Electroencephalography-Based Effects of Acute Alcohol Intake on the Pain Matrix
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Protocol and Participants
2.2. Standardized Noxious Stimulation
2.3. EEG Recording and Pre-Processing
2.4. Statistics
3. Results
3.1. Participants and Alcohol Levels
3.2. Subjective Pain Ratings
3.3. Event-Related EEG Data as Spectral Perturbation
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Woodrow, K.M.; Eltherington, L.G. Feeling no pain: Alcohol as an analgesic. Pain 1988, 32, 159–163. [Google Scholar] [CrossRef] [PubMed]
- James, M.F.; Duthie, A.M.; Duffy, B.L.; McKeag, A.M.; Rice, C.P. Analgesic effect of ethyl alcohol. Br. J. Anaesth. 1978, 50, 139–141. [Google Scholar] [CrossRef] [PubMed]
- Thompson, T.; Oram, C.; Correll, C.U.; Tsermentseli, S.; Stubbs, B. Analgesic Effects of Alcohol: A Systematic Review and Meta-Analysis of Controlled Experimental Studies in Healthy Participants. J. Pain 2017, 18, 499–510. [Google Scholar] [CrossRef]
- Horn-Hofmann, C.; Büscher, P.; Lautenbacher, S.; Wolstein, J. The effect of nonrecurring alcohol administration on pain perception in humans: A systematic review. J. Pain Res. 2015, 8, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Robins, M.T.; Heinricher, M.M.; Ryabinin, A.E. From Pleasure to Pain, and Back Again: The Intricate Relationship Between Alcohol and Nociception. Alcohol Alcohol. 2019, 54, 625–638. [Google Scholar] [CrossRef] [PubMed]
- Zale, E.L.; Maisto, S.A.; Ditre, J.W. Interrelations between pain and alcohol: An integrative review. Clin. Psychol. Rev. 2015, 37, 57–71. [Google Scholar] [CrossRef]
- Riley, J.L.; King, C. Self-report of alcohol use for pain in a multi-ethnic community sample. J. Pain 2009, 10, 944–952. [Google Scholar] [CrossRef]
- Kalinowski, A.; Humphreys, K. Governmental standard drink definitions and low-risk alcohol consumption guidelines in 37 countries. Addiction 2016, 111, 1293–1298. [Google Scholar] [CrossRef]
- Rehm, J. The risks associated with alcohol use and alcoholism. Alcohol Res. Health 2011, 34, 135–143. [Google Scholar]
- Cucinello-Ragland, J.A.; Edwards, S. Neurobiological aspects of pain in the context of alcohol use disorder. Int. Rev. Neurobiol. 2021, 157, 1–29. [Google Scholar] [CrossRef]
- Horn-Hofmann, C.; Capito, E.S.; Wolstein, J.; Lautenbacher, S. Acute alcohol effects on conditioned pain modulation, but not temporal summation of pain. Pain 2019, 160, 2063–2071. [Google Scholar] [CrossRef] [PubMed]
- Zis, P.; Liampas, A.; Artemiadis, A.; Tsalamandris, G.; Neophytou, P.; Unwin, Z.; Kimiskidis, V.K.; Hadjigeorgiou, G.M.; Varrassi, G.; Zhao, Y.; et al. EEG Recordings as Biomarkers of Pain Perception: Where Do We Stand and Where to Go? Pain Ther. 2022, 11, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Larrea, L.; Bastuji, H. Pain and consciousness. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 87 Pt B, 193–199. [Google Scholar] [CrossRef]
- Garland, E.L. Pain processing in the human nervous system: A selective review of nociceptive and biobehavioral pathways. Prim. Care 2012, 39, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Baron, R.; Binder, A.; Wasner, G. Neuropathic pain: Diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol. 2010, 9, 807–819. [Google Scholar] [CrossRef]
- Apkarian, A.V. Definitions of nociception, pain, and chronic pain with implications regarding science and society. Neurosci. Lett. 2019, 702, 1–2. [Google Scholar] [CrossRef]
