Normative Structure of Resting-State EEG in Bipolar Derivations for Daily Clinical Practice: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. EEG Recording and Numerical Analysis
2.3. Statistics
3. Results
3.1. EEG Power Spectrum Structure as Function of Age
3.2. EEG Synchronization as a Function of Age
4. Discussion
4.1. Summary and Contribution
4.2. Strengh and Limitations
4.3. Future Works
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Appendix A
Appendix B
Left | Right | ||||
---|---|---|---|---|---|
Coherence | Region | r | p | r | p |
Cohδ | H | 0.2348 | n.s | 0.2076 | n.s |
F | 0.2616 | n.s | 0.3254 | <0.05 | |
PO | 0.3750 | < 0.05 | 0.1158 | n.s | |
T | 0.2126 | n.s | 0.1555 | n.s | |
Cohθ | H | 0.1527 | n.s | 0.1914 | n.s |
F | 0.1723 | n.s | 0.2699 | n.s | |
PO | 0.3939 | <0.01 | 0.2676 | n.s | |
T | 0.1944 | n.s | 0.2881 | <0.05 | |
Cohα | H | 0.3612 | <0.05 | 0.4368 | <0.001 |
F | 0.3039 | <0.05 | 0.3302 | <0.05 | |
PO | 0.4227 | <0.001 | 0.3337 | <0.05 | |
T | 0.2894 | <0.05 | 0.4702 | <0.001 | |
Cohβ | H | 0.1407 | n.s | 0.2449 | n.s |
F | 0.0082 | n.s | 0.2492 | n.s | |
PO | 0.4650 | <0.001 | 0.3888 | <0.01 | |
T | 0.1143 | n.s | 0.3834 | <0.01 |
References
- Nunez, P.L.; Srinivasan, R. Electric Fields of the Brain: The Neurophysics of EEG, 2nd ed.; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Yao, D.; Qin, Y.; Hu, S.; Dong, L.; Bringas-Vega, M.L.; Valdés Sosa, P.A. Which Reference Should We Use for EEG and ERP practice? Brain Topogr. 2019, 32, 530–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, S.; Yao, D.; Bringas-Vega, M.L.; Qin, Y.; Valdes-Sosa, P.A. The statistics of EEG unipolar references: Derivations and properties. Brain Topogr. 2019, 32, 696–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faux, S.F.; Shenton, M.E.; McCarley, R.W.; Nestor, P.G.; Marcy, B.; Ludwig, A. Preservation of P300 event-related potential topographic asymmetries in schizophrenia with use of either linked-ear or nose reference sites. Electroencephalogr. Clin. Neurophysiol. 1990, 75, 378–391. [Google Scholar] [CrossRef]
- Goldman, D. The clinical use of the “average” reference electrode in monopolar recording. Electroencephalogr. Clin. Neurophysiol. 1950, 2, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Offner, F.F. The EEG as potential mapping: The value of the average monopolar reference. Electroencephalogr. Clin. Neurophysiol. 1950, 2, 213–214. [Google Scholar] [CrossRef]
- Yao, D. A method to standardize a reference of scalp EEG recordings to a point at infinity. Physiol. Meas. 2001, 22, 693–711. [Google Scholar] [CrossRef]
- Hu, S.; Yao, D.; Valdes-Sosa, P.A. Unified Bayesian estimator of EEG reference at infinity: rREST (regularized reference electrode standardization technique). Front. Neurosci. 2018, 12, 297. [Google Scholar] [CrossRef] [Green Version]
- Hamer, H.M.; Katsarou, N. Noninvasive EEG in the Definition of the Irritative Zone. In Handbook of Clinical Neurophysiology; Rosenow, F., Lüders, H.O., Eds.; Series Editors: Daube, J.R., Mauguière, F.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 3, ISBN 0-444-51046-X. [Google Scholar]
- Carreño, M.; Donaire, A. Presurgical evaluation in patients with remote symptomatic epilepsy. In Handbook of Clinical Neurophysiology; Rosenow, F., Lüders, H.O., Eds.; Series Editors: Daube, J.R., Mauguière, F.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 3, ISBN 0-444-51046-X. [Google Scholar]
