmatic nucleus: A 25-year retrospective. J. Biol. Rhythm. 1998, 13, 100–112. [Google Scholar] [CrossRef]
- Etain, B.; Dumaine, A.; Bellivier, F.; Pagan, C.; Francelle, L.; Goubran-Botros, H.; Moreno, S.; Deshommes, J.; Moustafa, K.; Le Dudal, K.; et al. Genetic and functional ab- normalities of the melatonin biosynthesis pathway in patients with bipolar disorder. Hum. Mol. Genet. 2012, 21, 4030–4037. [Google Scholar] [CrossRef]
- Geoffroy, P.A.; Boudebesse, C.; Henrion, A.; Jamain, S.; Henry, C.; Leboyer, M.; Bellivier, F.; Etain, B. An ASMT variant associated with bipolar disorder influences sleep and circadian rhythms: A pilot study. Genes. Brain Behav. 2014, 13, 299–304. [Google Scholar] [CrossRef]
- Nurnberger, J.I., Jr.; Adkins, S.; Lahiri, D.K.; Mayeda, A.; Hu, K.; Lewy, A.; Miller, A.; Bowman, E.S.; Miller, M.J.; Rau, L.; et al. Melatonin suppression by light in euthymic bipolar and unipolar patients. Arch. Gen. Psychiatry 2000, 57, 572–579. [Google Scholar] [CrossRef]
- Kennedy, S.H.; Kutcher, S.P.; Ralevski, E.; Brown, G.M. Nocturnal mela- tonin and 24-hour 6-sulphatoxymelatonin levels in various phases of bipolar affective disorder. Psychiatry Res. 1996, 63, 219–222. [Google Scholar] [CrossRef]
- Novakova, M.; Prasko, J.; Latalova, K.; Sladek, M.; Sumova, A. The circa-dian system of patients with bipolar disorder differs in episodes of mania and depression. Bipolar Disord. 2015, 17, 303–314. [Google Scholar] [CrossRef]
- Slyepchenko, A.; Allega, O.R.; Leng, X.; Minuzzi, L.; Eltayebani, M.M.; Skelly, M.; Sassi, R.B.; Soares, C.N.; Kennedy, S.H.; Frey, B.N. Association of functioning and quality of life with objective and subjective measures of sleep and biological rhythms in major depressive and bipolar disorder. Aust N Z J Psychiatry. 2019, 53, 683–696. [Google Scholar] [CrossRef] [PubMed]
- Giridharan, V.V.; Sayana, P.; Pinjari, O.F.; Ahmad, N.; da Rosa, M.I.; Quevedo, J.; Barichello, T. Postmortem evidence of brain inflammatory markers in bipolar disorder: A systematic review. Mol. Psychiatry 2020, 25, 94–113. [Google Scholar] [CrossRef] [PubMed]
- Castanon-Cervantes, O.; Wu, M.; Ehlen, J.C.; Paul, K.; Gamble, K.L.; Johnson, R.L.; Besing, R.C.; Menaker, M.; Gewirtz, A.T.; Davidson, A.J. Dysregulation of inflammatory responses by chronic circadian disruption. J. Immunol. 2010, 185, 5796–5805. [Google Scholar] [CrossRef] [PubMed]
- Palomba, M.; Bentivoglio, M. Chronic inflammation affects the photic response of the suprachiasmatic nucleus. J. Neuroimmunol. 2008, 193, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Landgraf, D.; McCarthy, M.J.; Welsh, D.K. Circadian clock and stress interactions in the molecular biology of psychiatric disorders. Curr. Psychiatry Rep. 2014, 16, 483. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.H.; Cho, C.H.; Son, G.H.; Geum, D.; Chung, S.; Kim, H.; Kang, S.G.; Park, Y.M.; Yoon, H.K.; Kim, L.; et al. Advanced circadian phase in mania and delayed circadian phase in mixed mania and depression returned to normal after treatment of bipolar disorder. EbioMedicine 2016, 11, 285–295. [Google Scholar] [CrossRef]
- Dulcis, D.; Jamshidi, P.; Leutgeb, S.; Spitzer, N.C. Neurotransmitter switching in the adult brain regulates behavior. Science 2013, 340, 449–453. [Google Scholar] [CrossRef]
