Non-Invasive Mapping of the Neuronal Networks of Language
Abstract
:1. Introduction
2. The Methods of Non-Invasive Mapping
2.1. Methods
2.2. Tasks
2.3. The Reliability and Validity of Non-Invasive Methods
3. Applications in Basic Research
3.1. Acoustic and Phonological Operations
3.2. Semantic Operations
3.3. Syntactic Operations
3.4. Prosody
3.5. Sign Language
3.6. Reading and Dyslexia
4. Perspectives
Funding
Conflicts of Interest
References
- Duffau, H.; Moritz-Gasser, S.; Mandonnet, E. A re-examination of neural basis of language processing: Proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming. Brain Lang. 2014, 131, 1–10. [Google Scholar] [CrossRef]
- Papanicolaou, A.C. The Oxford Handbook of Functional Brain Imaging in Neuropsychology and Cognitive Neurosciences; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Papanicolaou, A.C.; Rezaie, R.; Simos, P.G. The auditory and association cortex and the language evaluation methods. In Clinical Neurophysiology (Handbook of Clinical Neurology); Chauvel, P., Levin, P.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Simos, P.G.; Rezaie, R.; Papanicolaou, A.C. Applications of Magnetoencephalography in Epilepsy and Tumor Surgery; Fountas, K., Ed.; Springer: Berlin, Germany, 2020. [Google Scholar]
- Mesulam, M.M.; Thompson, C.K.; Weintraub, S.; Rogalski, E.J. The Wernicke conundrum and the anatomy of language comprehension in primary progressive aphasia. Brain 2015, 138 Pt 8, 2423–2437. [Google Scholar] [CrossRef]
- Wernicke, C. The symptom complex of aphasia: A psychological study on an anatomical basis. In Boston Studies in the Philosophy of Science; Cohen, R.S., Wartofsky, M.W., Eds.; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1874/1969; pp. 34–97. [Google Scholar]
- Luria, A.R. Traumatic Aphasia: Its Syndromes, Psychology, and Treatment; Mouton de Gruyter: Berlin/Heidelberg, Germany, 1970. [Google Scholar]
- Scott, S.K.; Blank, C.C.; Rosen, S.; Wise, R.J. Identification of a pathway for intelligible speech in the left temporal lobe. Brain 2000, 123 Pt 12, 2400–2406. [Google Scholar] [CrossRef]
- Rauschecker, J.P.; Scott, S.K. Maps and streams in the auditory cortex: Nonhuman primates illuminate human speech processing. Nat. Neurosci. 2009, 12, 718–724. [Google Scholar] [CrossRef]
- Miceli, G.; Gainotti, G.; Caltagirone, C.; Masullo, C. Some aspects of phonological impairment in aphasia. Brain Lang. 1980, 11, 159–169. [Google Scholar] [CrossRef]
- Buchman, A.S.; Garron, D.C.; Trost-Cardamone, J.E.; Wichter, M.D.; Schwartz, M. Word deafness: One hundred years later. J. Neurol. Neurosurg. Psychiatry 1986, 49, 489–499. [Google Scholar] [CrossRef]
- Poeppel, D. Pure word deafness and the bilateral processing of the speech code. Cogn. Sci. 2001, 25, 679–693. [Google Scholar] [CrossRef]
- Rogalsky, C.; Pitz, E.; Hillis, A.E.; Hickok, G. Auditory word comprehension impairment in acute stroke: Relative contribution of phonemic versus semantic factors. Brain Lang. 2008, 107, 167–169. [Google Scholar] [CrossRef]
- Rogalsky, C.; Hickok, G. The role of Broca’s area in sentence comprehension. J. Cogn. Neurosci. 2011, 23, 1664–1680. [Google Scholar] [CrossRef]
- Price, C.J. A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage 2012, 62, 816–847. [Google Scholar] [CrossRef]
