The Peripheral Immune Traits Changed in Patients with Multiple System Atrophy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Patient Recruitment, and Ethics Approval
2.2. Blood Sample Collection and Flow Cytometry
2.3. Serum Cytokine Detection
2.4. Search Strategy for Literature Review
2.5. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.2. Changes of Peripheral Immune Traits in Multiple System Atrophy Patients
4. Discussion
4.1. Increased Natural Killer Cells and Alpha-Synuclein Pathology
4.2. Activated Helper T Cells and Multiple System Atrophy
4.3. A Summary of Altered Immune Traits in Multiple System Atrophy
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gilman, S.; Wenning, G.K.; Low, P.A.; Brooks, D.J.; Mathias, C.J.; Trojanowski, J.Q.; Wood, N.W.; Colosimo, C.; Durr, A.; Fowler, C.J.; et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology 2008, 71, 670–676. [Google Scholar] [CrossRef]
- Stefanova, N.; Bucke, P.; Duerr, S.; Wenning, G.K. Multiple system atrophy: An update. Lancet Neurol. 2009, 8, 1172–1178. [Google Scholar] [CrossRef] [PubMed]
- Jellinger, K.A. Multiple System Atrophy: An Oligodendroglioneural Synucleinopathy1. J. Alzheimers Dis. 2018, 62, 1141–1179. [Google Scholar] [CrossRef] [Green Version]
- Jellinger, K.A. Heterogeneity of Multiple System Atrophy: An Update. Biomedicines 2022, 10, 599. [Google Scholar] [CrossRef]
- Compta, Y.; Dias, S.P.; Giraldo, D.M.; Perez-Soriano, A.; Munoz, E.; Saura, J.; Fernandez, M.; Bravo, P.; Camara, A.; Pulido-Salgado, M.; et al. Cerebrospinal fluid cytokines in multiple system atrophy: A cross-sectional Catalan MSA registry study. Park. Relat. Disord. 2019, 65, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Rydbirk, R.; Elfving, B.; Andersen, M.D.; Langbøl, M.A.; Folke, J.; Winge, K.; Pakkenberg, B.; Brudek, T.; Aznar, S. Cytokine profiling in the prefrontal cortex of Parkinson’s Disease and Multiple System Atrophy patients. Neurobiol. Dis. 2017, 106, 269–278. [Google Scholar] [CrossRef]
- Starhof, C.; Winge, K.; Heegaard, N.H.H.; Skogstrand, K.; Friis, S.; Hejl, A. Cerebrospinal fluid pro-inflammatory cytokines differentiate parkinsonian syndromes. J. Neuroinflammation 2018, 15, 305. [Google Scholar] [CrossRef] [Green Version]
- Hall, S.; Janelidze, S.; Surova, Y.; Widner, H.; Zetterberg, H.; Hansson, O. Cerebrospinal fluid concentrations of inflammatory markers in Parkinson’s disease and atypical parkinsonian disorders. Sci. Rep. 2018, 8, 13276. [Google Scholar] [CrossRef] [Green Version]
- Vieira, B.D.; Radford, R.A.; Chung, R.S.; Guillemin, G.J.; Pountney, D.L. Neuroinflammation in Multiple System Atrophy: Response to and Cause of alpha-Synuclein Aggregation. Front. Cell. Neurosci. 2015, 9, 437. [Google Scholar] [CrossRef] [PubMed]
- Harms, A.S.; Ferreira, S.A.; Romero-Ramos, M. Periphery and brain, innate and adaptive immunity in Parkinson’s disease. Acta Neuropathol. 2021, 141, 527–545. [Google Scholar] [CrossRef]
- Chen, X.; Feng, W.; Ou, R.; Liu, J.; Yang, J.; Fu, J.; Cao, B.; Chen, Y.; Wei, Q.; Shang, H. Evidence for Peripheral Immune Activation in Parkinson’s Disease. Front. Aging Neurosci. 2021, 13, 617370. [Google Scholar] [CrossRef]
