A Convenient All-Cell Optical Imaging Method Compatible with Serial SEM for Brain Mapping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Optical Model Simulation
2.2. Fabrication of Metal-Coated Tapes
2.3. Sample Preparation
2.4. Imaging
2.5. Data Analysis
3. Results
3.1. Simulation Results
3.2. Imaging Results
3.3. Validation of a Seamless Correlative Light–Electron Hierarchical Imaging Workflow
3.4. Large-Volume OMLIT 3D Reconstruction and Biological Analysis
3.5. Thicker Section Imaging Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbott, L.F.; Bock, D.D.; Callaway, E.M.; Denk, W.; Dulac, C.; Fairhall, A.L.; Fiete, I.; Harris, K.M.; Helmstaedter, M.; Jain, V.; et al. The Mind of a Mouse. Cell 2020, 182, 1372–1376. [Google Scholar] [CrossRef] [PubMed]
- Cajal, R.S. Textura del Sistema Nervioso del Hombre y de Los Vertebrados; Nicolás Moya: Madrid, Spain, 1904. [Google Scholar]
- Kasthuri, N.; Hayworth, K.J.; Berger, D.R.; Schalek, R.L.; Conchello, J.A.; Knowles-Barley, S.; Lee, D.; Vázquez-Reina, A.; Kaynig, V.; Jones, T.R.; et al. Saturated Reconstruction of a Volume of Neocortex. Cell 2015, 162, 648–661. [Google Scholar] [CrossRef] [PubMed]
- Swanson, L.W.; Lichtman, J.W. From Cajal to Connectome and Beyond. Annu. Rev. Neurosci. 2016, 39, 197–216. [Google Scholar] [CrossRef]
- Di Luzio, P.; Tarasi, L.; Silvanto, J.; Avenanti, A.; Romei, V. Human Perceptual and Metacognitive Decision-Making Rely on Distinct Brain Networks. PLoS Biol. 2022, 20, e3001750. [Google Scholar] [CrossRef] [PubMed]
- Emilio, C.; Alejandra, S.; Hibbard, P.B.; Alessio, A.; Vincenzo, R. Increasing interhemispheric connectivity between human visual motion areas uncovers asymmetric sensitivity to horizontal motion. Curr. Biol. 2022, 32, 4064–4070.e3. [Google Scholar] [CrossRef]
- Helmstaedter, M.; Briggman, K.L.; Denk, W. High-Accuracy Neurite Reconstruction for High-Throughput Neuroanatomy. Nat. Neurosci. 2011, 14, 1081–1088. [Google Scholar] [CrossRef]
- The EyeWirers; Kim, J.S.; Greene, M.J.; Zlateski, A.; Lee, K.; Richardson, M.; Turaga, S.C.; Purcaro, M.; Balkam, M.; Robinson, A.; et al. Space–Time Wiring Specificity Supports Direction Selectivity in the Retina. Nature 2014, 509, 331–336. [Google Scholar] [CrossRef]
- Takemura, S.; Bharioke, A.; Lu, Z.; Nern, A.; Vitaladevuni, S.; Rivlin, P.K.; Katz, W.T.; Olbris, D.J.; Plaza, S.M.; Winston, P.; et al. A Visual Motion Detection Circuit Suggested by Drosophila Connectomics. Nature 2013, 500, 175–181. [Google Scholar] [CrossRef]
- Titze, B.; Genoud, C. Volume Scanning Electron Microscopy for Imaging Biological Ultrastructure: Volume Scanning Electron Microscopy. Biol. Cell 2016, 108, 307–323. [Google Scholar] [CrossRef]
- Mikula, S.; Binding, J.; Denk, W. Staining and Embedding the Whole Mouse Brain for Electron Microscopy. Nat. Methods 2012, 9, 1198–1201. [Google Scholar] [CrossRef]
- Denk, W.; Horstmann, H. Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure. PLoS Biol. 2004, 2, e329. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.S.; Hayworth, K.J.; Lu, Z.; Grob, P.; Hassan, A.M.; García-Cerdán, J.G.; Niyogi, K.K.; Nogales, E.; Weinberg, R.J.; Hess, H.F. Enhanced FIB-SEM Systems for Large-Volume 3D Imaging. eLife 2017, 6, e25916. [Google Scholar] [CrossRef] [PubMed]