- Schirmer, A.; Fox, P.M.; Grandjean, D. On the spatial organization of sound processing in the human temporal lobe: A meta-analysis. Neuroimage 2012, 63, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Mazoyer, B.M.; Tzourio, N.; Frak, V.; Syrota, A.; Murayama, N.; Levrier, O.; Mehler, J. The cortical representation of speech. J. Cogn. Neurosci. 1993, 5, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Narain, C.; Scott, S.K.; Wise, R.J.; Rosen, S.; Leff, A.; Iversen, S.D.; Matthews, P.M. Defining a left-lateralized response specific to intelligible speech using fMRI. Cereb. Cortex 2003, 13, 1362–1368. [Google Scholar] [CrossRef] [PubMed]
- Spitsyna, G.; Warren, J.E.; Scott, S.K.; Turkheimer, F.E.; Wise, R.J.S. Converging language streams in the human temporal lobe. J. Neurosci. 2006, 26, 7328–7336. [Google Scholar] [CrossRef]
- Poeppel, D.; Emmorey, K.; Hickok, G.; Pylkkänen, L. Towards a new neurobiology of language. J. Neurosci. 2012, 32, 14125–14131. [Google Scholar] [CrossRef]
- Hickok, G.; Poeppel, D. Neural basis of speech perception. In Handbook of Clinical Neurology, 3rd ed.; Aminoff, M.J., Boller, F., Swaab, D.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 149–160. [Google Scholar]
- Keator, L.M.; Yourganov, G.; Faria, A.V.; Hillis, A.E.; Tippett, D.C. Application of the dual stream model to neurodegenerative disease: Evidence from a multivariate classification tool in primary progressive aphasia. Aphasiology. 2022, 36, 618–647. [Google Scholar] [CrossRef] [PubMed]
- Marie, P. The third left frontal convolution plays no special role in the function of language. Sem. Me’d 1906, 26, 241–247. [Google Scholar]
- Lhermitte, F.; Gautier, J.C. Aphasia. In Handbook of Clinical Neurology; Vinken, P., Bruyn, G., Eds.; North Holland: Amsterdam, The Netherlands, 1969; pp. 4–84. [Google Scholar]
- Geschwind, N. Language and the brain. Sci. Am. 1972, 226, 76–83. [Google Scholar] [CrossRef]
- Bogen, J.E.; Bogen, G.M. Wernicke’s region—Where is it? Ann. N. Y. Acad. Sci. 1976, 280, 834–843. [Google Scholar] [CrossRef]
- Naeser, M.A.; Helm-Estabrooks, N.; Haas, G.; Auerbach, S.; Srinivasan, M. Relationship between lesion extent in ‘Wernicke’s area’ on computed tomographic scan and predicting recovery of comprehension in Wernicke’s aphasia. Arch. Neurol. 1987, 44, 73–82. [Google Scholar] [CrossRef]
- Turken, A.U.; Dronkers, N.F. The neural architecture of the language comprehension network: Converging evidence from lesion and connectivity analyses. Front. Syst. Neurosci. 2011, 5, 1. [Google Scholar] [CrossRef] [PubMed]
- Snowden, J.S.; Goulding, P.J.; Neary, D. Semantic dementia A form of circumscribed cerebral atrophy. Behav. Neurol. 1989, 2, 167–182. [Google Scholar] [CrossRef]
- Hodges, J.R.; Patterson, K.; Oxbury, S.; Funnell, E. Semantic dementia. Progressive fluent aphasia with temporal lobe atrophy. Brain 1992, 115 Pt 6, 1783–1806. [Google Scholar] [CrossRef] [PubMed]
- Rogers, T.T.; Lambon Ralph, M.A.; Garrard, P.; Bozeat, S.; McClelland, J.L.; Hodges, J.R.; Patterson, K. Structure and deterioration of semantic memory: A neuropsychological and computational investigation. Psychol. Rev. 2004, 111, 205–235. [Google Scholar] [CrossRef] [PubMed]
- Jefferies, E.; Lambon Ralph, M.A. Semantic impairment in stroke aphasia versus semantic dementia: A case-series comparison. Brain 2006, 129 Pt 8, 2132–2147. [Google Scholar] [CrossRef] [PubMed]
- Patterson, K.; Nestor, P.J.; Rogers, T.T. Where do you know what you know? The representation of semantic knowledge in the human brain. Nat. Rev. Neurosci. 2007, 8, 976–987. [Google Scholar] [CrossRef] [PubMed]
- Hurley, R.S.; Paller, K.A.; Rogalski, E.J.; Mesulam, M.M. Neural mechanisms of object naming and word comprehension in primary progressive aphasia. J. Neurosci. 2012, 32, 4848–4855. [Google Scholar] [CrossRef]
