Anomia: Deciphering Functional Neuroanatomy in Primary Progressive Aphasia Variants
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grossman, M.; Irwin, D.J. Primary Progressive Aphasia and Stroke Aphasia. Continuum 2018, 24, 745–767. [Google Scholar] [CrossRef]
- Gorno-Tempini, M.L.; Hillis, A.E.; Weintraub, S.; Kertesz, A.; Mendez, M.; Cappa, S.F.; Ogar, J.M.; Rohrer, J.D.; Black, S.; Boeve, B.F.; et al. Classification of primary progressive aphasia and its variants. Neurology 2011, 76, 1006–1014. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, D.; Gorno-Tempini, M.L.; Rabinovici, G.D.; Santos-Santos, M.A.; Seeley, W.; Miller, B.L.; Pijnenburg, Y.; Keulen, M.A.; Groot, C.; van Berckel, B.N.M.; et al. Prevalence of amyloid-β pathology in distinct variants of primary progressive aphasia. Ann. Neurol. 2018, 84, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, I.R.; Neumann, M. Molecular neuropathology of frontotemporal dementia: Insights into disease mechanisms from postmortem studies. J. Neurochem. 2016, 138, 54–70. [Google Scholar] [CrossRef] [PubMed]
- Krzosek, P.; Madetko, N.; Migda, A.; Migda, B.; Jaguś, D.; Alster, P. Differential diagnosis of rare subtypes of progressive supranuclear palsy and psp-like syndromes-infrequent manifestations of the most common form of atypical parkinsonism. Front. Aging Neurosci. 2022, 14, 804385. [Google Scholar] [CrossRef]
- Harris, J.M.; Saxon, J.A.; Jones, M.; Snowden, J.S.; Thompson, J.C. Neuropsychological differentiation of progressive aphasic disorders. J. Neuropsychol. 2019, 13, 214–239. [Google Scholar] [CrossRef]
- Migliaccio, R.; Boutet, C.; Valabregue, R.; Ferrieux, S.; Nogues, M.; Lehéricy, S.; Dormont, D.; Levy, R.; Dubois, B.; Teichmann, M. The Brain Network of Naming: A Lesson from Primary Progressive Aphasia. PLoS ONE 2016, 11, e0148707. [Google Scholar] [CrossRef]
- Grossman, M.; McMillan, C.; Moore, P.; Ding, L.; Glosser, G.; Work, M.; Gee, J. What’s in a name: Voxel-based morphometric analyses of MRI and naming difficulty in Alzheimer’s disease, frontotemporal dementia and corticobasal degeneration. Brain 2004, 127, 628–649. [Google Scholar] [CrossRef]
- Breining, B.L.; Faria, A.V.; Tippett, D.C.; Stockbridge, M.D.; Meier, E.L.; Caffo, B.; Hermann, O.; Friedman, R.; Meyer, A.; Tsapkini, K.; et al. Association of Regional Atrophy With Naming Decline in Primary Progressive Aphasia. Neurology 2023, 100, e582–e594. [Google Scholar] [CrossRef]
- Chapman, C.A.; Polyakova, M.; Mueller, K.; Weise, C.; Fassbender, K.; Fliessbach, K.; Kornhuber, J.; Lauer, M.; Anderl-Straub, S.; Ludolph, A.; et al. Structural correlates of language processing in primary progressive aphasia. Brain Commun. 2023, 5, fcad076. [Google Scholar] [CrossRef]
- Race, D.S.; Tsapkini, K.; Crinion, J.; Newhart, M.; Davis, C.; Gomez, Y.; Hillis, A.E.; Faria, A.V. An area essential for linking word meanings to word forms: Evidence from primary progressive aphasia. Brain Lang. 2013, 127, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.M.; Faria, A.V.; Tippett, D.C.; Hillis, A.E.; Friedman, R.B. The relationship between baseline volume in temporal areas and post-treatment naming accuracy in primary progressive aphasia. Aphasiology 2017, 31, 1059–1077. [Google Scholar] [CrossRef] [PubMed]
- Mesulam, M.-M.; Thompson, C.K.; Weintraub, S.; Rogalski, E.J. The Wernicke conundrum and the anatomy of language comprehension in primary progressive aphasia. Brain 2015, 138, 2423–2437. [Google Scholar] [CrossRef] [PubMed]