- Engelhardt, B.; Vajkoczy, P.; Weller, R.O. The movers and shapers in immune privilege of the CNS. Nat. Immunol. 2017, 18, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.P.; Schonhoff, A.M.; Jurkuvenaite, A.; Gallups, N.J.; Standaert, D.G.; Harms, A.S. CD4 T cells mediate brain inflammation and neurodegeneration in a mouse model of Parkinson’s disease. Brain 2021, 144, 2047–2059. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, A.; Fagone, P.; Donzuso, G.; Mangano, K.; Dibilio, V.; Caponnetto, S.; Bendtzen, K.; Zappia, M.; Nicoletti, F. Parkinson’s disease is associated with increased serum levels of macrophage migration inhibitory factor. Cytokine 2011, 55, 165–167. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Pasamar, S.; Abad, E.; Moreno, B.; Velez de Mendizabal, N.; Martinez-Forero, I.; Garcia-Ojalvo, J.; Villoslada, P. Dynamic cross-regulation of antigen-specific effector and regulatory T cell subpopulations and microglia in brain autoimmunity. BMC Syst. Biol. 2013, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Cao, B.; Chen, X.; Zhang, L.; Wei, Q.; Liu, H.; Feng, W.; Chen, Y.; Shang, H. Elevated Percentage of CD3+ T-Cells and CD4+/CD8+ Ratios in Multiple System Atrophy Patients. Front. Neurol. 2020, 11, 658. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, B.; Hou, Y.; Wei, Q.; Ou, R.; Zhao, B.; Shang, H. High neutrophil-to-lymphocyte ratio predicts short survival in multiple system atrophy. NPJ Parkinsons Dis. 2022, 8, 11. [Google Scholar] [CrossRef]
- Madetko, N.; Migda, B.; Alster, P.; Turski, P.; Koziorowski, D.; Friedman, A. Platelet-to-lymphocyte ratio and neutrophil-tolymphocyte ratio may reflect differences in PD and MSA-P neuroinflammation patterns. Neurol. Neurochir. Pol. 2022, 56, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.P.; Marmion, D.J.; Schonhoff, A.M.; Jurkuvenaite, A.; Won, W.J.; Standaert, D.G.; Kordower, J.H.; Harms, A.S. T cell infiltration in both human multiple system atrophy and a novel mouse model of the disease. Acta Neuropathol. 2020, 139, 855–874. [Google Scholar] [CrossRef] [Green Version]
- Schwab, A.D.; Thurston, M.J.; Machhi, J.; Olson, K.E.; Namminga, K.L.; Gendelman, H.E.; Mosley, R.L. Immunotherapy for Parkinson’s disease. Neurobiol. Dis. 2020, 137, 104760. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Tang, W.; Zhang, L. Monte Carlo cross-validation analysis screens pathway cross-talk associated with Parkinson’s disease. Neurol. Sci. 2016, 37, 1327–1333. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Hou, H.; Luo, Y.; Tang, G.; Wu, S.; Huang, M.; Liu, W.; Zhu, Y.; Lin, Q.; Mao, L.; et al. The laboratory tests and host immunity of COVID-19 patients with different severity of illness. JCI Insight 2020, 5, e137799. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Zhong, Z.; Huang, J.; Bian, H.; Huang, W. Monocytohigh-density lipoprotein ratio has a high predictive value for the diagnosis of multiple system atrophy and the differentiation from Parkinson’s disease. Front. Aging Neurosci. 2022, 14, 1035437. [Google Scholar] [CrossRef]
- Matsuse, D.; Yamasaki, R.; Maimaitijiang, G.; Yamaguchi, H.; Masaki, K.; Isobe, N.; Matsushita, T.; Kira, J.I. Early decrease in intermediate monocytes in peripheral blood is characteristic of multiple system atrophy-cerebellar type. J. Neuroimmunol. 2020, 349, 577395. [Google Scholar] [CrossRef]