- Mesulam, M.M.; Wieneke, C.; Hurley, R.; Rademaker, A.; Thompson, C.K.; Weintraub, S.; Rogalski, E.J. Words and objects at the tip of the left temporal lobe in primary progressive aphasia. Brain 2013, 136 Pt 2, 601–618. [Google Scholar] [CrossRef]
- Schwartz, M.F.; Kimberg, D.Y.; Walker, G.M.; Faseyitan, O.; Brecher, A.; Dell, G.S.; Coslett, H.B. Anterior temporal involvement in semantic word retrieval: Voxel-based lesion-symptom mapping evidence from aphasia. Brain 2009, 132 Pt 12, 3411–3427. [Google Scholar] [CrossRef]
- Pulvermuller, F.; Fadiga, L. Active perception: Sensorimotor circuits as a cortical basis for language. Nat. Rev. Neurosci. 2010, 11, 351–360. [Google Scholar] [CrossRef]
- Pulvermuller, F. How neurons make meaning: Brain mechanisms for embodied and abstract-symbolic semantics. Trends Cogn. Sci. 2013, 17, 458–470. [Google Scholar] [CrossRef] [PubMed]
- Luders, H.; Dinner, D.S.; Lesser, R.P.; Morris, H.H. Evoked potentials in cortical localization. J. Clin. Neurophysiol. 1986, 3, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Gorno-Tempini, M.L.; Dronkers, N.F.; Rankin, K.P.; Ogar, M.J.; Phengrasamy, L.; Rosen, H.J.; Johnson, J.K.; Weiner, M.W.; Miller, B.L. Cognition and anatomy in three variants of primary progressive aphasia. Ann. Neurol. 2004, 55, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Połczyńska, M.; Japardi, K.; Curtiss, S.; Moody, T.; Benjamin, C.; Cho, A.; Vigil, C.; Kuhn, T.; Jones, M.; Bookheimer, S. Improving language mapping in clinical fMRI through assessment of grammar. NeuroImage Clin. 2017, 15, 415–427. [Google Scholar] [CrossRef]
- Meinhold, T.; Hofer, W.; Pieper, T.; Kudernatsch, M.; Staudt, M. Presurgical language fMRI in children, adolescents and young adults: A validation study. Clin. Neuroradiol. 2020, 30, 691–704. [Google Scholar] [CrossRef]
- Ashtari, M.; Perrine, K.; Elbaz, R.; Syed, U.; Thaden, E.; McIlree, C.; Dolgoff-Kaspar, R.; Clarke, T.; Diamond, A.; Ettinger, A. Mapping the functional anatomy of sentence comprehension and application to presurgical evaluation of patients with brain tumor. AJNR Am. J. Neuroradiol. 2005, 26, 1461–1468. [Google Scholar]
- Szekely, A.; D’Amico, S.; Devescovi, A.; Federmeier, K.; Herron, D.; Iyer, G.; Jacobsen, T.; Arévalo, A.L.; Vargha, A.; Bates, E. Timed action and object naming. Cortex 2005, 41, 7–25. [Google Scholar] [CrossRef] [PubMed]
- Binder, J.R.; Swanson, S.J.; Hammeke, T.A.; Morris, G.L.; Mueller, W.M.; Fischer, M.; Benbadis, S.; Frost, J.A.; Rao, S.M.; Haughton, V.M. Determination of language dominance using functional MRI: A comparison with the Wada test. Neurology 1996, 46, 978–984. [Google Scholar] [CrossRef]
- Janecek, J.K.; Swanson, S.J.; Sabsevitz, D.S.; Hammeke, T.A.; Raghavan, M.; Rozman, M.E.; Binder, J.R. Language lateralization by fMRI and Wada testing in 229 patients with epilepsy: Rates and predictors of discordance. Epilepsia 2013, 54, 314–322. [Google Scholar] [CrossRef]
- Papanicolaou, A.C.; Simos, P.G.; Castillo, E.M.; Breier, J.I.; Sarkari, S.; Pataraia, E.; Billingsley, R.L.; Buchanan, S.; Wheless, J.; Maggio, V.; et al. Magnetocephalography: A noninvasive alternative to the Wada procedure. J. Neurosurg. 2004, 100, 867–876. [Google Scholar] [CrossRef]
- Breier, J.I.; Simos, P.G.; Wheless, J.W.; Constantinou, J.E.; Baumgartner, J.E.; Venkataraman, V.; Papanicolaou, A.C. Language dominance in children as determined by magnetic source imaging and the intracarotid amobarbital procedure: A comparison. J. Child. Neurol. 2001, 16, 124–130. [Google Scholar] [CrossRef]
