New Insight into Selective Serotonin Receptor Agonists in the Central Nervous System, Studied with WAY163909 in Obese and Diabetic Wistar Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Developing an Experimental Model Investigating the Role of Central Brain Serotonin in Obese and Diabetic Wistar Rats Using the Selective Serotonin Receptor Agonist, WAY163909
2.3. Biochemical Methods
2.3.1. Determination of Glucose Levels in the Blood of Rats
2.3.2. Determination of Insulin Resistance by Calculating the HOMA-Index
2.4. ELISA (Enzyme Immunosorbent Assay) Method
2.5. Statistical Method
3. Results
3.1. Effect on Body Weight in Obese and Diabetic Wistar Rats Using a Selective Serotonin Receptor Agonist, WAY163909
3.2. Effect on Glucose Levels in Obese and Diabetic Wistar Rats Using a Selective Serotonin Receptor Agonist, WAY163909
3.3. Effect on the Levels of Immunoreactive Insulin and Insulin Resistance, Calculated by the HOMA-Index, in Obese and Diabetic Wistar Rats Using a Selective Serotonin Receptor Agonist, WAY163909
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hannah Ritchie and Max Roser (2017)—“Obesity”. Available online: https://ourworldindata.org/obesity (accessed on 22 March 2023).
- Ishida, Y.; Yoshida, D.; Honda, T.; Hirakawa, Y.; Shibata, M.; Sakata, S.; Furuta, Y.; Oishi, E.; Hata, J.; Kitazono, T.; et al. Influence of the Accumulation of Unhealthy Eating Habits on Obesity in a General Population: The Hisayama Study. Nutrients 2020, 12, 3160. [Google Scholar] [CrossRef] [PubMed]
- la Fleur, S.E.; Luijendijk, M.C.; van Rozen, A.J.; Kalsbeek, A.; Adan, R.A. A free-choice high-fat high-sugar diet induces glucose intolerance and insulin unresponsive-ness to a glucose load not explained by obesity. Int. J. Obes. 2011, 35, 595–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The InterAct Consortium. Consumption of sweet beverages and type 2 diabetes incidence in European adults: Results from EPIC-InterAct. Diabetologia 2013, 56, 1520–1530. [Google Scholar] [CrossRef]
- Assy, N.; Nasser, G.; Kamayse, I.; Nseir, W.; Beniashvili, Z.; Djibre, A.; Grosovski, M. Soft drink consumption linked with fatty liver in the absence of traditional risk factors. Can. J. Gastroenterol. 2008, 22, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Popkin, B.M.; Bray, G.A.; Despres, J.P.; Willett, W.C.; Hu, F.B. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: A meta-analysis. Diabetes Care 2010, 33, 2477–2483. [Google Scholar] [CrossRef] [Green Version]
- Schulze, M.B.; Manson, J.E.; Ludwig, D.S.; Colditz, G.A.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. JAMA 2004, 292, 927–934. [Google Scholar] [CrossRef]
- Hu, F.B.; Malik, V.S. Sugar-sweetened beverages and risk of obesity and type 2 diabetes: Epidemiologic evidence. Physiol. Behav. 2010, 100, 47–54. [Google Scholar] [CrossRef] [Green Version]
- la Fleur, S.E.; van Rozen, A.J.; Luijendijk, M.C.; Groeneweg, F.; Adan, R.A. A free-choice high-fat high-sugar diet induces changes in arcuate neuropeptide expression that support hyperphagia. Int. J. Obes. 2010, 34, 537–546. [Google Scholar]
- Chapelot, D. The role of snacking in energy balance: A biobehavioral approach. J. Nutr. 2011, 141, 158–162. [Google Scholar] [CrossRef] [Green Version]