- Rydbirk, R.; Folke, J.; Busato, F.; Roche, E.; Chauhan, A.S.; Lokkegaard, A.; Hejl, A.M.; Bode, M.; Blaabjerg, M.; Moller, M.; et al. Epigenetic modulation of AREL1 and increased HLA expression in brains of multiple system atrophy patients. Acta Neuropathol. Commun. 2020, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, E.; Hall, S.; Surova, Y.; Widner, H.; Hansson, O.; Lindqvist, D. Proinflammatory cytokines are elevated in serum of patients with multiple system atrophy. PLoS ONE 2013, 8, e62354. [Google Scholar] [CrossRef] [Green Version]
- Csencsits-Smith, K.; Suescun, J.; Li, K.; Luo, S.; Bick, D.L.; Schiess, M. Serum Lymphocyte-Associated Cytokine Concentrations Change More Rapidly over Time in Multiple System Atrophy Compared to Parkinson Disease. Neuroimmunomodulation 2016, 23, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Yamasaki, R.; Yamaguchi, H.; Matsushita, T.; Fujii, T.; Hiwatashi, A.; Kira, J.I. Early strong intrathecal inflammation in cerebellar type multiple system atrophy by cerebrospinal fluid cytokine/chemokine profiles: A case control study. J. Neuroinflammation 2017, 14, 89. [Google Scholar] [CrossRef] [Green Version]
- Kim, R.; Kim, H.J.; Kim, A.; Jang, M.; Kim, A.; Kim, Y.; Yoo, D.; Im, J.H.; Choi, J.H.; Jeon, B. Does peripheral inflammation contribute to multiple system atrophy? Parkinsonism Relat. Disord. 2019, 64, 340–341. [Google Scholar] [CrossRef]
- Li, F.; Ayaki, T.; Maki, T.; Sawamoto, N.; Takahashi, R. NLRP3 Inflammasome-Related Proteins Are Upregulated in the Putamen of Patients with Multiple System Atrophy. J. Neuropathol. Exp. Neurol. 2018, 77, 1055–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, W.; Wang, G.; Huang, D.; Sui, M.; Xu, Y. Cancer Immunotherapy Based on Natural Killer Cells: Current Progress and New Opportunities. Front. Immunol. 2019, 10, 1205. [Google Scholar] [CrossRef] [PubMed]
- Caligiuri, M.A. Human natural killer cells. Blood 2008, 112, 461–469. [Google Scholar] [CrossRef]
- Paolini, R.; Bernardini, G.; Molfetta, R.; Santoni, A. NK cells and interferons. Cytokine Growth Factor Rev. 2015, 26, 113–120. [Google Scholar] [CrossRef]
- Poli, A.; Kmiecik, J.; Domingues, O.; Hentges, F.; Bléry, M.; Chekenya, M.; Boucraut, J.; Zimmer, J. NK cells in central nervous system disorders. J. Immunol. 2013, 190, 5355–5362. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; van de Pavert, S.A. Innate Lymphoid Cells in the Central Nervous System. Front. Immunol. 2022, 13, 837250. [Google Scholar] [CrossRef]
- Menees, K.B.; Lee, J.K. New Insights and Implications of Natural Killer Cells in Parkinson’s Disease. J. Parkinsons Dis. 2022, 12, S83–S92. [Google Scholar] [CrossRef]
- Cen, L.; Yang, C.; Huang, S.; Zhou, M.; Tang, X.; Li, K.; Guo, W.; Wu, Z.; Mo, M.; Xiao, Y.; et al. Peripheral Lymphocyte Subsets as a Marker of Parkinson’s Disease in a Chinese Population. Neurosci. Bull. 2017, 33, 493–500. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, H.; Hu, J.; Han, C.; Zhong, Z.; Luo, W.; Zhang, Y.; Ling, F. Significant Difference of Immune Cell Fractions and Their Correlations with Differential Expression Genes in Parkinson’s Disease. Front. Aging Neurosci. 2021, 13, 686066. [Google Scholar] [CrossRef]