- Gupta, A.; Wyllie, E. Presurgical evaluation in patients with catastrhophic epilepsy. In Handbook of Clinical Neurophysiology; Rosenow, F., Lüders, H.O., Eds.; Series Editors: Daube, J.R.; Mauguière, F.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 3, ISBN 0-444-51046-X. [Google Scholar]
- Hirsch, L.J.; Brenner, R.P. Atlas of EEG in Critical Care; Wiley-Blackwell: Oxford, UK, 2010; ISBN 978-0-470-98786-5. [Google Scholar]
- Chang, B.S.; Schachter, S.C.; Schomer, D.L. Atlas of Ambulatory EEG; Elsevier: Amsterdam, The Netherlands, 2005; ISBN 13: 978-0-12-621345-4. [Google Scholar]
- Stern, J.M.; Engel, J. Atlas of EEG Patterns; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005; ISBN 0-7817-4124-6. [Google Scholar]
- Husain, A.M.; Sinha, S.R. Continuous EEG Monitoring; Principles and Practice, Ed.; Springer: Cham, Switzerland, 2017; ISBN 978-3-319-31228-6. [Google Scholar]
- Fisch, B.J. Epilepsy and Intensive Care Monitoring; Principles and practice; Demos Medical: New York, NY, USA, 2010; ISBN 978-1-933864-13-6. [Google Scholar]
- Tatum, W.O.; Husain, A.M.; Benbadis, S.R.; Kaplan, P.W. Handbook of EEG Interpretation; Demos: New York, NY, USA, 2008; ISBN 13: 978-1-933864-11-2. [Google Scholar]
- Schomer, D.L.; Lopes da Silva, F.H. (Eds.) Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications and Related Fields, 6th ed.; Lippincot, Williams & Wilkins: Philadelphia, PA, USA, 2011; ISBN 13: 978-0-7817-8942-4. [Google Scholar]
- Kropotov, J.D. Quantitative EEG Event-Related Potentials and Neurotherapy; Academic Press: Cambridge, MA, USA, 2009; ISBN 978-0-12-374512-5. [Google Scholar]
- Budzynski, T.H.; Budzynski, H.K.; Evans, J.R.; Barbanel, A. Introduction to quantitative EEG and Neurofeedback: Advanced Theory and Applications, 2nd ed.; Academic Press: Oxford, UK, 2009. [Google Scholar]
- Smit, S.J.A.; Boersma, M.; Schnack, H.G.; Micheloyannis, S.; Boomsma, D.I.; Pol, H.E.; Stam, C.J.; de Geus, E.J.C. The brain matures with stronger functional connectivity and decreased randomness of its network. PLoS ONE 2012, 7, e36896. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wang, Y.; Lopez-Naranjo, C.; Hu, S.; Reyes, R.C.G.; Paz-Linares, D.; Areces-Gonzalez, A.; Hamid, A.I.A.; Evans, A.C.; Savostyanov, A.N.; et al. Harmonized-Multinational qEEG norms (HarMNqEEG). NeuroImage 2022, 256, 119190. [Google Scholar] [CrossRef]
- de Bock, R.; Mackintosh, A.J.; Maier, F.; Borgwardt, F.; Riecher-Rössler, A.; Andreou, C. EEG microstates as biomarker for psychosis in ultra-high-risk patients. Transl. Psychiatry 2020, 10, 300. [Google Scholar] [CrossRef]
- John, E.R.; Ahn, H.; Prichep, L.; Trepetin, M.; Brown, D.; Kaye, H. Developmental equations for the electroencephalogram. Science 1980, 210, 1255–1258. [Google Scholar] [CrossRef] [PubMed]
- Van Drongelen, W. Signal Processing for Neuroscientists; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Ruchkin, D. EEG coherence. Int. J Psychophysiol. 2005, 57, 83–85. [Google Scholar] [CrossRef] [PubMed]
- Coben, R.; Clarke, A.R.; Hudspeth, W.; Barry, R.J. EEG power and coherence in autistic spectrum disorder. Clin. Neurophysiol. 2008, 119, 1002–1009. [Google Scholar] [CrossRef] [PubMed]