- Papanicolaou, A.C.; Pazo-Alvarez, P.; Castillo, E.M.; Billingsley-Marshall, R.; Breier, J.; Swank, P.; Buchanan, S.; McManis, M.; Clear, T.; Passaro, A. Functional neuroimaging with MEG: Normative language profiles. Neuroimage 2006, 33, 326–342. [Google Scholar] [CrossRef]
- Bowyer, S.M.; Moran, J.E.; Weiland, B.J.; Mason, K.M.; Greenwald, M.L.; Smith, B.J.; Barkley, G.L.; Tepley, N. Language laterality determined by MEG mapping with MR-FOCUSS. Epilepsy Behav. 2005, 6, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Kamada, K.; Sawamura, Y.; Takeuchi, F.; Kuriki, S.; Kawai, K.; Morita, A.; Todo, T. Expressive and receptive language areas determined by a non-invasive reliable method using functional magnetic resonance imaging and magnetoencephalography. Neurosurgery 2007, 60, 296–305, discussion 305–306. [Google Scholar] [CrossRef] [PubMed]
- Bowyer, S.M.; Moran, J.E.; Mason, K.M.; Constantinou, J.E.; Smith, B.J.; Barkley, G.L.; Tepley, N. MEG localization of language-specific cortex utilizing MR-FOCUSS. Neurology 2004, 62, 2247–2255. [Google Scholar] [CrossRef]
- Castillo, E.M.; Simos, P.G.; Venkataraman, V.; Breier, J.I.; Wheless, J.W.; Papanicolaou, A.C. Mapping of expressive language cortex using magnetic source imaging. Neurocase 2001, 7, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Findlay, A.M.; Ambrose, J.B.; Cahn-Weiner, D.A.; Houde, J.F.; Honma, S.; Hinkley, L.B.; Berger, M.S.; Nagarajan, S.S.; Kirsch, H.E. Dynamics of hemispheric dominance for language assessed by magnetoencephalographic imaging. Ann. Neurol. 2012, 71, 668–686. [Google Scholar] [CrossRef] [PubMed]
- Benson, R.R.; FitzGerald, D.B.; LeSueur, L.L.; Kennedy, D.; Kwong, K.; Buchbinder, B.; Davis, T.; Weisskoff, R.; Talavage, T.; Logan, W.; et al. Language dominance determined by whole brain functional MRI in patients with brain lesions. Neurology 1999, 52, 798–809. [Google Scholar] [CrossRef] [PubMed]
- Deblaere, K.; Boon, P.A.; Vandemaele, P.; Tieleman, A.; Vonck, K.; Vingerhoets, G.; Backes, W.; Defreyne, L.; Achten, E. MRI language dominance assessment in epilepsy patients at 1.0 T: Region of interest analysis and comparison with intracarotid amytal testing. Neuroradiology 2004, 46, 413–420. [Google Scholar] [CrossRef]
- Desmond, J.E.; Sum, J.M.; Wagner, A.D.; Demb, J.B.; Shear, P.K.; Glover, G.H.; Gabrieli, J.D.E.; Morrell, M.J. Functional MRI measurement of language lateralization in Wada-tested patients. Brain 1995, 118 Pt 6, 1411–1419. [Google Scholar] [CrossRef]
- Binder, J.R.; Frost, J.A.; Hammeke, T.A.; Rao, S.M.; Cox, R.W. Function of the left planum temporale in auditory and linguistic processing. Brain 1996, 119 Pt 4, 1239–1247. [Google Scholar] [CrossRef]
- Carpentier, A.; Pugh, K.R.; Westerveld, M.; Studholme, C.; Skrinjar, O.; Thompson, J.L.; Spencer, D.D.; Constable, R.T. Functional MRI of language processing: Dependence on input modality and temporal lobe epilepsy. Epilepsia 2001, 42, 1241–1254. [Google Scholar] [CrossRef] [PubMed]
- Hertz-Pannier, L.; Gaillard, W.D.; Mott, S.H.; Cuenod, C.A.; Bookheimer, S.Y.; Weinstein, S.; Conry, J.; Papero, P.H.; Schiff, S.J.; Bihan, D.L.; et al. Noninvasive assessment of language dominance in children and adolescents with functional MRI: A preliminary study. Neurology 1997, 48, 1003–1012. [Google Scholar] [CrossRef] [PubMed]