- Mihara, T.; Nakashima, M.; Kuroiwa, A.; Akitake, Y.; Ono, K.; Hosokawa, M.; Yamada, T.; Takahashi, M. Natural killer cells of Parkinson’s disease patients are set up for activation: A possible role for innate immunity in the pathogenesis of this disease. Parkinsonism Relat. Disord. 2008, 14, 46–51. [Google Scholar] [CrossRef]
- Niwa, F.; Kuriyama, N.; Nakagawa, M.; Imanishi, J. Effects of peripheral lymphocyte subpopulations and the clinical correlation with Parkinson’s disease. Geriatr. Gerontol. Int. 2012, 12, 102–107. [Google Scholar] [CrossRef]
- Sun, C.; Zhao, Z.; Yu, W.; Mo, M.; Song, C.; Si, Y.; Liu, Y. Abnormal subpopulations of peripheral blood lymphocytes are involved in Parkinson’s disease. Ann. Transl. Med. 2019, 7, 637. [Google Scholar] [CrossRef]
- Stevens, C.H.; Rowe, D.; Morel-Kopp, M.C.; Orr, C.; Russell, T.; Ranola, M.; Ward, C.; Halliday, G.M. Reduced T helper and B lymphocytes in Parkinson’s disease. J. Neuroimmunol. 2012, 252, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Gao, H.; Luo, Q.; Wang, P.; Yang, X. The correlation of lymphocyte subsets, natural killer cell, and Parkinson’s disease: A meta-analysis. Neurol. Sci. 2017, 38, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Earls, R.H.; Menees, K.B.; Chung, J.; Gutekunst, C.A.; Lee, H.J.; Hazim, M.G.; Rada, B.; Wood, L.B.; Lee, J.K. NK cells clear alpha-synuclein and the depletion of NK cells exacerbates synuclein pathology in a mouse model of alpha-synucleinopathy. Proc. Natl. Acad. Sci. USA 2020, 117, 1762–1771. [Google Scholar] [CrossRef] [PubMed]
- O'Brien, K.L.; Finlay, D.K. Immunometabolism and natural killer cell responses. Nat. Rev. Immunol. 2019, 19, 282–290. [Google Scholar] [CrossRef]
- Tian, J.; Dai, S.B.; Jiang, S.S.; Yang, W.Y.; Yan, Y.Q.; Lin, Z.H.; Dong, J.X.; Liu, Y.; Zheng, R.; Chen, Y.; et al. Specific immune status in Parkinson’s disease at different ages of onset. NPJ Parkinsons Dis. 2022, 8, 5. [Google Scholar] [CrossRef]
- Liu, S.H.; Wang, Y.L.; Jiang, S.M.; Wan, X.J.; Yan, J.H.; Liu, C.F. Identifying the hub gene and immune infiltration of Parkinson’s disease using bioinformatical methods. Brain Res. 2022, 1785, 147879. [Google Scholar] [CrossRef]
- Xia, Y.; Liu, A.; Li, W.; Liu, Y.; Zhang, G.; Ye, S.; Zhao, Z.; Shi, J.; Jia, Y.; Liu, X.; et al. Reference range of naive T and T memory lymphocyte subsets in peripheral blood of healthy adult. Clin. Exp. Immunol. 2022, 207, 208–217. [Google Scholar] [CrossRef]
- George, S.; Tyson, T.; Rey, N.L.; Sheridan, R.; Peelaerts, W.; Becker, K.; Schulz, E.; Meyerdirk, L.; Burmeister, A.R.; von Linstow, C.U.; et al. T Cells Limit Accumulation of Aggregate Pathology Following Intrastriatal Injection of alpha-Synuclein Fibrils. J. Parkinsons Dis. 2021, 11, 585–603. [Google Scholar] [CrossRef]
- Ochoa, J.B.; Makarenkova, V. T lymphocytes. Crit. Care Med. 2005, 33 (Suppl. S12), S510–S513. [Google Scholar] [CrossRef] [PubMed]
- Azuma, M. Co-signal Molecules in T-Cell Activation : Historical Overview and Perspective. Adv. Exp. Med. Biol. 2019, 1189, 3–23. [Google Scholar] [CrossRef]