- Smulders, F.T.Y.; Oever, S.T.; Donkers, F.C.L.; Quaedflieg, C.W.E.M.; van de Ven, V. Single-trial log transformation is optimal in frequency analysis of resting EEG alpha. Eur. J. Neurosci. 2018, 48, 2585–2598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcuse, L.V.; Schneider, M.; Mortati, K.A.; Donnelly, K.M.; Arnedo, V.; Grant, A.C. Quantitative analysis of the EEG posterior-dominant rhythm in healthy adolescents. Clin. Neurophysiol. 2008, 119, 1778–1781. [Google Scholar] [CrossRef]
- Spiegel, M.R. Teoría de la correlación. In Estadística; McGraw-Hill Interamericana: Madrid, Spain, 1991; pp. 322–356. [Google Scholar]
- John, E.R.; Prichep, L.S.; Easton, P. Normative data banks and neurometrics: Basic concepts, methods and results of norm construction. In Handbook of Electroencephalography and Clinical Neurophysiology; Gevins, A.S., Remond, A., Eds.; Elsevier: Amsterdam, The Netherlands, 1987; Volume 1, pp. 449–495. [Google Scholar]
- John, E.R. The neurophysics of consciousness. Brain Res. Rev. 2002, 39, 1–28. [Google Scholar] [CrossRef]
- Szava, S.; Valdes, P.; Biscay, R.; Galan, L.; Bosch, J.; Clark, I.; Jimenez, J.C. High resolution quantitative EEG analysis. Brain Topogr. 1994, 6, 211–219. [Google Scholar] [CrossRef]
- Hughes, J.R.; John, E.R. Conventional and quantitative electroencephalography in psychiatry. J. Neuropsychiatry Clin. Neurosci. 1999, 11, 190–208. [Google Scholar] [CrossRef] [Green Version]
- Kondacs, A.; Szabo, M. Long-term intra-individual variability of the background EEG in normal. Clin. Neurophysiol. 1999, 110, 1708–1716. [Google Scholar] [CrossRef]
- Miller, G.A.; Lutzenberger, W.; Elbert, T. The linked-reference issue in EEG and ERP recording. J. Psychophysiol. 1991, 5, 273–276. [Google Scholar]
- Stone, J.L.; Hughes, J.R. Early history of electroencephalography and establishment of the American Clinical Neurophysiology Society. J. Clin. Neurophysiol. 2013, 30, 28–44. [Google Scholar] [CrossRef]
- Niedermeyer, E. The normal EEG of the waking adult. In Electroencephalography; Niedermeyer, E., Lopes da Silva, F., Eds.; Urban and Schwarzenberg: Baltimore, MA, USA, 1987. [Google Scholar]
- Fein, G.; Raz, J.; Brown, F.F.; Merrin, E.L. Common reference coherence data are confounded by power and phase effects. Electroencephalogr. Clin. Neurophysiol. 1988, 69, 581–584. [Google Scholar] [CrossRef] [PubMed]
- Travis, F. A second linked-reference issue: Possible biasing of power and coherence spectra. Int. J. Neurosci. 1994, 75, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, O.; Perrin, F.; Pernier, J. A theoretical justification of the average reference in topographic evoked potential studies. Electroencephalogr. Clin. Neurophysiol. 1985, 62, 462–464. [Google Scholar] [CrossRef]
- Qin, Y.; Xin, X.; Zhu, H.; Li, F.; Xiong, H.; Zhang, T.; Lai, Y. A Comparative Study on the Dynamic EEG Center of Mass with Different References. Front. Neurosci. 2017, 11, 509. [Google Scholar] [CrossRef] [Green Version]
- Chella, F.; D’Andrea, A.; Basti, A.; Pizzella, V.; Marzetti, L. Non-linear Analysis of Scalp EEG by Using Bispectra: The Effect of the Reference Choice. Front. Neurosci. 2017, 11, 262. [Google Scholar] [CrossRef] [Green Version]
