Altered Feedback-Related Negativity in Mild Cognitive Impairment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Neuropsychological Assessment
2.3. Task
2.4. EEG Recording and Analysis
2.5. Event-Related Potentials
2.6. Statistical Analysis
3. Results
3.1. Neuropsychological and Behavioral Data
3.2. ERP Waveforms
3.3. FRN
3.4. Neuropsychological Assessment and FRN
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bowen, J.; Teri, L.; Kukull, W.; McCormick, W.; McCurry, S.M.; Larson, E.B. Progression to dementia in patients with isolated memory loss. Lancet 1997, 349, 763–765. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C. Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 2004, 256, 183–194. [Google Scholar] [CrossRef]
- Okello, A.; Koivunen, J.; Edison, P.; Archer, H.A.; Turkheimer, F.E.; Nagren, K.; Bullock, R.; Walker, Z.; Kennedy, A.; Fox, N.C.; et al. Conversion of amyloid positive and negative MCI to AD over 3 years: An 11C-PIB PET study. Neurology 2009, 73, 754–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Tangalos, E.G.; Kokmen, E. Mild cognitive impairment—Clinical characterization and outcome. Arch. Neurol. 1999, 56, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Busse, A.; Bischkopf, J.; Riedel-Heller, S.G.; Angermeyer, M.C. Subclassifications for mild cognitive impairment: Prevalence and predictive validity. Psychol. Med. 2003, 33, 1029–1038. [Google Scholar] [CrossRef] [PubMed]
- Winblad, B.; Palmer, K.; Kivipelto, M.; Jelic, V.; Fratiglioni, L.; Wahlund, L.O.; Nordberg, A.; Backman, L.; Albert, M.; Almkvist, O.; et al. Mild cognitive impairment—Beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. J. Intern. Med. 2004, 256, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Griffith, H.R.; Belue, K.; Sicola, A.; Krzywanski, S.; Zamrini, E.; Harrell, L.; Marson, D.C. Impaired financial abilities in mild cognitive impairment—A direct assessment approach. Neurology 2003, 60, 449–457. [Google Scholar] [CrossRef]
- Zamarian, L.; Semenza, C.; Domahs, F.; Benke, T.; Delazer, M. Alzheimer’s disease and mild cognitive impairment: Effects of shifting and interference in simple arithmetic. J. Neurol. Sci. 2007, 263, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.C.K.; Shum, D.; Toulopoulou, T.; Chen, E.Y.H. Assessment of executive functions: Review of instruments and identification of critical issues. Arch. Clin. Neuropsychol. 2008, 23, 201–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gehring, W.J.; Willoughby, A.R. The medial frontal cortex and the rapid processing of monetary gains and losses. Science 2002, 295, 2279–2282. [Google Scholar] [CrossRef] [Green Version]
- Hajcak, G.; Moser, J.S.; Holroyd, C.B.; Simons, R.F. The feedback-related negativity reflects the binary evaluation of good versus bad outcomes. Biol. Psychol. 2006, 71, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Holroyd, C.B.; Hajcak, G.; Larsen, J.T. The good, the bad and the neutral: Electrophysiological responses to feedback stimuli. Brain Res. 2006, 1105, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Miltner, W.H.R.; Braun, C.H.; Coles, M.G.H. Event-related brain potentials following incorrect feedback in a time-estimation task: Evidence for a “generic” neural system for error detection. J. Cogn. Neurosci. 1997, 9, 788–798. [Google Scholar] [CrossRef]