- Esensten, J.H.; Helou, Y.A.; Chopra, G.; Weiss, A.; Bluestone, J.A. CD28 Costimulation: From Mechanism to Therapy. Immunity 2016, 44, 973–988. [Google Scholar] [CrossRef] [Green Version]
- Lenschow, D.J.; Walunas, T.L.; Bluestone, J.A. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol. 1996, 14, 233–258. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Zheng, Y.M.; Luo, X.G.; He, Z.Y. High Inflammatory Tendency Induced by Malignant Stimulation through Imbalance of CD28 and CTLA-4/PD-1 Contributes to Dopamine Neuron Injury. J. Inflamm. Res. 2021, 14, 2471–2482. [Google Scholar] [CrossRef]
- Bas, J.; Calopa, M.; Mestre, M.; Mollevı, D.G.; Cutillas, B.; Ambrosio, S.; Buendia, E. Lymphocyte populations in Parkinson s disease and in rat models of parkinsonism. J. Neuroimmunol. 2001, 113, 146–152. [Google Scholar] [CrossRef]
- Inci, I.; Kusbeci, O.Y.; Eskut, N. The neutrophil-to-lymphocyte ratio as a marker of peripheral inflammation in progressive supranuclear palsy: A retrospective study. Neurol. Sci. 2020, 41, 1233–1237. [Google Scholar] [CrossRef]
- Wei, Q.Q.; Hou, Y.B.; Zhang, L.Y.; Ou, R.W.; Cao, B.; Chen, Y.P.; Shang, H.F. Neutrophil-to-lymphocyte ratio in sporadic amyotrophic lateral sclerosis. Neural Regen. Res. 2022, 17, 875–880. [Google Scholar] [CrossRef] [PubMed]
Reference | Subjects | Immune Traits | Main Findings | ||
---|---|---|---|---|---|
MSA | HC | NDC | |||
Zhang et al., 2022 [17] | 169 | 163 | 0 | Neutrophil, lymphocyte, monocyte Eosinophilia, basophilia, NLR | Higher NLR in MSA |
Higher NLR was associated with poor survival in MSA | |||||
NLR was not associated with disease progression in 31 MSA patients | |||||
Madetko et al., 2022 [18] | 28 | 99 | 98 | Neutrophil, lymphocyte, NLR | Higher NLR in MSA-P |
NLR positively correlated with disease duration in MSA-P | |||||
Jiang et al., 2022 [24] | 47 | 124 | 125 | Monocyte/ high-density lipoprotein ratio (MHR) NLR Red cell distribution width/ platelet ratio (RPR) | Higher MHR, NLR, and RPR in MSA |
MHR was positively correlated with the course of 27 MSA-C patients | |||||
Matsuse et al., 2020 [25] | 34 | 24 | 20 | Monocyte subsets in serum | Intermediate monocytes (IM) decreased in MSA-C |
Lower IM percentage associated with lower UMSARS scores, shorter disease duration, and milder brainstem atrophy | |||||
Rydbirk et al., 2020 [26] | 24 | 46 | 0 | Monocyte subsets in serum | CD14 + CD16+ monocytes decreased in MSA |
No change of CD4+, CD8+ T cells and NK cells | |||||
Cao et al., 2020 [16] | 321 | 321 | 0 | Percentage of CD3+, CD4+ and CD8+ T cells CD4+ T cells/CD8+ T cells | CD3+ and CD4+ T lymphocyte increased in MSA |
CD4+/CD8+ increased in MSA | |||||
Kaufman et al., 2013 [27] | 14 | 60 | 0 | CRP, IL-6, IL-2R and TNF-α in serum | IL-6, and TNF-α increased in MSA |
Higher TNF-α associated with less severe motor symptoms and earlier disease stage | |||||
Csencsits-Smith et al., 2016 [28] | 14 | 15 | 25 | 37 kinds of cytokines and chemokines in serum | GM-CSF, CCL7, and IL-17 decreased in MSA |
IL-4, IL-2, IL-15, and IL-9 increased over time in MSA | |||||
Yamasaki et al., 2017 [29] | 20 | 0 | 27 | 27 cytokines/chemokines and growth factors in CSF | IL-6, IL-7, IL-12, IL-13, IL-1ra and GM-CSF increased in MSA-C |