- Young, J.W.; Cope, Z.A.; Romoli, B.; Schrurs, E.; Joosen, A.; Enkhuizen, J.; Sharp, R.F.; Dulcis, D. Mice with reduced DAT levels recreate seasonal-induced switching between states in bipolar disorder. Neuropsychopharmacology 2018, 43, 1721–1731. [Google Scholar] [CrossRef]
- Walker, W.H.; Borniger, J.C.; Gaudier-Diaz, M.M.; Meléndez-Fernández, O.H.; Pascoe, J.L.; DeVries, A.C.; Nelson, R.J. Acute exposure to low-level light at night is sufficient to induce neurological changes and depressive-like behavior. Mol. Psychiatry 2020, 25, 1080–1093. [Google Scholar] [CrossRef]
- Borbély, A.A.; Daan, S.; Wirz-Justice, A.; Deboer, T. The two-process model of sleep regulation: A reappraisal. J. Sleep Res. 2016, 25, 131–143. [Google Scholar] [CrossRef]
- Gold, A.K.; Sylvia, L.G. The role of sleep in bipolar disorder. Nat. Sci. Sleep 2016, 8, 207–214. [Google Scholar] [CrossRef]
- Roloff, T.; Haussleiter, I.; Meister, K.; Juckel, G. Sleep disturbances in the context of neurohormonal dysregulation in patients with bipolar disorder. Int. J. Bipolar Disord. 2022, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Sirignano, L.; Streit, F.; Frank, J.; Zillich, L.; Witt, S.H.; Rietschel, M.; Foo, J.C. Depression and bipolar disorder subtypes differ in their genetic correlations with biological rhythms. Sci. Rep. 2022, 12, 15740. [Google Scholar] [CrossRef] [PubMed]
- Alachkar, A.; Lee, J.; Asthana, K.; Vakil Monfared, R.; Chen, J.; Alhassen, S.; Samad, M.; Wood, M.; Mayer, E.A.; Baldi, P. The hidden link between circadian entropy and mental health disorders. Transl. Psychiatry 2022, 12, 281. [Google Scholar] [CrossRef]
- Bellivier, F.; Geoffroy, P.-A.; Etain, B.; Scott, J. Sleep- and circadian rhythm-associated pathways as therapeutic targets in bipolar disorder. Expert. Opin. Ther. Targets 2015, 19, 747–763. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Mahaluf, J.P.; Rozas-Serri, E.; Ivanovic-Zuvic, F.; Risco, L.; Vöhringer, P.A. Effectiveness of Sleep Deprivation in Treating Acute Bipolar Depression as Augmentation Strategy: A Systematic Review and Meta-Analysis. Front Psychiatry. 2020, 11, 70. [Google Scholar] [CrossRef] [PubMed]
- Funato, H.; Miyoshi, C.; Fujiyama, T.; Kanda, T.; Sato, M.; Wang, Z.; Ma, J.; Nakane, S.; Tomita, J.; Ikkyu, A.; et al. Forward-genetics analysis of sleep in randomly mutagenized mice. Nature 2016, 539, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Albert, I.; Cicala, G.A.; Siegel, J. The behavioral effects of REM sleep deprivation in rats. Psychophysiology 1970, 6, 550–560. [Google Scholar] [CrossRef]
- Moore, J.D.; Hayes, C.; Hicks, R.A. REM sleep deprivation increases preference for novelty in rats. Physiol. Behav. 1979, 23, 975–976. [Google Scholar] [CrossRef]
- Hicks, R.A.; Moore, J.D. REM sleep deprivation diminishes fear in rats. Physiol. Behav. 1979, 22, 689–692. [Google Scholar] [CrossRef]
- Hicks, R.A.; Moore, J.D.; Hayes, C.; Phillips, N.; Hawkins, J. REM sleep deprivation increases aggressiveness in male rats. Physiol. Behav. 1979, 22, 1097–1100. [Google Scholar] [CrossRef] [PubMed]
- Morden, B.; Mullins, R.; Levine, S.; Cohen, H.; Dement, W. Effect of REM deprivation on the mating behavior of male rats. Psychophysiology 1968, 5, 241–242. [Google Scholar]
- Kim, S.A.; Kim, S.; Park, H.J. REM-sleep deprivation induces mitochondrial biogenesis in the rat hippocampus. In Vivo 2022, 36, 1726–1733. [Google Scholar] [CrossRef] [PubMed]