- Almoraie, N.M.; Saqaan, R.; Alharthi, R.; Alamoudi, A.; Badh, L.; Shatwan, I.M. Snacking patterns throughout the life span: Potential implications on health. Nutr. Res. 2021, 91, 81–94. [Google Scholar] [CrossRef]
- la Fleur, S.E.; Luijendijk, M.C.; van der Zwaal, E.M.; Brans, M.A.; Adan, R.A. The snacking rat as model of human obesity: Effects of a free-choice high-fat high-sugar diet on meal patterns. Int. J. Obes. 2014, 38, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Diepenbroek, C.; Eggels, L.; Ackermans, M.; Fliers, E.; Serlie, M.; Kalsbeek, A.; La Fleur, S.E. Obesogenic diets with fat and sugar reduce site specific sensitivity to insulin. Appetite 2011, 57, 13. [Google Scholar] [CrossRef]
- Haddad-Tóvolli, R.; Dragano, N.R.V.; Ramalho, A.F.S.; Velloso, L.A. Development and Function of the Blood-Brain Barrier in the Context of Metabolic Control. Front. Neurosci. 2017, 21, 224. [Google Scholar] [CrossRef] [Green Version]
- Dougherty, P. Hypothalamus: Structural Organization and Central Control of Feeding. In Neuroscience Online, an Electronic Textbook for the Neurosciences; Byrne, J.H., Ed.; Section 4: Homeostasis and Higher Brain Function, Chapter 1 and 4; Department of Neurobiology and Anatomy, University of Texas Medical School at Houston: Houston, TX, USA, 2014. [Google Scholar]
- Sutton, A.K.; Gonzalez, I.E.; Sadagurski, M.; Rajala, M.; Lu, C.; Allison, M.B.; Adams, J.M.; Myers, M.G.; White, M.F.; Olson, D.P. Paraventricular, subparaventricular and periventricular hypothalamic IRS4-expressing neurons are required for normal energy balance. Sci. Rep. 2020, 10, 5546. [Google Scholar] [CrossRef] [Green Version]
- Yabut, J.; Crane, J.; Green, A.; Keating, D.; Khan, W.; Steinberg, G. Emerging Roles for Serotonin in Regulating Metabolism: New Implications for an Ancient Molecule. Endocr. Rev. 2019, 40, 1092–1107. [Google Scholar] [CrossRef]
- Coleman, J.A.; Green, E.M.; Gouaux, E. X-ray structures and mechanism of the human serotonin transporter. Nature 2016, 532, 334–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breisch, S.T.; Zemlan, F.P.; Hoebel, B.G. Hyperphagia and obesity following serotonin depletion by intraventricular p-chlorophenylalanine. Science 1976, 192, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Saller, C.F.; Stricker, E.M. Hyperphagia and increased growth in rats after intraventricular injection of 5,7-dihydroxytryptamine. Science 1976, 192, 385–387. [Google Scholar] [CrossRef]
- Waldbillig, R.J.; Bartness, T.J.; Stanley, B.G. Increased food intake, body weight, and adiposity in rats after regional neurochemical depletion of serotonin. J. Comp. Physiol. Psychol. 1981, 95, 391–405. [Google Scholar] [CrossRef]
- Fetissov, S.O.; Meguid, M.M. Serotonin delivery into the ventromedial nucleus of the hypothalamus affects differently feeding pattern and body weight in obese and lean Zucker rats. Appetite 2010, 54, 346–353. [Google Scholar] [CrossRef]
- Chen, X.; Margolis, K.J.; Gershon, M.D.; Schwartz, G.J.; Sze, J.Y. Reduced serotonin reuptake transporter (SERT) function causes insulin resistance and hepatic steatosis independent of food intake. PLoS ONE 2012, 7, e32511. [Google Scholar] [CrossRef] [Green Version]