- Sabbah, P.; Chassoux, F.; Leveque, C.; Landre, E.; Baudoin-Chial, S.; Devaux, B.; Mann, M.; Godon-Hardy, S.; Nioche, C.; Aït-Ameur, A.; et al. Functional MR imaging in assessment of language dominance in epileptic patients. Neuroimage 2003, 18, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Woermann, F.G.; Jokeit, H.; Luerding, R.; Freitag, H.; Schulz, R.; Guertler, S.; Okujava, M.; Wolf, P.; Tuxhorn, I.; Ebner, A. Language lateralization by Wada test and fMRI in 100 patients with epilepsy. Neurology 2003, 61, 699–701. [Google Scholar] [CrossRef]
- Arora, J.; Pugh, K.; Westerveld, M.; Spencer, S.; Spencer, D.D.; Constable, R.T. Language lateralization in epilepsy patients: fMRI validated with the Wada procedure. Epilepsia 2009, 50, 2225–2241. [Google Scholar] [CrossRef]
- Benke, T.; Koylu, B.; Visani, P.; Karner, E.; Brenneis, C.; Bartha, L.; Trinka, E.; Trieb, T.; Felber, S.; Bauer, G.; et al. Language lateralization in temporal lobe epilepsy: A comparison between fMRI and the Wada Test. Epilepsia 2006, 47, 1308–1319. [Google Scholar] [CrossRef]
- Jones, S.E.; Mahmoud, S.Y.; Phillips, M.D. A practical clinical method to quantify language lateralization in fMRI using whole-brain analysis. Neuroimage 2011, 54, 2937–2949. [Google Scholar] [CrossRef]
- Suarez, R.O.; Whalen, S.; Nelson, A.P.; Tie, Y.; Meadows, M.E.; Radmanesh, A.; Golby, A.J. Threshold-independent functional MRI determination of language dominance: A validation study against clinical gold standards. Epilepsy Behav. 2009, 16, 288–297. [Google Scholar] [CrossRef]
- Szaflarski, J.P.; Holland, S.K.; Jacola, L.M.; Lindsell, C.; Privitera, M.D.; Szaflarski, M. Comprehensive presurgical functional MRI language evaluation in adult patients with epilepsy. Epilepsy Behav. 2008, 12, 74–83. [Google Scholar] [CrossRef]
- Zaca, D.; Nickerson, J.P.; Deib, G.; Pillai, J.J. Effectiveness of four different clinical fMRI paradigms for preoperative regional determination of language lateralization in patients with brain tumors. Neuroradiology 2012, 54, 1015–1025. [Google Scholar] [CrossRef] [PubMed]
- Doss, R.C.; Zhang, W.; Risse, G.L.; Dickens, D.L. Lateralizing language with magnetic source imaging: Validation based on the Wada test. Epilepsia 2009, 50, 2242–2248. [Google Scholar] [CrossRef] [PubMed]
- Hirata, M.; Kato, A.; Taniguchi, M.; Saitoh, Y.; Ninomiya, H.; Ihara, A.; Kishima, H.; Oshino, S.; Baba, T.; Yorifuji, S.; et al. Determination of language dominance with synthetic aperture magnetometry: Comparison with the Wada test. Neuroimage 2004, 23, 46–53. [Google Scholar] [CrossRef] [PubMed]
- McDonald, C.R.; Thesen, T.; Hagler, D.J., Jr.; Carlson, C.; Devinksy, O.; Kuzniecky, R.; Barr, W.; Gharapetian, L.; Trongnetrpunya, A.; Dale, A.M.; et al. Distributed source modeling of language with magnetoencephalography: Application to patients with intractable epilepsy. Epilepsia 2009, 50, 2256–2266. [Google Scholar] [CrossRef]
- Maestu, F.; Ortiz, T.; Fernandez, A.; Amo, C.; Martin, P.; Fernández, S.; Sola, R.G. Spanish language mapping using MEG: A validation study. Neuroimage 2002, 17, 1579–1586. [Google Scholar] [CrossRef] [PubMed]
- Merrifield, W.S.; Simos, P.G.; Papanicolaou, A.C.; Philpott, L.M.; Sutherling, W.W. Hemispheric language dominance in magnetoencephalography: Sensitivity, specificity, and data reduction techniques. Epilepsy Behav. 2007, 10, 120–128. [Google Scholar] [CrossRef]
- Tanaka, N.; Liu, H.; Reinsberger, C.; Madsen, J.R.; Bourgeois, B.F.; Dworetzky, B.A.; Hämäläinen, M.S.; Stufflebeam, S.M. Language lateralization represented by spatiotemporal mapping of magnetoencephalography. AJNR Am. J. Neuroradiol. 2013, 34, 558–563. [Google Scholar] [CrossRef]
- Detre, J.A.; Maccotta, L.; King, D.; Alsop, D.C.; Glosser, G.; D’Esposito, M.; Zarahn, E.; Aguirre, G.K.; French, J.A. Functional MRI lateralization of memory in temporal lobe epilepsy. Neurology 1998, 50, 926–932. [Google Scholar] [CrossRef]