- Nunez, P.L. REST: A good idea but not the gold standard. Clin. Neurophysiol. 2010, 121, 2177–2180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babiloni, C.; Barry, R.J.; Başar, E.; Blinowska, K.J.; Cichocki, A.; Drinkenburg, W.H.I.M.; Klimesch, W.; Knight, R.T.; Lopes da Silva, F.; Nunez, P.; et al. International Federation of Clinical Neurophysiology (IFCN)—EEG research workgroup: Recommendations on frequency and topographic analysis of resting state EEG rhythms. Part 1: Applications in clinical research studies. Clin. Neurophysiol. 2020, 131, 285–307. [Google Scholar] [CrossRef]
- Fanciullacci, C.; Panarese, A.; Spina, V.; Lassi, M.; Mazzoni, A.; Artoni, F.; Micera, S.; Chisari, C. Connectivity Measures Differentiate Cortical and Subcortical Sub-Acute Ischemic Stroke Patients. Front. Hum. Neurosci. 2021, 15, 669915. [Google Scholar] [CrossRef]
- Bares, M.; Brunovsky, M.; Novak, T.; Kopecek, M.; Stopkova, P.; Sos, P.; Krajca, V.; Höschl, C. The change of prefrontal QEEG theta cordance as a predictor of response to bupropion treatment in patients who had failed to respond to previous antidepressant treatments. Eur. Neuropsychopharmacol. 2010, 20, 459–466. [Google Scholar] [CrossRef]
- Leuchter, A.F.; Cook, I.A.; Hunter, A.; Korb, A. Use of clinical neurophysiology for the selection of medication in the treatment of major depressive disorder: The state of the evidence. Clin. EEG Neurosci. 2009, 40, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Hunter, A.M.; Cook, I.A.; Abrams, M.; Leuchter, A.F. Neurophysiologic effects of repeated exposure to antidepressant medication: Are brain functional changes during antidepressant administration influenced by learning processes? Med. Hypotheses 2013, 81, 1004–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenke, C.E.; Kayser, J.; Manna, C.G.; Fekri, S.; Kroppmann, C.J.; Schaller, J.D.; Alschuler, D.M.; Stewart, J.W.; McGrath, P.J.; Bruder, G.E. Current Source Density Measures of Electroencephalographic Alpha Predict Antidepressant Treatment Response. Biol. Psychiatry 2011, 70, 388–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dauwels, J.; Vialatte, F.; Musha, T.; Cichocki, A. A comparative study of synchrony measures for the early diagnosis of Alzheimer’s disease based on EEG. NeuroImage 2010, 49, 668–693. [Google Scholar] [CrossRef] [Green Version]
- Poil, S.-S.; de Haan, W.; van der Flier, W.M.; Mansvelder, H.D.; Scheltens, P.; Linkenkaer-Hansen, K. Integrative EEG biomarkers predict progression to Alzheimer’s disease at the MCI stage. Front. Aging Neurosci. 2013, 5, 58. [Google Scholar] [CrossRef] [Green Version]
- Ponomareva, N.V.; Andreeva, T.; Protasova, M.; Shagam, L.; Goltsov, A.; Fokin, V.; Mitrofanov, A.; Rogaev, E. Age-dependent effect of Alzheimer’s risk variant of CLU on EEG alpha rhythm in non-demented adults. Front. Aging Neurosci. 2013, 5, 86. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, Y.; He, X.; Feng, S.; Hu, J.; Zhang, Q.; Zhao, J.; Huang, Z.; Wang, L.; Ma, G.; et al. Identifying Parkinson’s disease with mild cognitive impairment by using combined MR imaging and electroencephalogram. Eur. Radiol. 2021, 31, 7386–7394. [Google Scholar] [CrossRef]
- Höller, Y.; Trinka, E.; Kalss, G.; Schiepek, G.; Michaelis, R. Correlation of EEG spectra, connectivity, and information theoretical biomarkers with psychological states in the epilepsy monitoring unit—A pilot study. Epilepsy Behav. 2019, 99, 106485. [Google Scholar] [CrossRef] [Green Version]