- Zha, W.; Ho, H.T.B.; Hu, T.; Hebert, M.F.; Hebert, M.F. Serotonin transporter deficiency drives estrogen-dependent obesity and glucose intolerance. Sci. Rep. 2017, 7, 1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Versteeg, R.I.; Koopman, K.E.; Booij, J.; Ackermans, M.T.; Unmehopa, U.A.; Fliers, E.; la Fleur, S.E.; Serlie, M.J. Serotonin Transporter Binding in the Diencephalon Is Reduced in Insulin-Resistant Obese Humans. Neuroendocrinology 2017, 105, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Higgins, G.A.; Fletcher, P.J.; Shanahan, W.R. Lorcaserin: A review of its preclinical and clinical pharmacology and therapeutic potential. Pharmacol. Ther. 2020, 205, 107417. [Google Scholar] [CrossRef]
- Aggarwal, A.; Jethani, S.L.; Rohatgi, R.K.; Kalra, J. Selective Serotonin Re-uptake Inhibitors (SSRIs) Induced Weight Changes: A Dose and Duration Dependent Study on Albino Rats. J. Clin. Diagn. Res. 2016, 10, AF01–AF03. [Google Scholar] [CrossRef] [PubMed]
- Gill, H.; Gill, B.; El-Halabi, S.; Chen-Li, D.; Lipsitz, O.; Rosenblat, J.D.; Van Rheenen, T.E.; Rodrigues, N.B.; Mansur, R.B.; Majeed, A.; et al. Antidepressant Medications and Weight Change: A Narrative Review. Obesity 2020, 28, 2064–2072. [Google Scholar] [CrossRef] [PubMed]
- Arterburn, D.; Sofer, T.; Boudreau, D.M.; Bogart, A.; Westbrook, E.O.; Theis, M.K.; Simon, G.; Haneuse, S. Long-Term Weight Change after Initiating Second-Generation Antidepressants. J. Clin. Med. 2016, 5, 48. [Google Scholar] [CrossRef] [Green Version]
- Gafoor, R.; Booth, H.P.; Gulliford, M.C. Antidepressant utilisation and incidence of weight gain during 10 years’ follow-up: Population based cohort study. BMJ 2018, 361, k1951. [Google Scholar] [CrossRef] [Green Version]
- Sookoian, S.; Gemma, C.; Garcia, S.I.; Gianotti, T.F.; Dieuzeide, G.; Roussos, A.; Tonietti, M.; Trifone, L.; Kanevsky, D.; González, C.D. Short allele of serotonin transporter gene promoter is a risk factor for obesity in adolescents. Obesity 2007, 15, 271–276. [Google Scholar] [CrossRef] [Green Version]
- Castellanos, E.H.; Charboneau, E.; Dietrich, M.S.; Park, S.; Bradley, B.P.; Mogg, K.; Cowan, R.L. Obese adults have visual attention bias for food cue images: Evidence for altered reward system function. Int. J. Obes. 2009, 33, 1063–1073. [Google Scholar] [CrossRef] [Green Version]
- Luo, S.; Ezrokhi, M.; Cominos, N.; Tsai, T.-H.; Stoelzel, C.R.; Trubitsyna, Y. Experimental dopaminergic neuron lesion at the area of the biological clock pacemaker, suprachiasmatic nuclei (SCN) induces metabolic syndrome in rats. Diabetol. Metab. Syndr. 2021, 13, 11. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Xu, S.; Huang, L.; Chen, C. Obesity and insulin resistance: Pathophysiology and treatment. Drug Discov. Today 2022, 27, 822–830. [Google Scholar] [CrossRef] [PubMed]
- Hansson, B.; Medina, A.; Fryklund, C.; Fex, M.; Stenkula, K.G. Serotonin (5-HT) and 5-HT2A receptor agonists suppress lipolysis in primary rat adipose cells. Biochem. Biophys. Res. Commun. 2016, 474, 357–363. [Google Scholar]