- Yehuda, S.; Sredni, B.; Carasso, R.L.; Kenigsbuch-Sredni, D. REM sleep deprivation in rats results in inflammation and interleukin-17 elevation. J. Interferon Cytokine Res. 2009, 29, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Bolsius, Y.G.; Meerlo, P.; Kas, M.J.; Abel, T.; Havekes, R. Sleep deprivation reduces the density of individual spine subtypes in a branch-specific fashion in CA1 neurons. J. Sleep. Res. 2022, 31, e13438. [Google Scholar] [CrossRef]
- Konakanchi, S.; Raavi, V.; Ml, H.K.; Shankar Ms, V. Effect of chronic sleep deprivation and sleep recovery on hippocampal CA3 neurons, spatial memory and anxiety-like behavior in rats. Neurobiol. Learn Mem. 2022, 187. [Google Scholar] [CrossRef] [PubMed]
- Tai, F.; Wang, C.; Deng, X.; Li, R.; Guo, Z.; Quan, H.; Li, S. Treadmill exercise ameliorates chronic REM sleep deprivation-induced anxiety-like behavior and cognitive impairment in C57BL/6J mice. Brain Res Bull. 2020, 164, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Nollet, M.; Wisden, W.; Franks, N.P. Sleep deprivation and stress: A reciprocal relationship. Interface Focus. 2020, 10, 20190092. [Google Scholar] [CrossRef]
- Diler, R.S.; Goldstein, T.R.; Hafeman, D.; Rooks, B.T.; Sakolsky, D.; Goldstein, B.I.; Monk, K.; Hickey, M.B.; Axelson, D.; Iyengar, S.; et al. Characteristics of depression among offspring at high and low familial risk of bipolar disorder. Bipolar Disord. 2017, 19, 344–352. [Google Scholar] [CrossRef]
- Ritter, P.S.; Marx, C.; Lewtschenko, N.; Pfeiffer, S.; Leopold, K.; Bauer, M.; Pfennig, A. The characteristics of sleep in patients with manifest bipolar disorder, subjects at high risk of developing the disease and healthy controls. J. Neural Transm. 2012, 119, 1173–1184. [Google Scholar] [CrossRef]
- Scott, J.; Naismith, S.; Grierson, A.; Carpenter, J.; Hermens, D.; Scott, E.; Hickie, I. Sleep-wake cycle phenotypes in young people with familial and non-familial mood disorders. Bipolar Disord. 2016, 18, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Sebela, A.; Novak, T.; Kemlink, D.; Goetz, M. Sleep characteristics in child and adolescent offspring of parents with bipolar disorder: A case control study. BMC Psychiatry 2017, 17, 199. [Google Scholar] [CrossRef] [PubMed]
- Ankers, D.; Jones, S.H. Objective assessment of circadian activity and sleep patterns in individuals at behavioural risk of hypomania. J. Clin. Psychol. 2009, 65, 1071–1086. [Google Scholar] [CrossRef] [PubMed]
- Bullock, B.; Judd, F.; Murray, G. Social rhythms and vulnerability to bipolar disorder. J. Affect. Disord. 2011, 135, 384–388. [Google Scholar] [CrossRef]
- Lyall, L.M.; Wyse, C.A.; Graham, N.; Ferguson, A.; Lyall, D.M.; Cullen, B.; Celis Morales, C.A.; Biello, S.M.; Mackay, D.; Ward, J.; et al. Association of disrupted circadian rhythmicity with mood disorders, subjective wellbeing, and cognitive function: A cross-sectional study of 91 105 participants from the UK Biobank. Lancet Psychiatry 2018, 5, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Murray, G.; Gottlieb, J.; Hidalgo, M.P.; Etain, B.; Ritter, P.; Skene, D.J.; Garbazza, C.; Bullock, B.; Merikangas, K.; Zipunnikov, V.; et al. Measuring circadian function in bipolar disorders: Empirical and conceptual review of physiological, actigraphic, and self-report approaches. Bipolar Disord. 2020, 22, 693–710. [Google Scholar] [CrossRef]