- Thatcher, R.W.; Walker, R.A.; Guidice, S. Human cerebral hemispheres develop at different rates and ages. Science 1987, 236, 1110–1113. [Google Scholar] [CrossRef]
- Ko, J.; Park, U.; Kim, D.; Kang, S.W. Quantitative Electroencephalogram Standardization: A Sex- and Age-Differentiated Normative Database. Front. Neurosci. 2021, 15, 766781. [Google Scholar] [CrossRef]
- Thatcher, R. Normative EEG databases and EEG biofeedback. J. Neurother. 1998, 2, 8–39. [Google Scholar] [CrossRef]
- Riney, K.; Bogacz, A.; Somerville, E.; Hirsch, E.; Nabbout, R.; Scheffer, I.E.; Zuberi, S.M.; Alsaadi, T.; Jain, S.; French, J.; et al. International League Against Epilepsy classification and definition of epilepsy syndromes with onset at a variable age: Position statement by the ILAE Task Force on Nosology and Definitions. Epilepsia 2022, 63, 1443–1474. [Google Scholar] [CrossRef] [PubMed]
- Specchio, N.; Wirrell, E.C.; Scheffer, I.E.; Nabbout, R.; Riney, K.; Samia, P.; Guerreiro, M.; Gwer, S.; Zuberi, S.M.; Wilmshurst, J.M.; et al. International League Against Epilepsy classification and definition of epilepsy syndromes with onset in childhood: Position paper by the ILAE Task Force on Nosology and Definitions. Epilepsia 2022, 63, 1398–1442. [Google Scholar] [CrossRef] [PubMed]
- Zuberi, S.M.; Wirrell, E.; Yozawitz, E.; Wilmshurst, J.M.; Specchio, N.; Riney, K.; Pressler, R.; Auvin, S.; Samia, P.; Hirsch, E.; et al. ILAE classification and definition of epilepsy syndromes with onset in neonates and infants: Position statement by the ILAE Task Force on Nosology and Definitions. Epilepsia 2022, 63, 1349–1397. [Google Scholar] [CrossRef]
- Claassen, J.; Taccone, F.S.; Horn, P.; Holtkamp, M.; Stocchetti, N.; Oddo, M. Neurointensive Care Section of the European Society of Intensive Care Medicine. Recommendations on the use of EEG monitoring in critically ill patients: Consensus statement from the neurointensive care section of the ESICM. Intensive Care Med. 2013, 39, 1337–1351. [Google Scholar] [CrossRef] [Green Version]
- Leitinger, M.; Beniczky, S.; Rohracher, A.; Gardella, E.; Kalss, G.; Qerama, E.; Höfler, J.; Hess Lindberg-Larsen, A.; Kuchukhidze, G.; Dobesberger, J.; et al. Salzburg Consensus Criteria for Non-Convulsive Status Epilepticus--approach to clinical application. Epilepsy Behav. 2015, 49, 158–163. [Google Scholar] [CrossRef]
- Hirsch, L.J.; Fong, M.W.K.; Leitinger, M.; LaRoche, S.M.; Beniczky, S.; Abend, N.S.; Lee, J.W.; Wusthoff, C.J.; Hahn, C.D.; Westover, M.B.; et al. American Clinical Neurophysiology Society’s Standardized Critical Care EEG Terminology: 2021 Version. J. Clin. Neurophysiol. 2021, 38, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Herman, S.T.; Abend, N.S.; Bleck, T.P.; Chapman, K.E.; Drislane, F.W.; Emerson, R.G.; Gerard, E.E.; Hahn, C.D.; Husain, A.M.; Kaplan, P.W.; et al. Critical Care Continuous EEG Task Force of the American Clinical Neurophysiology Society. Consensus statement on continuous EEG in critically ill adults and children, part II: Personnel, technical specifications, and clinical practice. J. Clin. Neurophysiol. 2015, 32, 96–108. [Google Scholar] [CrossRef] [Green Version]
