DNA Methylation of Genes Involved in the HPA Axis in Presence of Suicide Behavior: A Systematic Review
Abstract
:1. Introduction
Aims to Clarify
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion Criteria and Data Extraction
2.3. Exclusion Criteria
2.4. Quality Assessment of Primary Studies
2.5. Data synthesis
3. Results
3.1. Characteristics of Eligible Studies
3.2. Characteristics of the Studies
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Suicide Worldwide in 2019: Global Health Estimates 2019. 16 June 2021. Available online: https://www.who.int/publications/i/item/9789240026643 (accessed on 3 February 2023).
- WHO. Suicide. 17 June 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/suicide (accessed on 20 May 2022).
- Hernández-Díaz, Y.; Genis-Mendoza, A.D.; González-Castro, T.B.; Tovilla-Zárate, C.A.; Juárez-Rojop, I.E.; López-Narváez, M.L.; Nicolini, H. Association and Genetic Expression between Genes Involved in HPA Axis and Suicide Behavior: A Systematic Review. Genes 2021, 12, 1608. [Google Scholar] [CrossRef] [PubMed]
- Lippard, E.T.C.; Johnston, J.A.; Blumberg, H.P. Neurobiological Risk Factors for Suicide. Am. J. Prev. Med. 2014, 47, S152–S162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connor, D.B.; Gartland, N.; O’Connor, R.C. Stress, cortisol and suicide risk. Int. Rev. Neurobiol. 2020, 152, 101–130. [Google Scholar] [CrossRef]
- O’Connor, D.B.; Green, J.A.; Ferguson, E.; O’Carroll, R.E.; O’Connor, R.C. Cortisol reactivity and suicidal behavior: Investigating the role of hypothalamic-pituitary-adrenal axis responses to stress in suicide attempters and ideators. Psychoneuroendocrinology 2017, 75, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Shalev, A.; Porta, G.; Biernesser, C.; Zelazny, J.; Walker-Payne, M.; Melhem, N.; Brent, D. Cortisol response to stress as a predictor for suicidal ideation in youth. J. Affect. Disord. 2019, 257, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Melhem, N.M.; Munroe, S.; Marsland, A.; Gray, K.; Brent, D.; Porta, G.; Douaihy, A.; Laudenslager, M.L.; De Pietro, F.; Diler, R.; et al. Blunted HPA axis activity prior to suicide attempt and increased inflammation in attempters. Psychoneuroendocrinology 2017, 77, 284–294. [Google Scholar] [CrossRef] [Green Version]
- Pfennig, A.; Kunzel, H.E.; Kern, N.; Ising, M.; Majer, M.; Fuchs, B.; Ernst, G.; Holsboer, F.; Binder, E.B. Hypothalamus-pituitary-adrenal system regulation and suicidal behavior in depression. Biol. Psychiatry 2005, 57, 336–342. [Google Scholar] [CrossRef]
- Brunner, J.; Stalla, G.K.; Stalla, J.; Uhr, M.; Grabner, A.; Wetter, T.C.; Bronisch, T. Decreased corticotropin-releasing hormone (CRH) concentrations in the cerebrospinal fluid of eucortisolemic suicide attempters. J. Psychiatr. Res. 2001, 35, 1–9. [Google Scholar] [CrossRef]
- McGirr, A. Dysregulation of the sympathetic nervous system, hypothalamic–pituitary–adrenal axis and executive function in individuals at risk for suicide. J. Psychiatry Neurosci. 2010, 35, 399–408. [Google Scholar] [CrossRef] [Green Version]
- McGirr, A.; Diaconu, G.; Berlim, M.T.; Turecki, G. Personal and family history of suicidal behaviour is associated with lower peripheral cortisol in depressed outpatients. J. Affect. Disord. 2011, 131, 368–373. [Google Scholar] [CrossRef]