- Bunk, S.F.; Lautenbacher, S.; Russeler, J.; Muller, K.; Schultz, J.; Kunz, M. Does EEG activity during painful stimulation mirror more closely the noxious stimulus intensity or the subjective pain sensation? Somatosens. Mot. Res. 2018, 35, 192–198. [Google Scholar] [CrossRef]
- Schiavenato, M.; Craig, K.D. Pain assessment as a social transaction: Beyond the “gold standard”. Clin. J. Pain 2010, 26, 667–676. [Google Scholar] [CrossRef]
- van der Miesen, M.M.; Lindquist, M.A.; Wager, T.D. Neuroimaging-based biomarkers for pain: State of the field and current directions. Pain Rep. 2019, 4, e751. [Google Scholar] [CrossRef]
- Iannetti, G.D.; Hughes, N.P.; Lee, M.C.; Mouraux, A. Determinants of laser-evoked EEG responses: Pain perception or stimulus saliency? J. Neurophysiol. 2008, 100, 815–828. [Google Scholar] [CrossRef]
- Mouraux, A.; Iannetti, G.D. The search for pain biomarkers in the human brain. Brain 2018, 141, 3290–3307. [Google Scholar] [CrossRef] [PubMed]
- Mouraux, A.; Iannetti, G.D. Nociceptive Laser-Evoked Brain Potentials Do Not Reflect Nociceptive-Specific Neural Activity. J. Neurophysiol. 2009, 101, 3258–3269. [Google Scholar] [CrossRef] [PubMed]
- Ronga, I.; Valentini, E.; Mouraux, A.; Iannetti, G.D. Novelty is not enough: Laser-evoked potentials are determined by stimulus saliency, not absolute novelty. J. Neurophysiol. 2013, 109, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Legrain, V.; Iannetti, G.D.; Plaghki, L.; Mouraux, A. The pain matrix reloaded: A salience detection system for the body. Prog. Neurobiol. 2011, 93, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Boissoneault, J.; Stennett, B.; Robinson, M.E. Acute alcohol intake alters resting state functional connectivity of nucleus accumbens with pain-related corticolimbic structures. Drug Alcohol Depend. 2020, 207, 107811. [Google Scholar] [CrossRef]
- Salomons, T.V.; Iannetti, G.D.; Liang, M.; Wood, J.N. The “Pain Matrix” in Pain-Free Individuals. JAMA Neurol. 2016, 73, 755–756. [Google Scholar] [CrossRef]
- Bacchetti, P.; Deeks, S.G.; McCune, J.M. Breaking free of sample size dogma to perform innovative translational research. Sci. Transl. Med. 2011, 3, 87ps24. [Google Scholar] [CrossRef]
- Brouwer, I.G. The Widmark formula for alcohol quantification. SADJ 2004, 59, 427–428. [Google Scholar]
- Wunder, C.; Weber, C.; Paulke, A.; Koelzer, S.C.; Holz, F.; Toennes, S.W. Endogenous formation of 1-propanol and methanol after consumption of alcoholic beverages. Forensic Sci. Int. 2021, 325, 110905. [Google Scholar] [CrossRef]
- Wunder, C.; Pogoda, W.; Paulke, A.; Toennes, S.W. Assay of ethanol and congener alcohols in serum and beverages by headspace gas chromatography/mass spectrometry. MethodsX 2021, 8, 101563. [Google Scholar] [CrossRef]
- Iannetti, G.D.; Baumgartner, U.; Tracey, I.; Treede, R.D.; Magerl, W. Pinprick-evoked brain potentials: A novel tool to assess central sensitization of nociceptive pathways in humans. J. Neurophysiol. 2013, 110, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
- Magerl, W.; Krumova, E.K.; Baron, R.; Tolle, T.; Treede, R.D.; Maier, C. Reference data for quantitative sensory testing (QST): Refined stratification for age and a novel method for statistical comparison of group data. Pain 2010, 151, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.Y.; Hsu, S.H.; Pion-Tonachini, L.; Jung, T.P. Evaluation of Artifact Subspace Reconstruction for Automatic EEG Artifact Removal. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 1242–1245. [Google Scholar] [CrossRef]