- Dashti, H.S.; Jones, S.E.; Wood, A.R.; Lane, J.M.; van Hees, V.T.; Wang, H.; Rhodes, J.A.; Song, Y.; Patel, K.; Anderson, S.G.; et al. Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nat. Commun. 2019, 10, 1100. [Google Scholar] [CrossRef] [PubMed]
- Merikanto, I.; Pesonen, A.K.; Kuula, L.; Lahti, J.; Heinonen, K.; Kajantie, E.; Räikkönen, K. Eveningness as a risk for behavioral problems in late adolescence. Chronobiol. Int. 2017, 34, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Park, C.I.; An, S.K.; Kim, H.W.; Koh, M.J.; Namkoong, K.; Kang, J.I.; Kim, S.J. Relationships between chronotypes and affective temperaments in healthy young adults. J. Affect. Disord. 2015, 175, 256–259. [Google Scholar] [CrossRef]
- King, D.P.; Vitaterna, M.H.; Chang, A.M.; Dove, W.F.; Pinto, L.H.; Turek, F.W.; Takahashi, J.S. The mouse Clock mutation behaves as an antimorph and maps within the W19H deletion, distal of Kit. Genetics 1997, 146, 1049–1060. [Google Scholar] [CrossRef]
- Vitaterna, M.H.; King, D.P.; Chang, A.-M.; Kornhauser, J.M.; Lowrey, P.L.; McDonald, J.D.; Dove, W.F.; Pinto, L.H.; Turek, F.W.; Takahashi, J.S. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 1994, 264, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Easton, A.; Arbuzova, J.; Turek, F.W. The circadian Clock mutation increases exploratory activity and escape-seeking behavior. Genes. Brain Behav. 2003, 2, 11–19. [Google Scholar] [CrossRef] [PubMed]
- McClung, C.A.; Sidiropoulou, K.; Vitaterna, M.; Takahashi, J.S.; White, F.J.; Cooper, D.C.; Nestler, E.J. Regulation of dopaminergic transmission and cocaine reward by the Clock gene. Proc. Natl. Acad. Sci. USA 2005, 102, 9377–9381. [Google Scholar] [CrossRef] [PubMed]
- Ozburn, A.R.; Larson, E.B.; Self, D.W.; McClung, C.A. Cocaine self-administration behaviors in ClockΔ19 mice. Psychopharmacology 2012, 223, 169–177. [Google Scholar] [CrossRef]
- Ozburn, A.R.; Falcon, E.; Mukherjee, S.; Gillman, A.; Arey, R.; Spencer, S.; McClung, C.A. The role of clock in ethanol-related behaviors. Neuropsychopharmacology 2013, 38, 2393–2400. [Google Scholar] [CrossRef]
- van Enkhuizen, J.; Minassian, A.; Young, J.W. Further evidence for ClockΔ19 mice as a model for bipolar disorder mania using cross-species tests of exploration and sensorimotor gating. Behav. Brain Res. 2013, 249, 44–54. [Google Scholar] [CrossRef]
- Sidor, M.M.; Spencer, S.M.; Dzirasa, K.; Parekh, P.K.; Tye, K.M.; Warden, M.R.; Arey, R.N.; Enwright, J.F.; Jacobsen, J.P.R.; Kumar, S.; et al. Daytime spikes in dopaminergic activity drive rapid mood-cycling in mice. Mol. Psychiatry 2015, 20, 1406–1419. [Google Scholar] [CrossRef]
- Kristensen, M.; Nierenberg, A.A.; Østergaard, S.D. Face and predictive validity of the ClockΔ19 mouse as an animal model for bipolar disorder: A systematic review. Mol. Psychiatry 2018, 23, 70–80. [Google Scholar] [CrossRef]
- Mukherjee, S.; Coque, L.; Cao, J.-L.; Kumar, J.; Chakravarty, S.; Asaithamby, A.; Graham, A.; Gordon, E.; Enwright, J.F.; DiLeone, R.J.; et al. Knockdown of Clock in the ventral tegmental area through RNA interference results in a mixed state of mania and depression-like behavior. Biol. Psychiatry 2010, 68, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.H.; Takahashi, J.S. Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 2006, 15, R271–R277. [Google Scholar] [CrossRef]