- Melhem, N.M.; Keilp, J.G.; Porta, G.; Oquendo, M.A.; Burke, A.; Stanley, B.; Cooper, T.B.; Mann, J.J.; Brent, D.A. Blunted HPA Axis Activity in Suicide Attempters Compared to those at High Risk for Suicidal Behavior. Neuropsychopharmacology 2016, 41, 1447–1456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaiserman, A.M.; Koliada, A.K. Early-life adversity and long-term neurobehavioral outcomes: Epigenome as a bridge? Hum. Genom. 2017, 11, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gayon, J. From Mendel to epigenetics: History of genetics. Comptes Rendus Biol. 2016, 339, 225–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, L.D.; Le, T.; Fan, G. DNA Methylation and Its Basic Function. Neuropsychopharmacology 2013, 38, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Bonfiglio, J.J.; Inda, C.; Refojo, D.; Holsboer, F.; Arzt, E.; Silberstein, S. The Corticotropin-Releasing Hormone Network and the Hypothalamic-Pituitary-Adrenal Axis: Molecular and Cellular Mechanisms Involved. Neuroendocrinology 2011, 94, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.; Shi, J.; Gong, Y.; Wei, J.; Zhang, M.; Ding, H.; Wang, K.; Yu, Y.; Wang, S.; Han, J. Interaction between FKBP5 polymorphisms and childhood trauma on depressive symptoms in Chinese adolescents: The moderating role of resilience. J. Affect. Disord. 2020, 266, 143–150. [Google Scholar] [CrossRef]
- Yehuda, R.; Daskalakis, N.P.; Bierer, L.M.; Bader, H.N.; Klengel, T.; Holsboer, F.; Binder, E.B. Holocaust Exposure Induced Intergenerational Effects on FKBP5 Methylation. Biol. Psychiatry 2016, 80, 372–380. [Google Scholar] [CrossRef] [Green Version]
- Roy, B.; Shelton, R.C.; Dwivedi, Y. DNA methylation and expression of stress related genes in PBMC of MDD patients with and without serious suicidal ideation. J. Psychiatr. Res. 2017, 89, 115–124. [Google Scholar] [CrossRef]
- Labonte, B.; Yerko, V.; Gross, J.; Mechawar, N.; Meaney, M.J.; Szyf, M.; Turecki, G. Differential Glucocorticoid Receptor Exon 1B, 1C, and 1H Expression and Methylation in Suicide Completers with a History of Childhood Abuse. Biol. Psychiatry 2012, 72, 41–48. [Google Scholar] [CrossRef]
- McGowan, P.O.; Sasaki, A.; D’Alessio, A.C.; Dymov, S.; Labonté, B.; Szyf, M.; Turecki, G.; Meaney, M.J. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat. Neurosci. 2009, 12, 342–348. [Google Scholar] [CrossRef] [Green Version]
- Sadeh, N.; Wolf, E.J.; Logue, M.W.; Hayes, J.P.; Stone, A.; Griffin, L.M.; Schichman, A.S.; Miller, M.W. Epigenetic variation at ska2 predicts suicide phenotypes and internalizing psychopathology. Depress. Anxiety 2016, 33, 308–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jokinen, J.; Boström, A.E.; Dadfar, A.; Ciuculete, D.M.; Chatzittofis, A.; Åsberg, M.; Schiöth, H.B. Epigenetic Changes in the CRH Gene are Related to Severity of Suicide Attempt and a General Psychiatric Risk Score in Adolescents. Ebiomedicine 2018, 27, 123–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaminsky, Z.; Wilcox, H.C.; Eaton, W.W.; Van Eck, K.; Kilaru, V.; Jovanovic, T.; Klengel, T.; Bradley, B.; Binder, E.B.; Ressler, K.J.; et al. Epigenetic and genetic variation at SKA2 predict suicidal behavior and post-traumatic stress disorder. Transl. Psychiatry 2015, 5, e627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Currier, D.; Mann, J.J. Stress, Genes and the Biology of Suicidal Behavior. Psychiatr. Clin. North Am. 2008, 31, 247–269. [Google Scholar] [CrossRef] [Green Version]