- Vega-Zelaya, L.; Martín Abad, E.; Pastor, J. Quantified EEG for the characterization of epileptic seizures versus periodic activity in critically ill patients. Brain Sci. 2020, 10, 158. [Google Scholar] [CrossRef] [Green Version]
- Pastor, J.; Vega-Zelaya, L. Titration of pharmacological responses in ICU patients by quantified EEG. Curr. Neuropharmacol. 2023, 21, 4–9. [Google Scholar] [CrossRef]
- Kox, W.J.; von Heymann, C.; Heinze, J.; Prichep, L.S.; John, E.R.; Rundshagen, I. Electroencephalographic mapping during routine clinical practice: Cortical arousal during tracheal intubation? Anesth Analg. 2006, 102, 825–831. [Google Scholar] [CrossRef]
- Manganotti, P.; Furlanis, G.; Ajčević, M.; Polverino, P.; Caruso, P.; Ridolfi, M.; Pozzi-Mucelli, R.A.; Cova, M.A.; Naccarato, M. CT perfusion and EEG patterns in patients with acute isolated aphasia in seizure-related stroke mimics. Seizure 2019, 71, 110–115. [Google Scholar] [CrossRef]
- Pastor, J.; Vega-Zelaya, L.; Martin Abad, E. Specific EEG encephalopathic pattern in SARS-CoV-2 patients. J. Clin. Med. 2020, 9, 1545. [Google Scholar] [CrossRef] [PubMed]
- Appel, S.; Cohen, O.S.; Chapman, J.; Gilat, S.; Rosenmann, H.; Nitsan, Z.; Kahana, E.; Blatt, I. Spatial distribution of abnormal EEG activity in Creutzfeldt-Jakob disease. Neurophysiol. Clin. 2021, 51, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Feyissa, A.M.; Tatum, W.O. Adult EEG. Handb. Clin. Neurol. 2019, 160, 103–124. [Google Scholar] [CrossRef]
- Willems, L.M.; Trienekens, F.; Knake, S.; Beuchat, I.; Rosenow, F.; Schieffer, B.; Karatolios, K.; Strzelczyk, A. EEG patterns and their correlations with short- and long-term mortality in patients with hypoxic encephalopathy. Clin. Neurophysiol. 2021, 132, 2851–2860. [Google Scholar] [CrossRef]
- Neto, E.; Allen, E.A.; Aurlien, H.; Nordby, H.; Eichele, T. EEG Spectral Features Discriminate between Alzheimer’s and Vascular Dementia. Front. Neurol. 2015, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Shreve, L.; Kaur, A.; Vo, C.; Wu, J.; Cassidy, J.M.; Nguyen, A.; Zhou, R.J.; Tran, T.B.; Yang, D.Z.; Medizade, A.I.; et al. Electroencephalography Measures are Useful for Identifying Large Acute Ischemic Stroke in the Emergency Department. J. Stroke Cerebrovasc. Dis. 2019, 28, 2280–2286. [Google Scholar] [CrossRef] [PubMed]
- van der Zande, J.J.; Gouw, A.A.; van Steenoven, I.; van de Beek, M.; Scheltens, P.; Stam, C.J.; Lemstra, A.W. Diagnostic and prognostic value of EEG in prodromal dementia with Lewy bodies. Neurology 2020, 95, e662–e670. [Google Scholar] [CrossRef]
- Sebastián-Romagosa, M.; Udina, E.; Ortner, R.; Dinarès-Ferran, J.; Cho, W.; Murovec, N.; Matencio-Peralba, C.; Sieghartsleitner, S.; Allison, B.Z.; Guger, C. EEG Biomarkers Related With the Functional State of Stroke Patients. Front. Neurosci. 2020, 14, 582. [Google Scholar] [CrossRef]
- Keizer, A.W. Standardization and Personalized Medicine Using Quantitative EEG in Clinical Settings. Clin. EEG Neurosci. 2021, 52, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Jobert, M.; Wilson, F.J.; Ruigt, G.S.; Brunovsky, M.; Prichep, L.S.; Drinkenburg, W.H.; IPEG. Guidelines for the recording and evaluation of pharmaco-EEG data in man: The International Pharmaco-EEG Society (IPEG). Neuropsychobiology 2012, 66, 201–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beniczky, S.; Aurlien, H.; Brøgger, J.C.; Hirsch, L.J.; Schomer, D.L.; Trinka, E.; Pressler, R.M.; Wennberg, R.; Visser, G.H.; Eisermann, M.; et al. Standardized computer-based organized reporting of EEG: SCORE—Second version. Clin. Neurophysiol. 2017, 128, 2334–2346. [Google Scholar] [CrossRef]