- Bunger, M.K.; Wilsbacher, L.D.; Moran, S.M.; Clendenin, C.; Radcliffe, L.A.; Hogenesch, J.B.; Simon, M.C.; Takahashi, J.S.; Bradfield, C.A. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 2000, 103, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Gerstner, J.R. The Aging Clock: To ‘BMAL’icious toward learning and memory. Aging 2010, 2, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Castro-Zavala, A.; Alegre-Zurano, L.; Cantacorps, L.; Gallego-Landin, I.; Welz, P.-S.; Benitah, S.A.; Valverde, O. Bmal1-knockout mice exhibit reduced cocaine-seeking behaviour and cognitive impairments. Biomed. Pharmacother. 2022, 153, 113333. [Google Scholar] [CrossRef] [PubMed]
- Cermakian, N.; Monaco, L.; Pando, M.P.; Dierich, A.; Sassone-Corsi, P. Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the Period1 gene. EMBO J. 2001, 20, 3967–3974. [Google Scholar] [CrossRef]
- Olejniczak, I.; Ripperger, J.A.; Sandrelli, F.; Schnell, A.; Mansencal-Strittmatter, L.; Wendrich, K.; Hui, K.Y.; Brenna, A.; Fredj, N.B.; Albrecht, U. Light affects behavioral despair involving the clock gene Period 1. PLOS Genet. 2021, 17, e1009625. [Google Scholar] [CrossRef]
- Russell, A.L.; Miller, L.; Yi, H.; Keil, R.; Handa, R.J.; Wu, T.J. Knockout of the circadian gene, Per2, disrupts corticosterone secretion and results in depressive-like behaviors and deficits in startle responses. BMC Neurosci. 2021, 22, 5. [Google Scholar] [CrossRef]
- Schnell, A.; Sandrelli, F.; Ranc, V.; Ripperger, J.A.; Brai, E.; Alberi, L.; Rainer, G.; Albrecht, U. Mice lacking circadian clock components display different mood-related behaviors and do not respond uniformly to chronic lithium treatment. Chronobiol. Int. 2015, 32, 1075–1089. [Google Scholar] [CrossRef]
- De Bundel, D.; Gangarossa, G.; Biever, A.; Bonnefont, X.; Valjent, E. Cognitive dysfunction, elevated anxiety, and reduced cocaine response in circadian clock-deficient cryptochrome knockout mice. Front. Behav. Neurosci. 2013, 7, 152. [Google Scholar] [CrossRef]
- Watson, S.; Gallagher, P.; Ritchie, J.C.; Ferrier, I.N.; Young, A.H. Hypothalamic-pituitary-adrenal axis function in patients with bipolar disorder. Br. J. Psychiatry 2004, 184, 496–502. [Google Scholar] [CrossRef]
- Bauer, M.; Glenn, T.; Alda, M.; Aleksandrovich, M.A.; Andreassen, O.A.; Angelopoulos, E.; Ardau, R.; Ayhan, Y.; Baethge, C.; Bharathram, S.R.; et al. Solar insolation in springtime influences age of onset of bipolar I disorder. Acta Psychiatr. Scand. 2017, 136, 571–582. [Google Scholar] [CrossRef]
- Bauer, M.; Glenn, T.; Alda, M.; Andreassen, O.A.; Angelopoulos, E.; Ardau, R.; Ayhan, Y.; Baethge, C.; Bauer, R.; Baune, B.T.; et al. Association between solar insolation and a history of suicide attempts in bipolar I disorder. J. Psychiatr. Res. 2019, 113, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yeom, J.W.; Cho, C.H.; Jeon, S.; Seo, J.Y.; Son, S.; Ahn, Y.M.; Kim, S.J.; Ha, T.H.; Cha, B.; Moon, E.; et al. Bipolar II disorder has the highest prevalence of seasonal affective disorder in early-onset mood disorders: Results from a prospective observational cohort study. Depress. Anxiety 2021, 38, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Geoffroy, P.A.; Lajnef, M.; Bellivier, F.; Jamain, S.; Gard, S.; Kahn, J.P.; Henry, C.; Leboyer, M.; Etain, B. Genetic association study of circadian genes with seasonal pattern in bipolar disorders. Sci. Rep. 2015, 5, 10232. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.W.D.; Han, S.; Nielsen, J.V.; Jancic, D.; Hing, B.; Fiedorowicz, J.; Weissman, M.M.; Levinson, D.F.; Potash, J.B. Genome-wide association study of seasonal affective disorder. Transl. Psychiatry 2018, 8, 190. [Google Scholar] [CrossRef] [PubMed]