- Goto, R.; Okubo, Y.; Skokauskas, N. Reasons and trends in youth’s suicide rates during the COVID-19 pandemic. Lancet Reg. Heal. West. Pac. 2022, 27, 100567. [Google Scholar] [CrossRef]
- Thau, L.; Gandhi, J.; Sharma, S. Physiology, Cortisol; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2022. [Google Scholar]
- Jiang, S.; Postovit, L.; Cattaneo, A.; Binder, E.B.; Aitchison, K.J. Epigenetic Modifications in Stress Response Genes Associated With Childhood Trauma. Front. Psychiatry 2019, 10, 808. [Google Scholar] [CrossRef] [Green Version]
- Penner-Goeke, S.; Binder, E.B. Epigenetics and depression. Dialog. Clin. Neurosci. 2019, 21, 397–405. [Google Scholar] [CrossRef]
- Herman, J.P.; McKlveen, J.M.; Ghosal, S.; Kopp, B.; Wulsin, A.; Makinson, R.; Scheimann, J.; Myers, B. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr. Physiol. 2016, 6, 603–621. [Google Scholar] [CrossRef] [Green Version]
- Austin, M.C.; Janosky, J.E.; Murphy, H.A. Increased corticotropin-releasing hormone immunoreactivity in monoamine-containing pontine nuclei of depressed suicide men. Mol. Psychiatry 2003, 8, 324–332. [Google Scholar] [CrossRef] [Green Version]
- Binder, E.B. The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology 2009, 34, S186–S195. [Google Scholar] [CrossRef]
- O’Leary, J.C., III; Dharia, S.; Blair, L.J.; Brady, S.; Johnson, A.G.; Peters, M.; Cheung-Flynn, J.; Cox, M.B.; De Erausquin, G.; Weeber, E.J.; et al. A New Anti-Depressive Strategy for the Elderly: Ablation of FKBP5/FKBP. PLoS ONE 2011, 6, e24840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charmandari, E.; Kino, T.; Chrousos, G.P. Glucocorticoid Receptor. In Encyclopedia of Endocrine Diseases; Martini, L., Ed.; Elsevier: New York, NY, USA, 2004; pp. 229–234. [Google Scholar]
- Kalin, N.H. Corticotropin-Releasing Hormone Binding Protein: Stress, Psychopathology, and Antidepressant Treatment Response. Am. J. Psychiatry 2018, 175, 204–206. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Bu, Y. SKA2/FAM33A: A novel gene implicated in cell cycle, tumorigenesis, and psychiatric disorders. Genes Dis. 2019, 6, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Rice, L.; Waters, E.C.; Eccles, J.; Garside, H.; Sommer, P.; Kay, P.; Blackhall, F.H.; Zeef, L.; Telfer, B.; Stratford, I.; et al. Identification and functional analysis of SKA2 interaction with the glucocorticoid receptor. J. Endocrinol. 2008, 198, 499–509. [Google Scholar] [CrossRef]
- Pandey, G.N.; Rizavi, H.S.; Zhang, H.; Bhaumik, R.; Ren, X. The Expression of the Suicide-Associated Gene SKA2 Is Decreased in the Prefrontal Cortex of Suicide Victims but Not of Nonsuicidal Patients. Int. J. Neuropsychopharmacol. 2016, 19, pyw015. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Díaz, Y.; González-Castro, T.B.; Tovilla-Zárate, C.A.; Juárez-Rojop, I.E.; López-Narváez, M.L.; Pérez-Hernández, N.; Rodríguez-Pérez, J.M.; Genis-Mendoza, A.D. Association between polymorphisms of FKBP5 gene and suicide attempt in a Mexican population: A case-control study. Brain Res. Bull. 2021, 166, 37–43. [Google Scholar] [CrossRef]