- Hayworth, K.J.; Xu, C.S.; Lu, Z.; Knott, G.W.; Fetter, R.D.; Tapia, J.C.; Lichtman, J.W.; Hess, H.F. Ultrastructurally Smooth Thick Partitioning and Volume Stitching for Large-Scale Connectomics. Nat. Methods 2015, 12, 319–322. [Google Scholar] [CrossRef]
- Echlin, M.P.; Polonsky, A.T.; Lamb, J.; Geurts, R.; Randolph, S.J.; Botman, A.; Pollock, T.M. Recent Developments in Femtosecond Laser-Enabled TriBeam Systems. JOM 2021, 73, 4258–4269. [Google Scholar] [CrossRef]
- Randolph, S.; Geurts, R.; Wang, J.; Winiarski, B.; Rue, C. Femtosecond Laser-Enabled TriBeam as a Platform for Analysis of Thermally- and Charge-Sensitive Materials. Microsc. Microanal. 2019, 25 (Suppl. 2), 352–353. [Google Scholar] [CrossRef]
- Echlin, M.P.; Straw, M.; Randolph, S.; Filevich, J.; Pollock, T.M. The TriBeam System: Femtosecond Laser Ablation in Situ SEM. Mater. Charact. 2015, 100, 1–12. [Google Scholar] [CrossRef]
- Echlin, M.P.; Mottura, A.; Torbet, C.J.; Pollock, T.M. A New TriBeam System for Three-Dimensional Multimodal Materials Analysis. Rev. Sci. Instrum. 2012, 83, 023701. [Google Scholar] [CrossRef]
- Hayworth, K.J.; Morgan, J.L.; Schalek, R.; Berger, D.R.; Hildebrand, D.G.C.; Lichtman, J.W. Imaging ATUM Ultrathin Section Libraries with WaferMapper: A Multi-Scale Approach to EM Reconstruction of Neural Circuits. Front. Neural. Circuits 2014, 8, 68. [Google Scholar] [CrossRef]
- Tapia, J.C.; Kasthuri, N.; Hayworth, K.J.; Schalek, R.; Lichtman, J.W.; Smith, S.J.; Buchanan, J. High-Contrast En Bloc Staining of Neuronal Tissue for Field Emission Scanning Electron Microscopy. Nat. Protoc. 2012, 7, 193–206. [Google Scholar] [CrossRef]
- Schalek, R.; Kasthuri, N.; Hayworth, K.; Berger, D.; Tapia, J.; Morgan, J.; Turaga, S.; Fagerholm, E.; Seung, H.; Lichtman, J. Development of High-Throughput, High-Resolution 3D Reconstruction of Large-Volume Biological Tissue Using Automated Tape Collection Ultramicrotomy and Scanning Electron Microscopy. Microsc. Microanal. 2011, 17 (Suppl. 2), 966–967. [Google Scholar] [CrossRef]
- Xu, C.S.; Pang, S.; Shtengel, G.; Müller, A.; Ritter, A.T.; Hoffman, H.K.; Takemura, S.; Lu, Z.; Pasolli, H.A.; Iyer, N.; et al. An Open-Access Volume Electron Microscopy Atlas of Whole Cells and Tissues. Nature 2021, 599, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Asano, S.M.; Upadhyayula, S.; Pisarev, I.; Milkie, D.E.; Liu, T.-L.; Singh, V.; Graves, A.; Huynh, G.H.; Zhao, Y.; et al. Cortical Column and Whole-Brain Imaging with Molecular Contrast and Nanoscale Resolution. Science 2019, 363, eaau8302. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.; Gour, A.; Straehle, J.; Boergens, K.M.; Brecht, M.; Helmstaedter, M. Axonal Synapse Sorting in Medial Entorhinal Cortex. Nature 2017, 549, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.L.; Berger, D.R.; Wetzel, A.W.; Lichtman, J.W. The Fuzzy Logic of Network Connectivity in Mouse Visual Thalamus. Cell 2016, 165, 192–206. [Google Scholar] [CrossRef] [PubMed]
- Helmstaedter, M.; Briggman, K.L.; Turaga, S.C.; Jain, V.; Seung, H.S.; Denk, W. Connectomic Reconstruction of the Inner Plexiform Layer in the Mouse Retina. Nature 2013, 500, 168–174. [Google Scholar] [CrossRef]