- Esaki, Y.; Kitajima, T.; Obayashi, K.; Saeki, K.; Fujita, K.; Iwata, N. Daytime light exposure in daily life and depressive symptoms in bipolar disorder: A cross-sectional analysis in the APPLE cohort. J. Psychiatr. Res. 2019, 116, 151–156. [Google Scholar] [CrossRef]
- Meyrer, R.; Demling, J.; Kornhuber, J.; Nowak, M. Effects of night shifts in bipolar disorders and extreme morningness. Bipolar Disord. 2009, 11, 897–899. [Google Scholar] [CrossRef]
- Grandin, L.D.; Alloy, L.B.; Abramson, L.Y. The social zeitgeber theory, circadian rhythms, and mood disorders: Review and evaluation. Clin. Psychol. Rev. 2006, 26, 679–694. [Google Scholar] [CrossRef]
- Koch, C.E.; Leinweber, B.; Drengberg, B.C.; Blaum, C.; Oster, H. Interaction between circadian rhythms and stress. Neurobiol. Stress. 2017, 6, 57–67. [Google Scholar] [CrossRef]
- Minaeva, O.; Booij, S.H.; Lamers, F.; Antypa, N.; Schoevers, R.A.; Wichers, M.; Riese, H. Level and timing of physical activity during normal daily life in depressed and non-depressed individuals. Transl. Psychiatry 2020, 10, 259. [Google Scholar] [CrossRef]
- DeCrescenzo, F.; Economou, A.; Sharpley, A.L.; Gormez, A.; Quested, D.J. Actigraphic features of bipolar disorder: A systematic review and meta-analysis. Sleep Med. Rev. 2017, 33, 58–69. [Google Scholar] [CrossRef]
- Scott, J.; Marwaha, S.; Ratheesh, A.; Macmillan, I.; Yung, A.R.; Morriss, R.; Hickie, I.B.; Bechdolf, A. Bipolar at-risk criteria: An examination of which clinical features have optimal utility for identifying youth at risk of early transition from depression to bipolar disorders. Schizophr. Bull. 2017, 43, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lane, J.M.; Jones, S.E.; Dashti, H.S.; Ollila, H.M.; Wood, A.R.; van Hees, V.T.; Brumpton, B.; Winsvold, B.S.; Kantojärvi, K.; et al. Genome-wide association analysis of self-reported daytime sleepiness identifies 42 loci that suggest biological subtypes. Nat. Commun. 2019, 10, 3503. [Google Scholar] [CrossRef]
- Dennison, C.A.; Legge, S.E.; Bracher-Smith, M.; Menzies, G.; Escott-Price, V.; Smith, D.J.; Doherty, A.R.; Owen, M.J.; O’Donovan, M.C.; Walters, J.T.R. Association of genetic liability for psychiatric disorders with accelerometer-assessed physical activity in the UK Biobank. PLoS ONE 2021, 16, e0249189. [Google Scholar] [CrossRef] [PubMed]
- Mesman, E.; Nolen, W.A.; Keijsers, L.; Hillegers, M.H.J. Baseline dimensional psychopathology and future mood disorder onset: Findings from the Dutch Bipolar Offspring Study. Acta Psychiatr. Scand. 2017, 136, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Alloy, L.B.; Boland, E.M.; Ng, T.H.; Whitehouse, W.G.; Abramson, L.Y. Low social rhythm regularity predicts first onset of bipolar spectrum disorders among at-risk individuals with reward hypersensitivity. J. Abnorm. Psychol. 2015, 124, 944–952. [Google Scholar] [CrossRef]
- Pfennig, A.; Ritter, P.S.; Höfler, M.; Lieb, R.; Bauer, M.; Wittchen, H.U.; Beesdo-Baum, K. Symptom characteristics of depressive episodes prior to the onset of mania or hypomania. Acta Psychiatr. Scand. 2016, 133, 196–204. [Google Scholar] [CrossRef]