- Steinberg, L.J.; Mann, J.J. Abnormal stress responsiveness and suicidal behavior: A risk phenotype. Biomarkers Neuropsychiatry 2020, 2, 100011. [Google Scholar] [CrossRef]
- Gupta, G.; Deval, R.; Rai, N.; Nizamuddin, S.; Upadhyay, S.; Pasupuleti, N.; Ng, H.K.T.; Singh, P.K.; Rao, V.R. Genome-wide association study for suicide in high–risk isolated historical population from north east India. J. Affect. Disord. Rep. 2022, 8, 100327. [Google Scholar] [CrossRef]
- Monson, E.T.; Pirooznia, M.; Parla, J.; Kramer, M.; Goes, F.S.; Gaine, M.E.; Gaynor, S.C.; de Klerk, K.; Jancic, D.; Karchin, R.; et al. Assessment of Whole-Exome Sequence Data in Attempted Suicide within a Bipolar Disorder Cohort. Complex Psychiatry 2017, 3, 1–11. [Google Scholar] [CrossRef]
- Cheung, S.; Woo, J.; Maes, M.S.; Zai, C.C. Suicide epigenetics, a review of recent progress. J. Affect. Disord. 2020, 265, 423–438. [Google Scholar] [CrossRef]
- Mirkovic, B.; Laurent, C.; Podlipski, M.-A.; Frebourg, T.; Cohen, D.; Gerardin, P. Genetic Association Studies of Suicidal Behavior: A Review of the Past 10 Years, Progress, Limitations, and Future Directions. Front. Psychiatry 2016, 7, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dwivedi, Y. Frontiers in Neuroscience Genetic Factors and Suicidal Behavior. In The Neurobiological Basis of Suicide; Taylor & Francis Group, LLC.: Boca Raton, FL, USA, 2012. [Google Scholar]
- Chistiakov, D.A.; Chekhonin, V.P. Early-life adversity-induced long-term epigenetic programming associated with early onset of chronic physical aggression: Studies in humans and animals. World J. Biol. Psychiatry 2019, 20, 258–277. [Google Scholar] [CrossRef] [PubMed]
Brain Samples | ||||||||
---|---|---|---|---|---|---|---|---|
Author and Year | Origin | Genes | Diagnostics | Cases | Controls | NOS | ||
Cases/ Controls | Median Age | Male/ Female | Median Age | Male/ Female | ||||
Labonte B. 2012 [21] | French- Canadian Caucasian | GR | ELS/ non-psychiatric | 39.05 ± 2.4 | 42/0 | 39.8 ± 3.9 | 14/ 0 | 9 |
McGowan PO, 2009 [22] | French-Canadian | N3CR1 | Childhood trauma/ non-psychiatric | 34.2 ± 10/33.8 ± 11 | 24/0 | 35.8 ± 12 | 12/ 0 | 9 |
Blood samples | ||||||||
Sadeh N. 2016 [23] | White, non-Hispanic | SKA2 | PTSD | 52.4 ± 10.7 | 302/104 | 9 | ||
Roy B, 2017 [20] | Caucasian/African American | BNDF NR3C1 FKBP5 CRHBP CRHR1 | MDD with suicidal ideation/ Healthy controls MDD without suicidal ideation | 42.90 ± 2.99 | 6/8 | - | 6/ 14 | 9 |
Kaminsky Z, 2015 [25] | African American | SKA2 | PTSD with current suicidal ideation PTSD with lifetime suicide attempts/ Healthy controls | 52.4 | - - | - | - - | 7 |
Jokinen J. 2018 [24] | CRH CRHBP CRHR1 FKBP5 NR3C1 | Suicide attempts/ Healthy controls | 35.16 ± 12.3 | 16/15 | 33.6 ± 12.2 | 12/ 45 | 8 |
Author and Year | Country | Population Data (N) | Main Outcomes |
---|---|---|---|
Cases/Controls | |||
Labonte B, 2012 [21] | Canada | 42/14 | Hypermethylation of the GR gene in the hippocampus CPG6 (SA: p < 0.05; SNA: p < 0.005), CPG8 (SA: p < 0.05, SNA: p < 0.05), CPG11 (SA: p < 0.005; SNA: p < 0.005). |
McGowan PO, 2009 [22] | Canada | 24/12 | RNAm transcripts bearing the glucocorticoid receptor 1 slice variant and increased cytosine Methylation NR3C1 promotes. |
Roy B, 2017 [20] | United States of America | 14/20 | Hypermethylation in MDD patients with and without suicidal ideation gene promoters BNDF, NR3C1, FKBP5, CRHBP. CPG30 (p < 0.001), CPG32 (p < 0.001) deaths by suicide with no history of childhood trauma and controls. |