- Asadzadeh, A.; Seyedhosseini Ghaheh, H.; Sholehvar, F.; Takhshid, M.; Naghizadeh, M.M. Investigation of the Association between 5-Hydroxytryptamine Transporter Gene-Linked Polymorphic Region with Type 2 Diabetes Mellitus, Obesity and Biochemical Profiles of Serum in Iranian Population. Avicenna J. Med. Biotechnol. 2019, 11, 239–244. [Google Scholar] [PubMed]
- Miidera, H.; Enomoto, M.; Kitamura, S.; Tachimori, H.; Mishima, K. Association Between the Use of Antidepressants and the Risk of Type 2 Diabetes: A Large, Population-Based Cohort Study in Japan. Diabetes Care 2020, 43, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, Y.; Xiang, X.; Zhu, Y.; Men, J.; He, M. Estimation of the normal range of blood glucose in rats. Wei Sheng Yan Jiu 2010, 39, 133–137, 142. (In Chinese) [Google Scholar]
- Novelli, E.L.; Diniz, Y.S.; Galhardi, C.M.; Ebaid, G.M.; Rodrigues, H.G.; Mani, F.; Fernandes, A.A.; Cicogna, A.C.; Novelli Filho, J.L. Anthropometrical parameters and markers of obesity in rats. Lab. Anim. 2007, 41, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Meldrum, D.R.; Morris, M.A.; Gambone, J.C. Obesity pandemic: Causes, consequences, and solutions-but do we have the will? Fertil. Steril. 2017, 107, 833–839. [Google Scholar] [CrossRef] [Green Version]
- Reddy, K.S. Global Burden of Disease Study 2015 provides GPS for global health 2030. Lancet 2016, 388, 1448–1449. [Google Scholar] [CrossRef] [Green Version]
- Georgescu, T.; Lyons, D.; Heisler, L.K. Role of serotonin in body weight, insulin secretion and glycaemic control. J. Neuroendocrinol. 2021, 33, e12960. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.K.; Ogunnowo-Bada, E.; Georgescu, T.; Cristiano, C.; de Morentin, P.B.M.; Torres, L.V.; D’Agostino, G.; Riches, C.; Heeley, N. Lorcaserin improves glycemic control via a melanocortin neurocircuit. Mol. Metab. 2017, 6, 1092–1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuccinardi, D.; Farr, O.M.; Upadhyay, J.; Oussaada, S.M.; Mathew, H.; Paschou, S.A.; Perakakis, N.; Koniaris, A.; Kelesidis, T.; Mantzoros, C.S. Lorcaserin treatment decreases body weight and reduces cardiometabolic risk factors in obese adults: A six-month, randomized, placebo-controlled, double-blind clinical trial. Diabetes Obes. Metab. 2019, 21, 1487–1492. [Google Scholar] [CrossRef] [PubMed]
- Bohula, E.A.; Scirica, B.M.; Fanola, C.; Inzucchi, S.E.; Keech, A.; McGuire, D.K.; Smith, S.R.; Abrahamsen, T.; Francis, B.H.; Miao, W. Design and rationale for the cardiovascular and metabolic effects of lorcaserin in overweight and obese patients-thrombolysis in myocardial infarction 61 (CAMELLIA-TIMI 61) trial. Am. Heart J. 2018, 202, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; He, J.; Cui, Z.; Wang, R.; Bao, K.; Huang, Y.; Wang, R.; Liu, T. Central 5-HTR2C in the Control of Metabolic Homeostasis. Front. Endocrinol. 2021, 12, 694204. [Google Scholar] [CrossRef]
- El-Merahbi, R.; Löffler, M.; Mayer, A.; Sumara, G. The roles of peripheral serotonin in metabolic homeostasis. FEBS Lett. 2015, 589, 1728–1734. [Google Scholar] [CrossRef] [Green Version]
- Nonogaki, K. The Regulatory Role of the Central and Peripheral Serotonin Network on Feeding Signals in Metabolic Diseases. Int. J. Mol. Sci. 2022, 23, 1600. [Google Scholar] [CrossRef]