- Snowden, J.S.; Harris, J.M.; Thompson, J.C.; Kobylecki, C.; Jones, M.; Richardson, A.M.; Neary, D. Semantic dementia and the left and right temporal lobes. Cortex 2018, 107, 188–203. [Google Scholar] [CrossRef] [PubMed]
- Mesulam, M.-M.; Wieneke, C.; Hurley, R.; Rademaker, A.; Thompson, C.K.; Weintraub, S.; Rogalski, E.J. Words and objects at the tip of the left temporal lobe in primary progressive aphasia. Brain 2013, 136, 601–618. [Google Scholar] [CrossRef] [PubMed]
- Bruffaerts, R.; Schaeverbeke, J.; De Weer, A.S.; Nelissen, N.; Dries, E.; Van Bouwel, K.; Sieben, A.; Bergmans, B.; Swinnen, C.; Pijnenburg, Y.; et al. Multivariate analysis reveals anatomical correlates of naming errors in primary progressive aphasia. Neurobiol. Aging 2020, 88, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Catricalà, E.; Polito, C.; Presotto, L.; Esposito, V.; Sala, A.; Conca, F.; Gasparri, C.; Berti, V.; Filippi, M.; Pupi, A.; et al. Neural correlates of naming errors across different neurodegenerative diseases: An FDG-PET study. Neurology 2020, 95, e2816–e2830. [Google Scholar] [CrossRef]
- Hillis, A.E.; Oh, S.; Ken, L. Deterioration of naming nouns versus verbs in primary progressive aphasia. Ann. Neurol. 2004, 55, 268–275. [Google Scholar] [CrossRef]
- Lukic, S.; Borghesani, V.; Weis, E.; Welch, A.; Bogley, R.; Neuhaus, J.; Deleon, J.; Miller, Z.A.; Kramer, J.H.; Miller, B.L.; et al. Dissociating nouns and verbs in temporal and perisylvian networks: Evidence from neurodegenerative diseases. Cortex 2021, 142, 47–61. [Google Scholar] [CrossRef]
- Riello, M.; Faria, A.V.; Ficek, B.; Webster, K.; Onyike, C.U.; Desmond, J.; Frangakis, C.; Tsapkini, K. The Role of Language Severity and Education in Explaining Performance on Object and Action Naming in Primary Progressive Aphasia. Front. Aging Neurosci. 2018, 10, 346. [Google Scholar] [CrossRef]
- Breining, B.L.; Faria, A.V.; Caffo, B.; Meier, E.L.; Sheppard, S.M.; Sebastian, R.; Tippett, D.C.; Hillis, A.E. Neural regions underlying object and action naming: Complementary evidence from acute stroke and primary progressive aphasia. Aphasiology 2022, 36, 732–760. [Google Scholar] [CrossRef] [PubMed]
- Canu, E.; Agosta, F.; Battistella, G.; Spinelli, E.G.; DeLeon, J.; Welch, A.E.; Mandelli, M.L.; Hubbard, H.I.; Moro, A.; Magnani, G. Speech production differences in English and Italian speakers with nonfluent variant PPA. Neurology 2020, 94, e1062–e1072. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ota, S.; Kawakami, N.; Kanno, S.; Suzuki, K. Dyslexia and dysgraphia of primary progressive aphasia in Chinese: A systematic review. Front. Neurol. 2022, 13, 1025660. [Google Scholar] [CrossRef] [PubMed]
- Kremin, H.; Akhutina, T.; Basso, A.; Davidoff, J.; De Wilde, M.; Kitzing, P.; Lorenz, A.; Perrier, D.; van der Sandt-Koenderman, M.; Vendrell, J.; et al. A cross-linguistic data bank for oral picture naming in Dutch, English, German, French, Italian, Russian, Spanish, and Swedish (PEDOI). Brain Cogn. 2003, 53, 243–246. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Torrance, M.; Nottbusch, G.; Alves, R.A.; Arfé, B.; Chanquoy, L.; Chukharev-Hudilainen, E.; Dimakos, I.; Fidalgo, R.; Hyönä, J.; Jóhannesson, Ó.I.; et al. Timed written picture naming in 14 European languages. Behav. Res. Methods 2018, 50, 744–758. [Google Scholar] [CrossRef] [PubMed]
- Tsvetkova, L.S. Afaziya i Vosstanovitel’noe Obuchenie: Uchebnoe Posobie Dlya Studentov Defektologov Fakul’tetov Pedagogicheskih Institutov; Prosveshchenie: Moscow, Russia, 1988; pp. 129–143. [Google Scholar]
- BSPMVIEW v.20161108. Available online: https://zenodo.org/badge/latestdoi/21612/spunt/bspmview (accessed on 20 September 2023).