- Pastor, J.; Vega-Zelaya, L.; Martin-Abad, E. Necessity of quantitative EEG in daily clinical practice. In Electroencephalography; Nakano, H., Ed.; InTech: London, UK, 2021; ISBN 978-1-83968-289-6. [Google Scholar]
- Peat, E.; Barton, B.; Elliott, E. Statistics Workbook for Evidence-Based Health Care; Wiley-Blackwell: West Sussex, UK, 2008; ISBN 978-1-4051-4644-9. [Google Scholar]
- In, Y. Introduction of a pilot study. Korean J. Anesthesiol. 2017, 70, 601–605. [Google Scholar] [CrossRef] [PubMed]
Lobe | Band | Left Hemisphere | Right Hemisphere | p | ||
---|---|---|---|---|---|---|
Mean | SEM | Mean | SEM | |||
F | Delta | 1.24 | 0.05 | 1.26 | 0.06 | 0.379 |
Theta | 0.72 | 0.05 | 0.72 | 0.04 | 0.854 | |
Alpha | 0.90 | 0.06 | 0.91 | 0.06 | 0.424 * | |
Beta | 0.85 | 0.05 | 0.89 | 0.05 | 0.068 | |
PO | Delta | 1.18 | 0.05 | 1.19 | 0.05 | 0.456 |
Theta | 0.85 | 0.06 | 0.85 | 0.06 | 0.556 | |
Alpha | 1.52 | 0.10 | 1.53 | 0.10 | 0.400 | |
Beta | 1.02 | 0.05 | 0.99 | 0.05 | 0.291 * | |
T | Delta | 1.31 | 0.06 | 1.33 | 0.06 | 0.490 |
Theta | 0.84 | 0.06 | 0.80 | 0.06 | 0.084 | |
Alpha | 1.28 | 0.08 | 1.27 | 0.09 | 0.526 * | |
Beta | 1.07 | 0.05 | 1.02 | 0.05 | 0.161 |
Lobe | <20 YEARS (N = 7) | 20–50 Years (N = 25) | >50 Years (N = 5) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Left | Right | Left | Right | Left | Right | ||||||||||
Band | Mean | SEM | Mean | SEM | Band | Mean | SEM | Mean | SEM | Band | Mean | SEM | Mean | SEM | |
F | Delta | 1.64 | 0.11 | 1.67 | 0.13 | Delta | 1.16 | 0.05 | 1.18 | 0.06 | Delta | 1.11 | 0.11 | 1.08 | 0.05 |
Alpha | 1.21 | 0.07 | 1.30 | 0.12 | Beta | 0.81 | 0.07 | 0.86 | 0.06 | Alpha | 1.09 | 0.11 | 1.06 | 0.14 | |
Theta | 1.10 | 0.05 | 1.09 | 0.09 | Alpha | 0.77 | 0.07 | 0.77 | 0.06 | Beta | 0.96 | 0.11 | 0.90 | 0.09 | |
Beta | 0.90 | 0.03 | 0.98 | 0.05 | Theta | 0.60 | 0.03 | 0.63 | 0.04 | Theta | 0.78 | 0.18 | 0.68 | 0.12 | |
P-O | Alpha | 2.07 | 0.11 | 2.15 | 0.10 | Alpha | 1.35 | 0.12 | 1.35 | 0.11 | Alpha | 1.57 | 0.22 | 1.58 | 0.25 |
Delta | 1.57 | 0.09 | 1.56 | 0.09 | Delta | 1.10 | 0.05 | 1.11 | 0.05 | Beta | 1.13 | 0.09 | 1.00 | 0.15 | |
Theta | 1.28 | 0.12 | 1.27 | 0.11 | Beta | 0.98 | 0.07 | 0.95 | 0.07 | Delta | 1.00 | 0.11 | 1.05 | 0.09 | |
Beta | 1.12 | 0.07 | 1.14 | 0.07 | Theta | 0.73 | 0.06 | 0.72 | 0.06 | Theta | 0.87 | 0.04 | 0.88 | 0.05 | |
T | Alpha | 1.79 | 0.07 | 1.93 | 0.14 | Delta | 1.20 | 0.05 | 1.21 | 0.06 | Alpha | 1.41 | 0.14 | 1.36 | 0.12 |
Delta | 1.71 | 0.07 | 1.83 | 0.06 | Alpha | 1.11 | 0.09 | 1.06 | 0.09 | Delta | 1.29 | 0.19 | 1.22 | 0.23 | |
Beta | 1.27 | 0.05 | 1.24 | 0.08 | Beta | 1.00 | 0.06 | 0.96 | 0.07 | Beta | 1.15 | 0.11 | 0.95 | 0.10 | |
Theta | 1.27 | 0.10 | 1.28 | 0.12 | Theta | 0.71 | 0.05 | 0.66 | 0.06 | Theta | 0.87 | 0.12 | 0.83 | 0.15 |
<20 years | 20–50 Years | >50 Years | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Left | Right | Left | Right | Left | Right | |||||||||||||
Coh | Mean | SEM | Coh | Mean | SEM | Coh | Mean | SEM | Coh | Mean | SEM | Coh | Mean | SEM | Coh | Mean | SEM | |