- Shapson-Coe, A.; Januszewski, M.; Berger, D.R.; Pope, A.; Wu, Y.; Blakely, T.; Schalek, R.L.; Li, P.H.; Wang, S.; Maitin-Shepard, J.; et al. A Connectomic Study of a Petascale Fragment of Human Cerebral Cortex. Neuroscience, 2021; preprint. [Google Scholar] [CrossRef]
- Eberle, A.L.; Mikula, S.; Schalek, R.; Lichtman, J.; Tate, M.L.K.; Zeidler, D. High-Resolution, High-Throughput Imaging with a Multibeam Scanning Electron Microscope: High-throughput imaging with a multibeam sem. J. Microsc. 2015, 259, 114–120. [Google Scholar] [CrossRef]
- Lichtman, J.W.; Pfister, H.; Shavit, N. The Big Data Challenges of Connectomics. Nat. Neurosci. 2014, 17, 1448–1454. [Google Scholar] [CrossRef]
- Lichtman, J.W.; Denk, W. The Big and the Small: Challenges of Imaging the Brain’s Circuits. Science 2011, 334, 618–623. [Google Scholar] [CrossRef]
- Gong, H.; Zeng, S.; Yan, C.; Lv, X.; Yang, Z.; Xu, T.; Feng, Z.; Ding, W.; Qi, X.; Li, A.; et al. Continuously Tracing Brain-Wide Long-Distance Axonal Projections in Mice at a One-Micron Voxel Resolution. NeuroImage 2013, 74, 87–98. [Google Scholar] [CrossRef]
- Zheng, T.; Yang, Z.; Li, A.; Lv, X.; Zhou, Z.; Wang, X.; Qi, X.; Li, S.; Luo, Q.; Gong, H.; et al. Visualization of Brain Circuits Using Two-Photon Fluorescence Micro-Optical Sectioning Tomography. Opt. Express 2013, 21, 9839. [Google Scholar] [CrossRef]
- Lin, R.; Wang, R.; Yuan, J.; Feng, Q.; Zhou, Y.; Zeng, S.; Ren, M.; Jiang, S.; Ni, H.; Zhou, C.; et al. Cell-Type-Specific and Projection-Specific Brain-Wide Reconstruction of Single Neurons. Nat. Methods 2018, 15, 1033–1036. [Google Scholar] [CrossRef] [PubMed]
- Economo, M.N.; Clack, N.G.; Lavis, L.D.; Gerfen, C.R.; Svoboda, K.; Myers, E.W.; Chandrashekar, J. A Platform for Brain-Wide Imaging and Reconstruction of Individual Neurons. eLife 2016, 5, e10566. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhu, Q.; Ding, L.; Shen, Y.; Yang, C.-Y.; Xu, F.; Shu, C.; Guo, Y.; Xiong, Z.; Shan, Q.; et al. Scalable Volumetric Imaging for Ultrahigh-Speed Brain Mapping at Synaptic Resolution. Natl. Sci. Rev. 2019, 6, 982–992. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Wang, L.; Yang, J.-M.; Maslov, K.I.; Wong, T.T.W.; Li, L.; Huang, C.-H.; Zou, J.; Wang, L.V. High-Speed Label-Free Functional Photoacoustic Microscopy of Mouse Brain in Action. Nat. Methods 2015, 12, 407–410. [Google Scholar] [CrossRef]
- Li, X.; Kang, L.; Zhang, Y.; Wong, T.T.W. High-speed label-free ultraviolet photoacoustic microscopy for histology-like imaging of unprocessed biological tissues. Opt. Lett. 2020, 45, 5401–5404. [Google Scholar] [CrossRef]
- Kut, C.; Chaichana, K.L.; Xi, J.; Raza, S.M.; Ye, X.; McVeigh, E.R.; Rodriguez, F.J.; Quiñones-Hinojosa, A.; Li, X. Detection of Human Brain Cancer Infiltration Ex Vivo and in Vivo Using Quantitative Optical Coherence Tomography. Sci. Transl. Med. 2015, 7, 292ra100. [Google Scholar] [CrossRef]
- Hu, C.; Popescu, G. Quantitative Phase Imaging (QPI) in Neuroscience. IEEE J. Select. Topics Quantum Electron. 2019, 25, 1–9. [Google Scholar] [CrossRef]
- Begemann, I.; Galic, M. Correlative Light Electron Microscopy: Connecting Synaptic Structure and Function. Front. Synaptic Neurosci. 2016, 8, 28. [Google Scholar] [CrossRef]