The Values for 100 g of Food Product | Energy Value, Kcal | Total Amount of Fat, g | Total Amount of Carbohydrates, g | Total Amount of Proteins, g | Sugars, g | Saturated Fatty Acids, g | Salt, g |
---|---|---|---|---|---|---|---|
Chips Lay’s ® Cheese | 516 | 33 | 48 | 6.7 | 2.1 | 2.6 | 1.2 |
7 DAYS Bake Rolls® salt | 449 | 15 | 63 | 14 | 7 | 5.8 | 2.7 |
Crispy soelts with salt Xpyc-Xpyc ® | 389.5 | 5.23 | 77.5 | 8.11 | 1.99 | 1.5 | 2.8 |
Crispy baked bread cubes with bacon flavour., Cubeti® | 456 | 15 | 68 | 9.4 | 3 | 1.4 | 2.2 |
Crispy waffles, Haя® | 528.7 | 28.3 | 63.1 | 5.8 | 41.5 | 12.6 | 0.2 |
Roasted peanuts, Дeтeлинa ® | 561 | 41.5 | 15.5 | 26.8 | 4.1 | 9.1 | 3 |
Cereal, NESTLÉ® CHOCAPIC® | 378 | 4.4 | 73.2 | 9.6 | 28.9 | 1.7 | 0.47 |
Group 1 | Group 2 | Group 3 | Group 4 | |
---|---|---|---|---|
in the beginning | 435 ± 20.4 | 430 ± 17.3 | 340 ± 24.9 | 330 ± 22.3 |
1st week | 439 ± 20.4 | 435 ± 17.7 | 334 ± 23.7 | 332 ± 21.9 |
2nd week | 428 ± 19.1 | 438 ± 16.3 | 326 ± 19.2 | 336 ± 17.6 |
3rd week | 416 ± 14.1 | 436 ± 18.3 | 330 ± 18.2 | 340 ± 17.1 |
4th week | 411 ± 12.6 | 441 ± 15.2 | 331 ± 7.33 | 340 ± 6.05 |
Group 1 | Group 2 | Group 3 | Group 4 | |
---|---|---|---|---|
In the beginning | 11.6 ± 2.24 | 11.8 ± 2.16 | 6.0 ± 0.46 | 5.91 ± 0.36 |
1st week | 11.2 ± 1.98 | 12.1 ± 2.42 | 5.7 ± 0.47 | 5.8 ± 0.42 |
2nd week | 8.9 ± 1.49 | 11.8 ± 1.76 | 5.4 ± 0.56 | 5.7 ± 0.61 |
3rd week | 8 ± 1.08 | 11.7 ± 1.40 | 5.6 ± 0.80 | 5.8 ± 0.77 |
4th week | 7.5 ± 0.92 | 11.9 ± 1.71 | 5.72 ± 0.42 | 5.78 ± 0.63 |
Group 1 | Group 2 | Group 3 | Group 4 | |
---|---|---|---|---|
In the beginning | 18.3 ± 4.1 | 12.3 ± 3.47 | 6.9 ± 0.98 | 6.7 ± 0.86 |
1st week | 15.7 ± 2.92 | 18.0 ± 3.00 | 6.4 ± 0.84 | 6.5 ± 0.89 |
2nd week | 14.1 ± 3.22 | 19.1 ± 2.74 | 6.3 ± 0.95 | 6.6 ± 1.03 |
3rd week | 12.7 ± 2.69 | 18.9 ± 2.41 | 6.4 ± 1.19 | 6.7 ± 0.89 |
4th week | 10.6 ± 1.18 | 18.4 ± 1.75 | 6.9 ± 0.77 | 6.8 ± 1.11 |
Group 1 | Group 2 | Group 3 | Group 4 | |
---|---|---|---|---|
In the beginning | 9.43 ± 1.86 | 9.44 ± 1.69 | 1.84 ± 0.33 | 1.76 ± 0.34 |
1st week | 7.82 ± 1.23 | 9.73 ± 1.52 | 1.62 ± 1.62 | 1.68 ± 0.24 |
2nd week | 5.58 ± 0.54 | 10.02 ± 1.43 | 1.51 ± 0.25 | 1.67 ± 0.24 |
3rd week | 4.58 ± 0.63 | 10.2 ± 1.07 | 1.51 ± 0.28 | 1.67 ± 0.26 |
4th week | 3.53 ± 0.37 | 9.57 ± 1.02 | 1.81 ± 0.17 | 1.72 ± 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogomilov, I.; Boyadjieva, N.; Nikolov, R. New Insight into Selective Serotonin Receptor Agonists in the Central Nervous System, Studied with WAY163909 in Obese and Diabetic Wistar Rats. Brain Sci. 2023, 13, 545. https://doi.org/10.3390/brainsci13040545
Bogomilov I, Boyadjieva N, Nikolov R. New Insight into Selective Serotonin Receptor Agonists in the Central Nervous System, Studied with WAY163909 in Obese and Diabetic Wistar Rats. Brain Sciences. 2023; 13(4):545. https://doi.org/10.3390/brainsci13040545
Chicago/Turabian StyleBogomilov, Ivaylo, Nadka Boyadjieva, and Rumen Nikolov. 2023. "New Insight into Selective Serotonin Receptor Agonists in the Central Nervous System, Studied with WAY163909 in Obese and Diabetic Wistar Rats" Brain Sciences 13, no. 4: 545. https://doi.org/10.3390/brainsci13040545