- Nieto-Castanon, A.; Whitfield-Gabrieli, S. CONN Functional Connectivity Toolbox: RRID SCR_009550, Release 21; Hilbert Press: Boston, MA, USA, 2021. [Google Scholar]
- Nieto-Castanon, A. FMRI denoising pipeline. In Handbook of Functional Connectivity Magnetic Resonance Imaging Methods in CONN; Hilbert Press: Boston, MA, USA, 2020; pp. 17–25. [Google Scholar]
- Cordella, C.; Quimby, M.; Touroutoglou, A.; Brickhouse, M.; Dickerson, B.C.; Green, J.R. Quantification of motor speech impairment and its anatomic basis in primary progressive aphasia. Neurology 2019, 92, e1992–e2004. [Google Scholar] [CrossRef] [PubMed]
- Josephs, K.A.; Duffy, J.R.; Strand, E.A.; Machulda, M.M.; Senjem, M.L.; Gunter, J.L.; Schwarz, C.G.; Reid, R.I.; Spychalla, A.J.; Lowe, V.J.; et al. The evolution of primary progressive apraxia of speech. Brain 2014, 137, 2783–2795. [Google Scholar] [CrossRef] [PubMed]
- Mesulam, M.-M.; Rogalski, E.J.; Wieneke, C.; Hurley, R.S.; Geula, C.; Bigio, E.H.; Thompson, C.K.; Weintraub, S. Primary progressive aphasia and the evolving neurology of the language network. Nat. Rev. Neurol. 2014, 10, 554–569. [Google Scholar] [CrossRef]
- Gleichgerrcht, E.; Fridriksson, J.; Bonilha, L. Neuroanatomical foundations of naming impairments across different neurologic conditions. Neurology 2015, 85, 284–292. [Google Scholar] [CrossRef]
- Schwartz, M.F.; Faseyitan, O.; Kim, J.; Coslett, H.B. The dorsal stream contribution to phonological retrieval in object naming. Brain 2012, 135, 3799–3814. [Google Scholar] [CrossRef]
- Hickok, G.; Poeppel, D. The cortical organization of speech processing. Nat. Rev. Neurosci. 2007, 8, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Aggujaro, S.; Crepaldi, D.; Pistarini, C.; Taricco, M.; Luzzatti, C. Neuro-anatomical correlates of impaired retrieval of verbs and nouns: Interaction of grammatical class, imageability and actionality. J. Neurolinguist. 2006, 19, 175–194. [Google Scholar] [CrossRef]
- Kemmerer, D.; Rudrauf, D.; Manzel, K.; Tranel, D. Behavioral patterns and lesion sites associated with impaired processing of lexical and conceptual knowledge of actions. Cortex 2012, 48, 826–848. [Google Scholar] [CrossRef] [PubMed]
- Bedny, M.; Caramazza, A.; Grossman, E.; Pascual-Leone, A.; Saxe, R. Concepts Are More than Percepts: The Case of Action Verbs. J. Neurosci. 2008, 28, 11347–11353. [Google Scholar] [CrossRef]
- Tyler, L.K.; Randall, B.; Stamatakis, E.A. Cortical differentiation for nouns and verbs depends on grammatical markers. J. Cogn. Neurosci. 2008, 20, 1381–1389. [Google Scholar] [CrossRef] [PubMed]
- Kemmerer, D.; Castillo, J.G.; Talavage, T.; Patterson, S.; Wiley, C. Neuroanatomical distribution of five semantic components of verbs: Evidence from fMRI. Brain Lang. 2008, 107, 16–43. [Google Scholar] [CrossRef]
- Coslett, H.B.; Schwartz, M.F. The parietal lobe and language. Handb. Clin. Neurol. 2018, 151, 365–375. [Google Scholar] [CrossRef]