- Ando, T.; Bhamidimarri, S.P.; Brending, N.; Colin-York, H.; Collinson, L.; De Jonge, N.; de Pablo, P.J.; Debroye, E.; Eggeling, C.; Franck, C.; et al. The 2018 Correlative Microscopy Techniques Roadmap. J. Phys. D Appl. Phys. 2018, 51, 443001. [Google Scholar] [CrossRef]
- Polishchuk, R.S.; Polishchuk, E.V.; Marra, P.; Alberti, S.; Buccione, R.; Luini, A.; Mironov, A.A. Correlative Light-Electron Microscopy Reveals the Tubular-Saccular Ultrastructure of Carriers Operating between Golgi Apparatus and Plasma Membrane. J. Cell Biol. 2000, 148, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Kukulski, W.; Schorb, M.; Welsch, S.; Picco, A.; Kaksonen, M.; Briggs, J.A.G. Correlated Fluorescence and 3D Electron Microscopy with High Sensitivity and Spatial Precision. J. Cell Biol. 2011, 192, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.; Seiradake, E.; Jones, E.Y.; Davis, I.; Grünewald, K.; Kaufmann, R. Correlative In-Resin Super-Resolution and Electron Microscopy Using Standard Fluorescent Proteins. Sci. Rep. 2015, 5, 9583. [Google Scholar] [CrossRef] [PubMed]
- Dyer, E.L.; Gray Roncal, W.; Prasad, J.A.; Fernandes, H.L.; Gürsoy, D.; De Andrade, V.; Fezzaa, K.; Xiao, X.; Vogelstein, J.T.; Jacobsen, C.; et al. Quantifying Mesoscale Neuroanatomy Using X-ray Microtomography. eNeuro 2017, 4, ENEURO.0195-17.2017. [Google Scholar] [CrossRef]
- Fan, H.; Luo, D.; Zhu, J.; Schalek, R.L.; Chen, Z.; Zhao, L.; Zhou, R.; Sun, M.; Shi, G.; Xie, Y.; et al. Optical Multilayer Interference Tomography Compatible with Tape-Based Serial SEM for Mesoscale Neuroanatomy. ACS Photonics 2022, 9, 25–33. [Google Scholar] [CrossRef]
- Pascoe, K.J. Reflectivity and Transmissivity through Layered, Lossy Media: A User-Friendly Approach; Air Force Institute of Technology: Wright-Patterson AFB, OH, USA, 2001. [Google Scholar]
- Chen, Q.S.; Liu, C.H.; Zhang, R.Q.; Yang, H.Y.; Wei, T.G.; Wang, Y.; Li, Z.; He, L.X.; Wang, J.; Wang, L.; et al. Microstructure and High-Temperature Steam Oxidation Properties of Thick Cr Coatings Prepared by Magnetron Sputtering for Accident Tolerant Fuel Claddings: The Role of Bias in the Deposition Process. Corros. Sci. 2020, 165, 108378. [Google Scholar] [CrossRef]
- Hua, Y.; Laserstein, P.; Helmstaedter, M. Large-Volume En-Bloc Staining for Electron Microscopy-Based Connectomics. Nat. Commun. 2015, 6, 7923. [Google Scholar] [CrossRef]
- Saalfeld, S.; Cardona, A.; Hartenstein, V.; Tomančák, P. As-Rigid-as-Possible Mosaicking and Serial Section Registration of Large SsTEM Datasets. Bioinformatics 2010, 26, i57–i63. [Google Scholar] [CrossRef]
- Saalfeld, S.; Fetter, R.; Cardona, A.; Tomancak, P. Elastic Volume Reconstruction from Series of Ultra-Thin Microscopy Sections. Nat. Methods 2012, 9, 717–720. [Google Scholar] [CrossRef]
- Haehn, D.; Hoffer, J.; Matejek, B.; Suissa-Peleg, A.; Al-Awami, A.; Kamentsky, L.; Gonda, F.; Meng, E.; Zhang, W.; Schalek, R.; et al. Scalable Interactive Visualization for Connectomics. Informatics 2017, 4, 29. [Google Scholar] [CrossRef]
- Berger, D.R.; Seung, H.S.; Lichtman, J.W. VAST (Volume Annotation and Segmentation Tool): Efficient Manual and Semi-Automatic Labeling of Large 3D Image Stacks. Front. Neural. Circuits 2018, 12, 88. [Google Scholar] [CrossRef] [PubMed]
- OMLIT-Code Repository. Available online: https://github.com/wangtianyi1120/OMLIT-code (accessed on 1 April 2023).