- Wild-Wall, N.; Willemssen, R.; Falkenstein, M. Feedback-related processes during a time-production task in young and older adults. Clin. Neurophysiol. 2009, 120, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Becker, M.P.I.; Nitsch, A.M.; Miltner, W.H.R.; Straube, T. A Single-Trial Estimation of the Feedback-Related Negativity and Its Relation to BOLD Responses in a Time-Estimation Task. J. Neurosci. 2014, 34, 3005–3012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falkenstein, M.; Hoormann, J.; Christ, S.; Hohnsbein, J. ERP components on reaction errors and their functional significance: A tutorial. Biol. Psychol. 2000, 51, 87–107. [Google Scholar] [CrossRef] [PubMed]
- Holroyd, C.B.; Coles, M.G. The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychol. Rev. 2002, 109, 679–709. [Google Scholar] [CrossRef]
- Nieuwenhuis, S.; Holroyd, C.B.; Mol, N.; Coles, M.G. Reinforcement-related brain potentials from medial frontal cortex: Origins and functional significance. Neurosci. Biobehav. Rev. 2004, 28, 441–448. [Google Scholar] [CrossRef] [Green Version]
- Hajcak, G.; Moser, J.S.; Holroyd, C.B.; Simons, R.F. It’s worse than you thought: The feedback negativity and violations of reward prediction in gambling tasks. Psychophysiology 2007, 44, 905–912. [Google Scholar] [CrossRef] [Green Version]
- Bellebaum, C.; Daum, I. Learning-related changes in reward expectancy are reflected in the feedback-related negativity. Eur. J. Neuroscience 2008, 27, 1823–1835. [Google Scholar] [CrossRef]
- Holroyd, C.B.; Krigolson, O.E.; Baker, R.; Lee, S.; Gibson, J. When is an error not a prediction error? An electrophysiological investigation. Cogn. Affect. Behav. Neurosci. 2009, 9, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Eppinger, B.; Kray, J.; Mock, B.; Mecklinger, A. Better or worse than expected? Aging, learning, and the ERN. Neuropsychologia 2008, 46, 521–539. [Google Scholar] [CrossRef] [PubMed]
- Mathewson, K.J.; Dywan, J.; Snyder, P.J.; Tays, W.J.; Segalowitz, S.J. Aging and electrocortical response to error feedback during a spatial learning task. Psychophysiology 2008, 45, 936–948. [Google Scholar] [CrossRef]
- Pietschmann, M.; Endrass, T.; Czerwon, B.; Kathmann, N. Aging, probabilistic learning and performance monitoring. Biol. Psychol. 2011, 86, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Bellebaum, C.; Kobza, S.; Thiele, S.; Daum, I. Processing of Expected and Unexpected Monetary Performance Outcomes in Healthy Older Subjects. Behav. Neurosci. 2011, 125, 241–251. [Google Scholar] [CrossRef]
- Nitta, E.; Onoda, K.; Ishitobi, F.; Okazaki, R.; Mishima, S.; Nagai, A.; Yamaguchi, S. Enhanced Feedback-Related Negativity in Alzheimer’s Disease. Front. Hum. Neurosci. 2017, 11, 179. [Google Scholar] [CrossRef] [Green Version]
- Artero, S.; Petersen, R.; Touchon, J.; Ritchie, K. Revised criteria for mild cognitive impairment: Validation within a longitudinal population study. Dement. Geriatr. Cogn. Disord. 2006, 22, 465–470. [Google Scholar] [CrossRef] [Green Version]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Dubois, B.; Slachevsky, A.; Litvan, I.; Pillon, B. The FAB: A Frontal Assessment Battery at bedside. Neurology 2000, 55, 1621–1626. [Google Scholar] [CrossRef] [Green Version]
- Zung, W.W. A Self-Rating Depression Scale. Arch. Gen. Psychiatry 1965, 12, 63–70. [Google Scholar] [CrossRef]
- Starkstein, S.E.; Mayberg, H.S.; Preziosi, T.J.; Andrezejewski, P.; Leiguarda, R.; Robinson, R.G. Reliability, validity, and clinical correlates of apathy in Parkinson’s disease. J. Neuropsychiatry Clin. Neurosci. 1992, 4, 134–139. [Google Scholar] [PubMed]