- Axer, H.; Keyserlingk, A.G.V.; Berks, G.; Keyserlingk, D.G.V. Supra- and Infrasylvian Conduction Aphasia. Brain Lang. 2001, 76, 317–331. [Google Scholar] [CrossRef]
- Baldo, J.V.; Dronkers, N.F. The role of inferior parietal and inferior frontal cortex in working memory. Neuropsychology 2006, 20, 529–538. [Google Scholar] [CrossRef]
- Baldo, J.V.; Katseff, S.; Dronkers, N.F. Brain regions underlying repetition and auditory-verbal short-term memory deficits in aphasia: Evidence from voxel-based lesion symptom mapping. Aphasiology 2012, 26, 338–354. [Google Scholar] [CrossRef]
- Ardila, A.; Bernal, B.; Rosselli, M. Executive Functions Brain System: An Activation Likelihood Estimation Meta-analytic Study. Arch. Clin. Neuropsychol. 2018, 33, 379–405. [Google Scholar] [CrossRef] [PubMed]
- Koenigs, M.; Barbey, A.K.; Postle, B.R.; Grafman, J. Superior Parietal Cortex Is Critical for the Manipulation of Information in Working Memory. J. Neurosci. 2009, 29, 14980–14986. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, J.; Zhang, Y.; Zheng, D.; Zhang, J.; Rong, M.; Wu, H.; Wang, Y.; Zhou, K.; Jiang, T. The Neuroanatomical Basis for Posterior Superior Parietal Lobule Control Lateralization of Visuospatial Attention. Front. Neuroanat. 2016, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- Tranel, D.; Manzel, K.; Asp, E.; Kemmerer, D. Naming dynamic and static actions: Neuropsychological evidence. J. Physiol. Paris. 2008, 102, 80–94. [Google Scholar] [CrossRef][Green Version]
nfvPPA (n = 17) | svPPA (n = 11) | lvPPA (n = 9) | |
---|---|---|---|
Age, years 1 | 64 [60; 67] | 67 [63.5; 68.5] | 65 [56; 67] |
Gender (m/f), n (%) | 6/11 (35/65%) | 5/6 (45/55%) | 6/3 (67/33%) |
Education, years 1 | 15 [13.5; 15] | 15 [13; 15] | 14 [13; 16] |
Disease duration, months 1 | 48 [36; 60] | 36 [16; 48] | 36 [23; 48] |
nfvPPA (n = 17) | svPPA (n = 11) | lvPPA (n = 9) | |
---|---|---|---|
ACE III, total score/100 1 | 71 [45; 83] * | 38 [26; 50] * | 53 [37; 75] |
PASS: word retrieval and expression, n | |||
Normal (0) | 5 | 1 | 0 |
Very mild impairment (0.5) | 7 | 1 | 3 |
Mild impairment (1) | 3 | 5 | 5 |
Moderate impairment (2) | 2 | 4 | 1 |
Severe impairment (3) | 0 | 0 | 0 |
Tsvetkova language assessment scale: | |||
| 55 [40; 59] * | 27.5 [15; 29.5] * | 34 [20.75; 49.5] |
| 29 [22; 29] * | 11 [10; 16] * | 20 [16; 26] |
| 26 [18; 29] * | 15 [4.5; 20] * | 19 [11; 24] |
Cortical Region | Cluster Size | T Value | MNI Coordinates (x, y, z) |
---|---|---|---|
nfvPPA: Tsvetkova language assessment scale, naming (total score) | |||
Left precentral gyrus | 68 | 4.04 | −46, 4, 48 |
3.55 | −44, 4, 40 | ||
svPPA: PASS, word retrieval and expression | |||
Left STG, MTG | 683 | 17.76 | −60, −57, 10 |
11.53 | −60, −62, 2 | ||
11.20 | −66, −51, 8 | ||
svPPA: Tsvetkova language assessment scale, naming (total score) | |||
Left temporal pole | 96 | 6.62 | −58, 8, −27 |
svPPA: Tsvetkova language assessment scale, action naming | |||
Mid-posterior parts of left STG, MTG | 221 | 7.56 | −66, −48, 12 |
svPPA: Tsvetkova language assessment scale, object naming | |||