- Yilin, S. Electron Microscopic Atlas of Brain Tumor and Nervous Tissue, 1st ed.; People’s Medical Publishing House: Beijing, China, 2018; pp. 79–83. [Google Scholar]
- Berlin, R. Beitrag zur Structurlehre der Grosshirnwindungen; AE Junge’sche Universitätsbuchdr: Gießen, Germany, 1858. [Google Scholar]
- Larsen, N.Y.; Vihrs, N.; Møller, J.; Sporring, J.; Tan, X.; Li, X.; Ji, G.; Rajkowska, G.; Sun, F.; Nyengaard, J.R. Layer III Pyramidal Cells in the Prefrontal Cortex Reveal Morphological Changes in Subjects with Depression, Schizophrenia, and Suicide. Transl. Psychiatry 2022, 12, 363. [Google Scholar] [CrossRef] [PubMed]
- Ascoli, G.A.; Donohue, D.E.; Halavi, M. NeuroMorpho.Org: A Central Resource for Neuronal Morphologies. J. Neurosci. 2007, 27, 9247–9251. [Google Scholar] [CrossRef] [PubMed]
- Braitenberg, V.; Schüz, A. Cortex: Statistics and Geometry of Neuronal Connectivity; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar] [CrossRef]
- Dorkenwald, S.; Li, P.H.; Januszewski, M.; Berger, D.R.; Maitin-Shepard, J.; Bodor, A.L.; Collman, F.; Schneider-Mizell, C.M.; da Costa, N.M.; Lichtman, J.W.; et al. Multi-Layered Maps of Neuropil with Segmentation-Guided Contrastive Learning. Neuroscience 2022, preprint. [Google Scholar] [CrossRef]
- Hof, P.R.; Trapp, B.D.; de Vellis, J.; Claudio, L.; Colman, D.R. Cellular Components of Nervous Tissue. In From Molecules to Networks, 1st ed.; John, H.B., James, L.R., Eds.; Elsevier: San Diego, CA, USA, 2004; pp. 1–29. [Google Scholar]
- Magistretti, P.J. Brain Energy Metabolism. In From Molecules to Networks, 1st ed.; John, H.B., James, L.R., Eds.; Elsevier: San Diego, CA, USA, 2004; pp. 67–89. [Google Scholar]
- Erö, C.; Gewaltig, M.-O.; Keller, D.; Markram, H. A Cell Atlas for the Mouse Brain. Front. Neuroinform. 2018, 12, 84. [Google Scholar] [CrossRef]
- Zhu, J.; Zhou, R.; Zhang, L.; Ge, B.; Luo, C.; Goddard, L.L. Regularized Pseudo-Phase Imaging for Inspecting and Sensing Nanoscale Features. Opt. Express 2019, 27, 6719. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, Y.; Yu, X.; Zhou, R.; Jin, J.-M.; Goddard, L.L. Sensing Sub-10 Nm Wide Perturbations in Background Nanopatterns Using Optical Pseudoelectrodynamics Microscopy (OPEM). Nano Lett. 2019, 19, 5347–5355. [Google Scholar] [CrossRef]
- Zhu, J.; Udupa, A.; Goddard, L.L. Visualizable Detection of Nanoscale Objects Using Anti-Symmetric Excitation and Non-Resonance Amplification. Nat. Commun 2020, 11, 2754. [Google Scholar] [CrossRef]
- Lam, S.S.; Martell, J.D.; Kamer, K.J.; Deerinck, T.J.; Ellisman, M.H.; Mootha, V.K.; Ting, A.Y. Directed Evolution of APEX2 for Electron Microscopy and Proximity Labeling. Nat. Methods 2015, 12, 51–54. [Google Scholar] [CrossRef]
- Fang, T.; Lu, X.; Berger, D.; Gmeiner, C.; Cho, J.; Schalek, R.; Ploegh, H.; Lichtman, J. Nanobody Immunostaining for Correlated Light and Electron Microscopy with Preservation of Ultrastructure. Nat. Methods 2018, 15, 1029–1032. [Google Scholar] [CrossRef]