- Ishii, R.; Shinosaki, K.; Ukai, S.; Inouye, T.; Ishihara, T.; Yoshimine, T.; Norio, H.; Hiroshi, A.; Taizo, K.; Robinson, S.E.; et al. Medial prefrontal cortex generates frontal midline theta rhythm. Neuroreport 1999, 10, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, J.F.; Frank, M.J. Frontal theta as a mechanism for cognitive control. Trends Cogn. Sci. 2014, 18, 414–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musaeus, C.S.; Engedal, K.; Hogh, P.; Jelic, V.; Morup, M.; Naik, M.; Oeksengaard, A.R.; Snaedal, J.; Wahlund, L.O.; Gunhild, W.; et al. EEG Theta Power Is an Early Marker of Cognitive Decline in Dementia due to Alzheimer’s Disease. J. Alzheimers Dis. 2018, 64, 1359–1371. [Google Scholar] [CrossRef]
- Bakker, A.; Krauss, G.L.; Albert, M.S.; Speck, C.L.; Jones, L.R.; Stark, C.E.; Yassa, M.A.; Bassett, S.S.; Shelton, A.L.; Gallagher, M. Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 2012, 74, 467–474. [Google Scholar] [CrossRef] [Green Version]
- DeKosky, S.T.; Ikonomovic, M.D.; Styren, S.D.; Beckett, L.; Wisniewski, S.; Bennett, D.A.; Cochran, E.J.; Kordower, J.H.; Mufson, E.J. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann. Neurol. 2002, 51, 145–155. [Google Scholar] [CrossRef]
- Delacourte, A.; David, J.P.; Sergeant, N.; Buee, L.; Wattez, A.; Vermersch, P.; Ghozali, F.; Fallet-Bianco, C.; Pasquer, F.; Lebert, F.; et al. The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology 1999, 52, 1158–1165. [Google Scholar] [CrossRef] [Green Version]
- Kardos, Z.; Kobor, A.; Takacs, A.; Toth, B.; Boha, R.; File, B.; Molnar, M. Age-related characteristics of risky decision-making and progressive expectation formation. Behav. Brain Res. 2016, 312, 405–414. [Google Scholar] [CrossRef] [Green Version]
- Mendez, M.F.; Fong, S.S.; Ashla, M.M.; Jimenez, E.E.; Carr, A.R. Skin Conduction Levels Differentiate Frontotemporal Dementia From Alzheimer’s Disease. J. Neuropsychiatry Clin. Neurosci. 2018, 30, 208–213. [Google Scholar] [CrossRef]
- Mograbi, D.C.; Brown, R.G.; Salas, C.; Morris, R.G. Emotional reactivity and awareness of task performance in Alzheimer’s disease. Neuropsychologia 2012, 50, 2075–2084. [Google Scholar] [CrossRef]
- Li, B.Y.; Tang, H.D.; Chen, S.D. Retrieval Deficiency in Brain Activity of Working Memory in Amnesic Mild Cognitive Impairment Patients: A Brain Event-Related Potentials Study. Front. Aging Neurosci. 2016, 8, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
MCI | HC | p Value | |
---|---|---|---|
Age (years) | 76.2 ± 2.4 | 74.1 ± 3.4 | n.s. |
Sex (male/female) | 6/7 | 6/7 | n.s. |
MMSE | 25.3 ± 1.0 | 28.8 ± 1.3 | <0.001 |
FAB | 14.2 ± 1.2 | 16.0 ± 1.1 | <0.001 |
SDS | 34.8 ± 9.5 | 32.4 ± 6.6 | n.s. |
AS | 15.6 ± 6.9 | 9.8 ± 5.1 | 0.021 |
RT (ms) | 1289 ± 366 | 1060 ± 688 | n.s. |
FRN Peak Amplitude | |||
---|---|---|---|
Fz | Cz | Pz | |
MMSE | 0.41 * | 0.28 | 0.27 |
FAB | 0.26 | 0.23 | 0.34 |
SDS | −0.03 | −0.17 | −0.06 |
AS | 0.11 | −0.12 | −0.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abe, S.; Onoda, K.; Takamura, M.; Nitta, E.; Nagai, A.; Yamaguchi, S. Altered Feedback-Related Negativity in Mild Cognitive Impairment. Brain Sci. 2023, 13, 203. https://doi.org/10.3390/brainsci13020203
Abe S, Onoda K, Takamura M, Nitta E, Nagai A, Yamaguchi S. Altered Feedback-Related Negativity in Mild Cognitive Impairment. Brain Sciences. 2023; 13(2):203. https://doi.org/10.3390/brainsci13020203
Chicago/Turabian StyleAbe, Satoshi, Keiichi Onoda, Masahiro Takamura, Eri Nitta, Atsushi Nagai, and Shuhei Yamaguchi. 2023. "Altered Feedback-Related Negativity in Mild Cognitive Impairment" Brain Sciences 13, no. 2: 203. https://doi.org/10.3390/brainsci13020203
APA StyleAbe, S., Onoda, K., Takamura, M., Nitta, E., Nagai, A., & Yamaguchi, S. (2023). Altered Feedback-Related Negativity in Mild Cognitive Impairment. Brain Sciences, 13(2), 203. https://doi.org/10.3390/brainsci13020203