FGF, VEGF, IL-1β, IL-2, IL-4, IL-5, IL-8, IL-10, IL-15, MIP-1β, and TNF-α decreased in MSA-C | |||||
Hall et al., 2018 [8] | 24 | 50 | 172 | Six kinds of inflammatory biomarkers in CSF (CRP, SAA, IL-6, IL-8, YKL-40 and MCP-1) | Higher CRP and SAA in MSA |
CRP and IL-8 correlated with disease severity in MSA | |||||
Starhof et al., 2018 [7] | 35 | 31 | 85 | Eight cytokines (IFN-γ, IL-10, IL-18, IL-1β, IL-4, IL-6, TGF-β1, and TNF-α) and CRP in CSF | No significant difference between MSA and HC |
Comptai et al., 2019 [5] | 39 | 15 | 19 | 38 kinds of cytokines in CSF | FGF-2, eotaxin, fractalkine, IFN-α2, IL-10, MCP-3, IL-12p40, MDC, IL-17, IL-7, MIP-1β and TNF-α increased in MSA |
Kim et al., 2019 [30] | 27 | 20 | 0 | IL-1β, IL-2, IL-6, IL-10, TNF-α and hsCRP in serum | No difference between the MSA and HC |
Rydbirk et al., 2017 [6] | 19 | 17 | 31 | 18 kinds of cytokines in the dorsomedial prefrontal cortex in brains | IL-2 increased in MSA |
IL-13 and G-CSF decreased in MSA | |||||
Increased MHC class II+ and CD45+ positive cells, decreased infiltrating CD3+ cells in MSA | |||||
Li et al., 2018 [31] | 11 | 6 | 5 | NLRP3 inflammasome-related proteins in brains | Increased NLRP3 inflammasome-related microglia in the putamen of MSA |
Williams et al., 2020 [19] | 3 | 6 | 0 | CD3+, CD4+, and CD8+ T cells in brains | Increased CD3+, CD4+, and CD8+ T cells in the putamen and substantia nigra of MSA |
Parameters | Participants | Effect Size | p Value | |
---|---|---|---|---|
MSA (N = 26) | HC (N = 56) | |||
Age (years) | 56.62 (8.37) | 53.16 (8.85) | 1.673 | 0.098 a |
Female/Male | 10/16 | 29/27 | 1.264 | 0.261 b |
Age at onset (years) | 54 (47, 61) | - | - | - |
Duration (months) | 15 (12, 36) | - | - | - |
MSA-C/MSA-P | 24/2 | - | - | - |
Indices | Participants | Effect Size | p Value | |
---|---|---|---|---|
MSA (N = 26) | HC (N = 27) | |||
WBC count (×109/L) | 5.59 (4.55, 6.37) | 5.71 (4.53, 6.30) | −0.187 | 0.852 b |
Neutrophils (%) | 55.80 (6.85) | 56.92 (8.55) | −0.526 | 0.601 a |
Neutrophils (×109/L) | 3.03 (2.51, 3.65) | 3.31 (2.38, 3.93) | −0.472 | 0.637 b |
Lymphocytes (%) | 32.61 (5.94) | 31.89 (7.69) | 0.382 | 0.704 a |
Lymphocytes (×109/L) | 1.90 (1.41, 2.00) | 1.71 (1.47, 2.11) | −0.044 | 0.965 b |
NLR | 1.65 (1.40, 2.05) | 1.82 (1.35, 2.23) | −0.427 | 0.669 b |
Monocytes (%) | 7.35 (6.10, 8.55) | 7.30 (6.80, 8.60) | −0.463 | 0.643 b |
Monocytes (×109/L) | 0.41 (0.34, 0.52) | 0.44 (0.35, 0.51) | −0.596 | 0.551 b |
Eosinophils (%) | 2.35 (1.43, 4.05) | 2.70 (1.60, 4.10) | −0.525 | 0.599 b |
Eosinophils (×109/L) | 0.11 (0.08, 0.26) | 0.14 (0.11, 0.24) | −0.758 | 0.449 b |
Basophils (%) | 0.40 (0.20, 0.63) | 0.40 (0.30, 0.60) | −0.333 | 0.739 b |
Basophils (×109/L) | 0.02 (0.01, 0.03) | 0.02 (0.02, 0.04) | −0.431 | 0.667 b |
Indices | Participants | Effect Size | p Value | |
---|---|---|---|---|
MSA (N = 26) | HC (N = 56) | |||
Lymphocyte Subsets | ||||
Total T cells (CD3+CD19−) (%) | 70.75 (64.18, 75.48) | 75.40 (70.19, 78.32) | −2.307 | 0.021 b |
Total T cell count (CD3+CD19−) (/μL) | 1185.12 (281.31) | 1238.93 (358.75) | −0.674 | 0.502 a |
Total B cells (CD3−CD19+) (%) | 12.54 (9.28, 16.03) | 12.05 (8.67, 15.07) | −0.623 | 0.533 b |