- Ferree, T.C. Spherical splines and average referencing in scalp electroencephalography. Brain Topogr. 2006, 19, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Anders, M.; Dreismickenbecker, E.; Fleckenstein, J.; Walter, C.; Enax-Krumova, E.K.; Fischer, M.J.; Zinn, S. EEG-based sensory testing reveals altered nociceptive processing in elite endurance athletes. Exp. Brain Res. 2022, 241, 341–354. [Google Scholar] [CrossRef]
- Herrmann, C.S.; Rach, S.; Vosskuhl, J.; Struber, D. Time-frequency analysis of event-related potentials: A brief tutorial. Brain Topogr. 2014, 27, 438–450. [Google Scholar] [CrossRef]
- Grandchamp, R.; Delorme, A. Single-Trial Normalization for Event-Related Spectral Decomposition Reduces Sensitivity to Noisy Trials. Front. Psychol. 2011, 2, 236. [Google Scholar] [CrossRef]
- Granovsky, Y.; Anand, P.; Nakae, A.; Nascimento, O.; Smith, B.; Sprecher, E.; Valls-Solé, J. Normative data for Aδ contact heat evoked potentials in adult population: A multicenter study. Pain 2016, 157, 1156–1163. [Google Scholar] [CrossRef]
- Anders, M.; Anders, B.; Kreuzer, M.; Zinn, S.; Walter, C. Application of Referencing Techniques in EEG-Based Recordings of Contact Heat Evoked Potentials (CHEPS). Front. Hum. Neurosci. 2020, 14, 559969. [Google Scholar] [CrossRef]
- Mishra, P.; Pandey, C.M.; Singh, U.; Keshri, A.; Sabaretnam, M. Selection of appropriate statistical methods for data analysis. Ann. Card. Anaesth. 2019, 22, 297–301. [Google Scholar] [CrossRef]
- Hentschke, H.; Stuttgen, M.C. Computation of measures of effect size for neuroscience data sets. Eur. J. Neurosci. 2011, 34, 1887–1894. [Google Scholar] [CrossRef]
- Jordan, D.; Steiner, M.; Kochs, E.F.; Schneider, G. A program for computing the prediction probability and the related receiver operating characteristic graph. Anesth. Analg. 2010, 111, 1416–1421. [Google Scholar] [CrossRef] [PubMed]
- Tape, T.G. Interpretation of Diagnostic Tests. Ann. Intern. Med. 2001, 135, 72. [Google Scholar] [CrossRef]
- Akeju, O.; Westover, M.B.; Pavone, K.J.; Sampson, A.L.; Hartnack, K.E.; Brown, E.N.; Purdon, P.L. Effects of sevoflurane and propofol on frontal electroencephalogram power and coherence. Anesthesiology 2014, 121, 990–998. [Google Scholar] [CrossRef] [PubMed]
- Kreuzer, M.; Stern, M.A.; Hight, D.; Berger, S.; Schneider, G.; Sleigh, J.W.; Garcia, P.S. Spectral and Entropic Features Are Altered by Age in the Electroencephalogram in Patients under Sevoflurane Anesthesia. Anesthesiology 2020, 132, 1003–1016. [Google Scholar] [CrossRef]
- Lutz, R.; Muller, C.; Dragovic, S.; Schneider, F.; Ribbe, K.; Anders, M.; Schmid, S.; Garcia, P.S.; Schneider, G.; Kreuzer, M.; et al. The absence of dominant alpha-oscillatory EEG activity during emergence from delta-dominant anesthesia predicts neurocognitive impairment-results from a prospective observational trial. J. Clin. Anesth. 2022, 82, 110949. [Google Scholar] [CrossRef] [PubMed]
- Reiser, J.; Kreuzer, M.; Werner, J.; Saller, A.M.; Fischer, J.; Senf, S.; Deffner, P.; Abendschon, N.; Groll, T.; Grott, A.; et al. Nociception-Induced Changes in Electroencephalographic Activity and FOS Protein Expression in Piglets Undergoing Castration under Isoflurane Anaesthesia. Animals 2022, 12, 2309. [Google Scholar] [CrossRef]