Kaminsky Z, 2015 [25] | United States of America | 67 CSI /99 LSAC/ 337/ 321 | SKA2 methylation levels also predicted higher rates of current suicidal thoughts and behaviors. |
Jokinen J, 2018 [24] | Sweden | 31/ 57 | Hypomethylation Two CpG CRH cg19035496 and cg23409074, in suicide attempters and hypermethylated cg19035496 high general psychiatric risk score. |
Sadeh N, 2016 [23] | United States of America | 466 | Methylation at the CpG locus cg13989295 was associated with higher rates of suicidal thoughts and behaviors. |
Gene | Childhood Trauma | Post-Traumatic Stress Disorder | Major Depressive Disorder | General Psychiatric Risk | References | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Hypo | Hyper | N | Hypo | Hyper | N | Hypo | Hyper | N | Hypo | Hyper | ||
GR | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Labonte B, 2012 [21] |
NR3C1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | McGowan PO, 2009 [22] Roy B, 2017 [20] Jokinen J. 2018 [24] |
BNDF | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | Roy B, 2017 [20] |
FKBP5 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | Roy B, 2017 [20] Jokinen J. 2018 [24] |
CRHBP | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | Roy B, 2017 [20] Jokinen J. 2018 [24] |
SKA2 | 0 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | Kaminsky Z. 2015 [25] Sadeh N. 2016 [23] |
CRHR1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | Roy B. 2017 [20] Jokinen J. 2018 [24] |
CRHR2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | Jokinen J. 2018 [24] |
CRH | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | Jokinen J. 2018 [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dionisio-García, D.M.; Genis-Mendoza, A.D.; González-Castro, T.B.; Tovilla-Zárate, C.A.; Juarez-Rojop, I.E.; López-Narváez, M.L.; Hernández-Díaz, Y.; Nicolini, H.; Olvera-Hernández, V. DNA Methylation of Genes Involved in the HPA Axis in Presence of Suicide Behavior: A Systematic Review. Brain Sci. 2023, 13, 584. https://doi.org/10.3390/brainsci13040584
Dionisio-García DM, Genis-Mendoza AD, González-Castro TB, Tovilla-Zárate CA, Juarez-Rojop IE, López-Narváez ML, Hernández-Díaz Y, Nicolini H, Olvera-Hernández V. DNA Methylation of Genes Involved in the HPA Axis in Presence of Suicide Behavior: A Systematic Review. Brain Sciences. 2023; 13(4):584. https://doi.org/10.3390/brainsci13040584
Chicago/Turabian StyleDionisio-García, Diana María, Alma Delia Genis-Mendoza, Thelma Beatriz González-Castro, Carlos Alfonso Tovilla-Zárate, Isela Esther Juarez-Rojop, María Lilia López-Narváez, Yazmín Hernández-Díaz, Humberto Nicolini, and Viridiana Olvera-Hernández. 2023. "DNA Methylation of Genes Involved in the HPA Axis in Presence of Suicide Behavior: A Systematic Review" Brain Sciences 13, no. 4: 584. https://doi.org/10.3390/brainsci13040584
APA StyleDionisio-García, D. M., Genis-Mendoza, A. D., González-Castro, T. B., Tovilla-Zárate, C. A., Juarez-Rojop, I. E., López-Narváez, M. L., Hernández-Díaz, Y., Nicolini, H., & Olvera-Hernández, V. (2023). DNA Methylation of Genes Involved in the HPA Axis in Presence of Suicide Behavior: A Systematic Review. Brain Sciences, 13(4), 584. https://doi.org/10.3390/brainsci13040584