H | Cohα | 0.1871 | 0.0079 | Cohα | 0.2020 | 0.0058 | Cohδ | 0.2062 | 0.0180 | Cohδ | 0.201 | 0.0156 | Cohα | 0.2004 | 0.0230 | Cohα | 0.2232 | 0.0300 |
Cohδ | 0.1792 | 0.0068 | Cohδ | 0.1745 | 0.0061 | Cohθ | 0.1668 | 0.0133 | Cohθ | 0.169 | 0.0185 | Cohδ | 0.1803 | 0.0067 | Cohδ | 0.1890 | 0.0103 | |
Cohθ | 0.1690 | 0.0124 | Cohθ | 0.1692 | 0.0131 | Cohα | 0.1376 | 0.0185 | Cohα | 0.145 | 0.0108 | Cohθ | 0.1734 | 0.0124 | Cohθ | 0.1854 | 0.0143 | |
Cohβ | 0.1135 | 0.0072 | Cohβ | 0.1261 | 0.0062 | Cohβ | 0.1041 | 0.0050 | Cohβ | 0.104 | 0.0059 | Cohβ | 0.1217 | 0.0174 | Cohβ | 0.1351 | 0.0189 | |
F | Cohδ | 0.2711 | 0.0370 | Cohδ | 0.2878 | 0.0185 | Cohδ | 0.2654 | 0.0327 | Cohδ | 0.2486 | 0.0182 | Cohδ | 0.294 | 0.0216 | Cohδ | 0.2544 | 0.0348 |
Cohθ | 0.2276 | 0.0340 | Cohθ | 0.2328 | 0.0173 | Cohθ | 0.2100 | 0.0212 | Cohθ | 0.205 | 0.0168 | Cohθ | 0.2366 | 0.0198 | Cohθ | 0.1986 | 0.0246 | |
Cohα | 0.1863 | 0.0271 | Cohα | 0.1716 | 0.0115 | Cohα | 0.1722 | 0.0231 | Cohα | 0.1646 | 0.016 | Cohα | 0.1679 | 0.0118 | Cohα | 0.1706 | 0.0344 | |
Cohβ | 0.1630 | 0.0243 | Cohβ | 0.1581 | 0.0108 | Cohβ | 0.1348 | 0.0162 | Cohβ | 0.1283 | 0.0169 | Cohβ | 0.1575 | 0.0117 | Cohβ | 0.1532 | 0.0240 | |
PO | Cohα | 0.2880 | 0.0412 | Cohα | 0.1948 | 0.0187 | Cohα | 0.2020 | 0.0595 | Cohα | 0.2883 | 0.0411 | Cohα | 0.2041 | 0.0204 | Cohα | 0.2658 | 0.0672 |
Cohθ | 0.2331 | 0.0301 | Cohθ | 0.1738 | 0.0135 | Cohθ | 0.1760 | 0.0378 | Cohθ | 0.2266 | 0.0309 | Cohθ | 0.1821 | 0.0152 | Cohθ | 0.2376 | 0.0472 | |
Cohβ | 0.1953 | 0.0348 | Cohδ | 0.1697 | 0.0098 | Cohδ | 0.1534 | 0.0167 | Cohβ | 0.2026 | 0.0321 | Cohδ | 0.1731 | 0.0132 | Cohδ | 0.1856 | 0.0201 | |
Cohδ | 0.1910 | 0.018 | Cohβ | 0.1314 | 0.0131 | Cohβ | 0.1204 | 0.0446 | Cohδ | 0.1827 | 0.0235 | Cohβ | 0.1442 | 0.0166 | Cohβ | 0.1376 | 0.0507 | |
T | Cohα | 0.2140 | 0.039 | Cohδ | 0.2238 | 0.0194 | Cohα | 0.2596 | 0.0588 | Cohα | 0.3120 | 0.0478 | Cohδ | 0.2236 | 0.0244 | Cohα | 0.3330 | 0.1010 |
Cohδ | 0.1686 | 0.0102 | Cohα | 0.1940 | 0.0227 | Cohθ | 0.2110 | 0.0367 | Cohθ | 0.2110 | 0.0423 | Cohα | 0.2117 | 0.0237 | Cohθ | 0.2644 | 0.0799 | |
Cohθ | 0.154 | 0.0218 | Cohθ | 0.1907 | 0.0180 | Cohδ | 0.1870 | 0.0132 | Cohβ | 0.1924 | 0.0646 | Cohθ | 0.2001 | 0.0235 | Cohδ | 0.2314 | 0.0350 | |
Cohβ | 0.0976 | 0.0179 | Cohβ | 0.1265 | 0.0178 | Cohβ | 0.1492 | 0.0402 | Cohδ | 0.1647 | 0.0084 | Cohβ | 0.131 | 0.0185 | Cohβ | 0.172 | 0.0668 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pastor, J.; Vega-Zelaya, L. Normative Structure of Resting-State EEG in Bipolar Derivations for Daily Clinical Practice: A Pilot Study. Brain Sci. 2023, 13, 167. https://doi.org/10.3390/brainsci13020167
Pastor J, Vega-Zelaya L. Normative Structure of Resting-State EEG in Bipolar Derivations for Daily Clinical Practice: A Pilot Study. Brain Sciences. 2023; 13(2):167. https://doi.org/10.3390/brainsci13020167
Chicago/Turabian StylePastor, Jesús, and Lorena Vega-Zelaya. 2023. "Normative Structure of Resting-State EEG in Bipolar Derivations for Daily Clinical Practice: A Pilot Study" Brain Sciences 13, no. 2: 167. https://doi.org/10.3390/brainsci13020167
APA StylePastor, J., & Vega-Zelaya, L. (2023). Normative Structure of Resting-State EEG in Bipolar Derivations for Daily Clinical Practice: A Pilot Study. Brain Sciences, 13(2), 167. https://doi.org/10.3390/brainsci13020167