Left temporal pole | 175 | 10.06 | −54, 16, −30 |
lvPPA: PASS, word retrieval and expression | |||
Left superior parietal lobule | 88 | 8.48 | −26, −46, 62 |
lvPPA: Tsvetkova language assessment scale, naming (total score) | |||
Left supramarginal gyrus | 51 | 4.18 | −45, −36, 36 |
lvPPA: Tsvetkova language assessment scale, action naming | |||
Left IFG, pars triangularis | 85 | 7.32 | −50, 42, 16 |
Left IFG, pars triangularis | 99 | 6.26 | −52, 45, 0 |
lvPPA: Tsvetkova language assessment scale, object naming | |||
Left IFG, pars triangularis | 183 | 10.20 | −50, 42, 0 |
Left temporal pole, superior part | 55 | 6.13 | −54, 15, −10 |
Cortical Region | Cluster Size | MNI Coordinates (x, y, z) |
---|---|---|
nfvPPA: left precentral gyrus | ||
Left and right precentral gyri, postcentral gyri, SMA, superior and middle frontal gyri | 16,729 | −52, −2, 42 |
svPPA: left temporal pole | ||
Left parahippocampal and fusiform gyri, hippocampus, temporal pole | 538 | −18, 4, −34 |
Right temporal pole | 244 | 22, 12, −44 |
Anterior parts of left MTG and inferior temporal gyrus | 121 | −58, −4, −36 |
svPPA: mid-posterior parts of left STG and MTG | ||
Left temporoparietal junction, posterior parts of STG and MTG | 832 | −60, −52, 6 |
Right STG | 226 | 72, 20, −2 |
Left temporal pole, anterior parts of MTG | 173 | −52, 4, −30 |
Right temporal pole | 167 | 60, 10, −22 |
lvPPA: left superior parietal lobule | ||
Left superior parietal lobule | 287 | −24, −66, 64 |
Left inferior parietal lobule | 117 | −32, −42, 46 |
Posterior part of inferior temporal gyrus | 90 | −54, −64, −12 |
Right supramarginal gyrus | 77 | 38, −40, 42 |
lvPPA: left supramarginal gyrus | ||
Left DLPFC | 460 | −40, 44, −6 |
Left supramarginal and angular gyri | 437 | −52, −46, 34 |
Posterior part of left MTG | 277 | −64, −50, 6 |
Left premotor cortex | 201 | −36, 2, 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhmadullina, D.R.; Konovalov, R.N.; Shpilyukova, Y.A.; Fedotova, E.Y.; Illarioshkin, S.N. Anomia: Deciphering Functional Neuroanatomy in Primary Progressive Aphasia Variants. Brain Sci. 2023, 13, 1703. https://doi.org/10.3390/brainsci13121703
Akhmadullina DR, Konovalov RN, Shpilyukova YA, Fedotova EY, Illarioshkin SN. Anomia: Deciphering Functional Neuroanatomy in Primary Progressive Aphasia Variants. Brain Sciences. 2023; 13(12):1703. https://doi.org/10.3390/brainsci13121703
Chicago/Turabian StyleAkhmadullina, Diliara R., Rodion N. Konovalov, Yulia A. Shpilyukova, Ekaterina Yu. Fedotova, and Sergey N. Illarioshkin. 2023. "Anomia: Deciphering Functional Neuroanatomy in Primary Progressive Aphasia Variants" Brain Sciences 13, no. 12: 1703. https://doi.org/10.3390/brainsci13121703
APA StyleAkhmadullina, D. R., Konovalov, R. N., Shpilyukova, Y. A., Fedotova, E. Y., & Illarioshkin, S. N. (2023). Anomia: Deciphering Functional Neuroanatomy in Primary Progressive Aphasia Variants. Brain Sciences, 13(12), 1703. https://doi.org/10.3390/brainsci13121703