- Takaesu, Y.; Inoue, Y.; Ono, K.; Murakoshi, A.; Futenma, K.; Komada, Y.; Inoue, T. Circadian rhythm sleep-wake disorders predict shorter time to relapse of mood episodes in euthymic patients with bipolar disorder: A prospective 48-week study. J. Clin. Psychiatry 2017, 79, 2651. [Google Scholar] [CrossRef]
- Ng, T.H.; Chung, K.-F.; Lee, C.-T.; Yeung, W.-F.; Ho, F.Y.Y. Eveningness and its associated impairments in remitted bipolar disorder. Behav. Sleep Med. 2016, 14, 650–664. [Google Scholar] [CrossRef]
- Yatham, L.N.; Kennedy, S.H.; Parikh, S.V.; Schaffer, A.; Bond, D.J.; Frey, B.N.; Sharma, V.; Goldstein, B.I.; Rej, S.; Beaulieu, S.; et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) 2018 guidelines for the management of patients with bipolar disorder. Bipolar Disord. 2018, 20, 97–170. [Google Scholar] [CrossRef]
- Amare, A.; Thalamuthu, A.; Schubert, K.O.; Fullerton, J.; Ahmed, M.; Hartmann, S.; Papiol, S.; Heilbronner, U.; Degenhardt, F.; Tekola-Ayele, F.; et al. Association of Polygenic Score and the involvement of Cholinergic and Glutamatergic Pathways with Lithium Treatment Response in Patients with Bipolar Disorder. Res. Sq. [Preprint] 2023. rs.3.rs-2580252. [Google Scholar] [CrossRef]
- McCarthy, M.J.; Wei, H.; Nievergelt, C.M.; Stautland, A.; Maihofer, A.X.; Welsh, D.K.; Shilling, P.; Alda, M.; Alliey-Rodriguez, N.; Anand, A.; et al. Chronotype and cellular circadian rhythms predict the clinical response to lithium maintenance treatment in patients with bipolar disorder. Neuropsychopharmacology 2019, 44, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.C.; Kelsoe, J.R.; Schachat, C.; Bunney, B.G.; DeModena, A.; Golshan, S.; Gillin, J.C.; Potkin, S.G.; Bunney, W.E. Rapid and sustained antidepressant response with sleep deprivation and chronotherapy in bipolar disorder. Biol. Psychiatry 2009, 66, 298–301. [Google Scholar] [CrossRef] [PubMed]
- Orozco-Solis, R.; Montellier, E.; Aguilar-Arnal, L.; Sato, S.; Vawter, M.P.; Bunney, B.G.; Bunney, W.E.; Sassone-Corsi, P. A circadian genomic signature common to ketamine and sleep deprivation in the anterior cingulate cortex. Biol. Psychiatry 2017, 82, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Gessa, G.L.; Pani, L.; Fadda, P.; Fratta, W. Sleep deprivation in the rat: An animal model of mania. Eur. Neuropsychopharmacol. 1995, 5, 89–93. [Google Scholar] [CrossRef]
- Roybal, K.; Theobold, D.; Graham, A.; DiNieri, J.A.; Russo, S.J.; Krishnan, V.; Chakravarty, S.; Peevey, J.; Oehrlein, N.; Birnbaum, S.; et al. Mania-like behavior induced by disruption of CLOCK. Proc. Nat. Acad. Sci. USA 2007, 104, 6406–6411. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freund, N.; Haussleiter, I. Bipolar Chronobiology in Men and Mice: A Narrative Review. Brain Sci. 2023, 13, 738. https://doi.org/10.3390/brainsci13050738
Freund N, Haussleiter I. Bipolar Chronobiology in Men and Mice: A Narrative Review. Brain Sciences. 2023; 13(5):738. https://doi.org/10.3390/brainsci13050738
Chicago/Turabian StyleFreund, Nadja, and Ida Haussleiter. 2023. "Bipolar Chronobiology in Men and Mice: A Narrative Review" Brain Sciences 13, no. 5: 738. https://doi.org/10.3390/brainsci13050738
APA StyleFreund, N., & Haussleiter, I. (2023). Bipolar Chronobiology in Men and Mice: A Narrative Review. Brain Sciences, 13(5), 738. https://doi.org/10.3390/brainsci13050738