Total B cell count (CD3−CD19+) (/μL) | 202.50 (136.50, 307.50) | 183.00 (127.50, 297.75) | −0.598 | 0.550 b |
T/B (×109/L) | 5.85 (3.90, 7.49) | 6.40 (4.58, 8.47) | −0.947 | 0.344 b |
NK cells (CD3−CD16+CD56+) (%) | 16.11 (11.71, 20.95) | 12.09 (7.56, 16.34) | −2.342 | 0.019 b |
NK cell count (CD3−CD16+CD56+) (/μL) | 246.50 (180.00, 341.25) | 192.50 (125.50, 266.75) | −2.397 | 0.017 b |
T+B+NK (%) | 99.34 (99.03, 99.58) | 99.47 (98.87, 99.69) | −0.444 | 0.657 b |
T+B+NK cell count (/μL) | 1512.50 (1348.25, 1978.00) | 1622.50 (1424.25, 1945.00) | −0.204 | 0.838 b |
T cells Subsets | ||||
Th cells (CD3+CD4+) (%) | 46.13 (6.00) | 42.47 (8.95) | 2.180 | 0.033 a |
Th cell count (CD3+CD4+) (/μL) | 789.85 (231.21) | 719.45 (251.19) | 1.210 | 0.230 a |
Tc cells (CD3+CD8+) (%) | 20.92 (6.39) | 25.62 (8.00) | −2.629 | 0.010 a |
Tc cell count (CD3+CD8+) (/μL) | 326.50 (272.75, 416.25) | 391.00 (327.50, 531.50) | −2.143 | 0.032 b |
Th/Tc | 2.16 (1.72, 3.22) | 1.71 (1.17, 2.47) | −2.556 | 0.011 b |
Th (CD3+CD4+CD28+)/Th (%) | 97.77 (93.79, 98.80) | 94.69 (89.47, 97.31) | −2.362 | 0.018 b |
Tc (CD3+CD8+CD28+)/Tc (%) | 63.29 (15.11) | 54.71 (15.99) | 2.299 | 0.024 a |
Activated T cells (CD3+HLA-DR+) (%) | 14.90 (10.37, 16.47) | 19.94 (14.98, 26.54) | −3.398 | 0.001 b |
Activated Tc cells (CD3+CD8+HLA-DR+)/Tc (%) | 40.84 (24.40, 46.51) | 37.92 (29.01, 48.53) | −0.538 | 0.591 b |
Treg (%) (CD3+CD4+CD25+CD127low+) | 3.79 (1.26) | 3.26 (1.33) | 1.689 | 0.095 a |
Natural Treg (%) (CD45RA+CD3+CD4+CD25+CD127low+) | 0.95 (0.44) | 0.90 (0.45) | 0.482 | 0.631 a |
Induced Treg (%) (CD45RO+CD3+CD4+CD25+CD127low+) | 2.90 (1.88, 3.64) | 2.22 (1.34, 3.38) | −1.859 | 0.063 b |
Induced Treg/Natural Treg | 0.35 (0.17) | 0.40 (0.18) | −1.090 | 0.279 a |
Cytokines | Participants | Effect Size | p Value | |
---|---|---|---|---|
MSA (N = 21) | HC (N = 20) | |||
IL-1β (pg/mL) | 5.00 (5.00, 6.50) | 5.00 (5.00, 19.95) | −1.265 | 0.206 |
IL-2R (U/mL) | 327.00 (246.50, 443.50) | 341.00 (246.75, 408.75) | −0.261 | 0.794 |
IL-6 (pg/mL) | 2.27 (1.50, 3.62) | 1.51 (1.50, 3.46) | −1.076 | 0.282 |
IL-8 (pg/mL) | 13.80 (9.05, 47.70) | 15.90 (9.03, 37.00) | −0.339 | 0.735 |
IL-10 (pg/mL) | 5.00 (5.00, 5.00) | 5.00 (5.00, 5.00) | −0.976 | 0.329 |
TNF-α (pg/mL) | 8.20 (6.50, 14.90) | 9.25 (6.65, 16.65) | −0.417 | 0.676 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Z.; Gao, R.; Ba, L.; Liu, Y.; Hou, H.; Zhang, M. The Peripheral Immune Traits Changed in Patients with Multiple System Atrophy. Brain Sci. 2023, 13, 205. https://doi.org/10.3390/brainsci13020205
Gong Z, Gao R, Ba L, Liu Y, Hou H, Zhang M. The Peripheral Immune Traits Changed in Patients with Multiple System Atrophy. Brain Sciences. 2023; 13(2):205. https://doi.org/10.3390/brainsci13020205
Chicago/Turabian StyleGong, Zhenxiang, Rong Gao, Li Ba, Yang Liu, Hongyan Hou, and Min Zhang. 2023. "The Peripheral Immune Traits Changed in Patients with Multiple System Atrophy" Brain Sciences 13, no. 2: 205. https://doi.org/10.3390/brainsci13020205
APA StyleGong, Z., Gao, R., Ba, L., Liu, Y., Hou, H., & Zhang, M. (2023). The Peripheral Immune Traits Changed in Patients with Multiple System Atrophy. Brain Sciences, 13(2), 205. https://doi.org/10.3390/brainsci13020205