- Neddenriep, B.; Bagdas, D.; Contreras, K.M.; Ditre, J.W.; Wolstenholme, J.T.; Miles, M.F.; Damaj, M.I. Pharmacological mechanisms of alcohol analgesic-like properties in mouse models of acute and chronic pain. Neuropharmacology 2019, 160, 107793. [Google Scholar] [CrossRef]
- Cauda, F.; Costa, T.; Diano, M.; Duca, S.; Torta, D.M. Beyond the “Pain Matrix,” inter-run synchronization during mechanical nociceptive stimulation. Front. Hum. Neurosci. 2014, 8, 265. [Google Scholar] [CrossRef]
- Rosner, J.; Hubli, M.; Hostettler, P.; Scheuren, P.S.; Rinert, J.; Kramer, J.L.K.; Hupp, M.; Curt, A.; Jutzeler, C.R. Contact heat evoked potentials: Reliable acquisition from lower extremities. Clin. Neurophysiol. 2018, 129, 584–591. [Google Scholar] [CrossRef]
- Bove, G.M.; Dilley, A. The conundrum of sensitization when recording from nociceptors. J. Neurosci. Methods 2010, 188, 213–218. [Google Scholar] [CrossRef]
- Jepma, M.; Jones, M.; Wager, T.D. The dynamics of pain: Evidence for simultaneous site-specific habituation and site-nonspecific sensitization in thermal pain. J. Pain 2014, 15, 734–746. [Google Scholar] [CrossRef] [PubMed]
→ Measuring Type ↓ Measuring Points | Breath Alcohol Level (%) | Blood Alcohol Level (%) |
---|---|---|
Baseline: First measuring point | 0 (0 to 0) | not tested |
Block 1: Second measuring point | 0.077 (0.073 to 0.090) | 0.102 (0.088 to 0.115) |
Block 2: Third measuring point | 0.068 (0.065 to 0.074) | 0.088 (0.083 to 0.094) |
Block 3: Fourth measuring point | 0.052 (0.048 to 0.056) | 0.070 (0.065 to 0.075) |
Placebo | Alcohol | |||||
---|---|---|---|---|---|---|
Power (dB) | Frequency (Hz) | Time (ms) | Power (dB) | Frequency (Hz) | Time (ms) | |
PEP | ||||||
Baseline | 2.94 (0.38 to 3.66) | 5.4 | 129 | 2.42 (0.75 to 4.20) | 5.9 | 129 |
Block 1 | 3.04 (2.15 to 4.20) | 5.4 | 70 | 1.4 (−0.80 to 2.33) | 4.9 | 90 |
CHEPS | ||||||
Baseline | 7.99 (3.60 to 9.71) | 4.9 | 469 | 7.82 (3.07 to 8.79) | 4.5 | 496 |
Block 1 | 8.41 (3.10 to 10.23) | 3.5 | 512 | 4.53 (2.89 to 5.68) | 3.0 | 527 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dreismickenbecker, E.; Zinn, S.; Romero-Richter, M.; Kohlhaas, M.; Fricker, L.R.; Petzel-Witt, S.; Walter, C.; Kreuzer, M.; Toennes, S.W.; Anders, M. Electroencephalography-Based Effects of Acute Alcohol Intake on the Pain Matrix. Brain Sci. 2023, 13, 1659. https://doi.org/10.3390/brainsci13121659
Dreismickenbecker E, Zinn S, Romero-Richter M, Kohlhaas M, Fricker LR, Petzel-Witt S, Walter C, Kreuzer M, Toennes SW, Anders M. Electroencephalography-Based Effects of Acute Alcohol Intake on the Pain Matrix. Brain Sciences. 2023; 13(12):1659. https://doi.org/10.3390/brainsci13121659
Chicago/Turabian StyleDreismickenbecker, Elias, Sebastian Zinn, Mara Romero-Richter, Madeline Kohlhaas, Lukas R. Fricker, Silvana Petzel-Witt, Carmen Walter, Matthias Kreuzer, Stefan W. Toennes, and Malte Anders. 2023. "Electroencephalography-Based Effects of Acute Alcohol Intake on the Pain Matrix" Brain Sciences 13, no. 12: 1659. https://doi.org/10.3390/brainsci13121659
APA StyleDreismickenbecker, E., Zinn, S., Romero-Richter, M., Kohlhaas, M., Fricker, L. R., Petzel-Witt, S., Walter, C., Kreuzer, M., Toennes, S. W., & Anders, M. (2023). Electroencephalography-Based Effects of Acute Alcohol Intake on the Pain Matrix. Brain Sciences, 13(12), 1659. https://doi.org/10.3390/brainsci13121659