- Zhang, Q.; Lee, W.-C.A.; Paul, D.L.; Ginty, D.D. Multiplexed Peroxidase-Based Electron Microscopy Labeling Enables Simultaneous Visualization of Multiple Cell Types. Nat. Neurosci. 2019, 22, 828–839. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Peng, D.; Zhang, M.; Xue, F.; Zhang, R.; He, W.; Xu, T.; Xu, P. MEosEM Withstands Osmium Staining and Epon Embedding for Super-Resolution CLEM. Nat. Methods 2020, 17, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Jin, X.; Li, Y.; Liu, S.; Liu, X.-M.; Wang, Y.-Y.; Zhao, P.; Cai, X.; Liu, Y.; Tang, Y.; et al. Genetically Encoded Tags for Direct Synthesis of EM-Visible Gold Nanoparticles in Cells. Nat. Methods 2020, 17, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Ippolito, G.; Bertaccini, R.; Tarasi, L.; Di Gregorio, F.; Trajkovic, J.; Battaglia, S.; Romei, V. The Role of Alpha Oscillations among the Main Neuropsychiatric Disorders in the Adult and Developing Human Brain: Evidence from the Last 10 Years of Research. Biomedicines 2022, 10, 3189. [Google Scholar] [CrossRef] [PubMed]
- Di Gregorio, F.; La Porta, F.; Petrone, V.; Battaglia, S.; Orlandi, S.; Ippolito, G.; Romei, V.; Piperno, R.; Lullini, G. Accuracy of EEG Biomarkers in the Detection of Clinical Outcome in Disorders of Consciousness after Severe Acquired Brain Injury: Preliminary Results of a Pilot Study Using a Machine Learning Approach. Biomedicines 2022, 10, 1897. [Google Scholar] [CrossRef]
Coating Material | Best Contrast | Wavelength | Tissue Thickness | Coating Thickness |
---|---|---|---|---|
Chromium | 2.4883 | 390 | 40 | 20 |
1.8434 | 470 | 150 | 50 | |
1.802 | 555 | 190 | 50 | |
2.1049 | 630 | 70 | 40 | |
Copper | 2.5216 | 390 | 30 | 30 |
2.5058 | 470 | 30 | 110 | |
5.3257 | 555 | 40 | 180 | |
11.5284 | 630 | 60 | 400 (80) * | |
Silver | 13.3185 | 390 | 20 | 200 |
12.3006 | 470 | 40 | 400 (70) * | |
12.5592 | 555 | 50 | 400 (50) * | |
12.0547 | 630 | 60 | 400 (70) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Shi, P.; Luo, D.; Guo, J.; Liu, H.; Yuan, J.; Jin, H.; Wu, X.; Zhang, Y.; Xiong, Z.; et al. A Convenient All-Cell Optical Imaging Method Compatible with Serial SEM for Brain Mapping. Brain Sci. 2023, 13, 711. https://doi.org/10.3390/brainsci13050711
Wang T, Shi P, Luo D, Guo J, Liu H, Yuan J, Jin H, Wu X, Zhang Y, Xiong Z, et al. A Convenient All-Cell Optical Imaging Method Compatible with Serial SEM for Brain Mapping. Brain Sciences. 2023; 13(5):711. https://doi.org/10.3390/brainsci13050711
Chicago/Turabian StyleWang, Tianyi, Peiyao Shi, Dingsan Luo, Jun Guo, Hui Liu, Jinyun Yuan, Haiqun Jin, Xiaolong Wu, Yueyi Zhang, Zhiwei Xiong, and et al. 2023. "A Convenient All-Cell Optical Imaging Method Compatible with Serial SEM for Brain Mapping" Brain Sciences 13, no. 5: 711. https://doi.org/10.3390/brainsci13050711
APA StyleWang, T., Shi, P., Luo, D., Guo, J., Liu, H., Yuan, J., Jin, H., Wu, X., Zhang, Y., Xiong, Z., Zhu, J., Zhou, R., & Zhang, R. (2023). A Convenient All-Cell Optical Imaging Method Compatible with Serial SEM for Brain Mapping. Brain Sciences, 13(5), 711. https://doi.org/10.3390/brainsci13050711