- Deblaere, K.; Backes, W.H.; Tieleman, A.; Vandemaele, P.; Defreyne, L.; Vonck, K.; Hofman, P.; Boon, P.; Vermeulen, J.; Wilmink, J.; et al. Lateralized anterior mesiotemporal lobe activation: Semirandom functional MR imaging encoding paradigm in patients with temporal lobe epilepsy—Initial experience. Radiology 2005, 236, 996–1003. [Google Scholar] [CrossRef]
- Simos, P.G.; Papanicolaou, A.C.; Breier, J.I.; Wheless, J.W.; Constantinou, J.E.C.; Gormley, W.B.; Maggio, W.W. Localization of language-specific cortex by using magnetic source imaging and electrical stimulation mapping. J. Neurosurg. 1999, 91, 787–796. [Google Scholar] [CrossRef]
- Castillo, E.M.; Papanicolaou, A.C. Cortical representation of dermatomes: MEG-derived maps after tactile stimulation. Neuroimage 2005, 25, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Ojemann, G.A. Organization of language cortex derived from investigations during neurosurgery. Semin. Neurosci. 1990, 2, 297–306. [Google Scholar]
- Ojemann, G.A. Cortical organization of language. J. Neurosci. 1991, 11, 2281–2287. [Google Scholar] [CrossRef] [PubMed]
- Sanai, N.; Mirzadeh, Z.; Berger, M.S. Functional outcome after language mapping for glioma resection. N. Engl. J. Med. 2008, 358, 18–27. [Google Scholar] [CrossRef]
- Ojemann, G.A.; Dodrill, C.B. Verbal memory deficits after left temporal lobectomy for epilepsy. Mechanism and intraoperative prediction. J. Neurosurg. 1985, 62, 101–107. [Google Scholar] [CrossRef]
- Cervenka, M.C.; Corines, J.; Boatman-Reich, D.F.; Eloyan, A.; Sheng, X.; Franaszczuk, P.J.; Crone, N.E. Electrocorticographic functional mapping identifies human cortex critical for auditory and visual naming. Neuroimage 2013, 69, 267–276. [Google Scholar] [CrossRef]
- Cervenka, M.C.; Boatman-Reich, D.F.; Ward, J.; Franaszczuk, P.J.; Crone, N.E. Language mapping in multilingual patients: Electrocorticography and cortical stimulation during naming. Front. Hum. Neurosci. 2011, 5, 13. [Google Scholar] [CrossRef]
- Hamberger, M.J.; Seidel, W.T.; McKhann, G.M., 2nd; Perrine, K.; Goodman, R.R. Brain stimulation reveals critical auditory naming cortex. Brain 2005, 128, 2742–2749. [Google Scholar] [CrossRef]
- Hermann, B.; Davies, K.; Foley, K.; Bell, B. Visual confrontation naming outcome after standard left anterior temporal lobectomy with sparing versus resection of the superior temporal gyrus: A randomized prospective clinical trial. Epilepsia 1999, 40, 1070–1076. [Google Scholar] [CrossRef]
- Sabsevitz, D.S.; Swanson, S.J.; Hammeke, T.A.; Spanaki, M.V.; Possing, E.T.; Morris, G.L.; Mueller, W.M.; Binder, J.R. Use of preoperative functional neuroimaging to predict language deficits from epilepsy surgery. Neurology 2003, 60, 1788–1792. [Google Scholar] [CrossRef]
- Blount, J.P.; Cormier, J.; Kim, H.; Kankirawatana, P.; Riley, K.O.; Knowlton, R.C. Advances in intracranial monitoring. Neurosurg. Focus 2008, 25, E18. [Google Scholar] [CrossRef] [PubMed]
- Ochi, A.; Otsubo, H. Magnetoencephalography-guided epilepsy surgery for children with intractable focal epilepsy: SickKids experience. Int. J. Psychophysiol. 2008, 68, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Vitikainen, A.M.; Lioumis, P.; Paetau, R.; Salli, E.; Komssi, S.; Metsähonkala, L.; Paetau, A.; Kičić, D.; Blomstedt, G.; Valanne, L.; et al. Combined use of non-invasive techniques for improved functional localization for a selected group of epilepsy surgery candidates. Neuroimage 2009, 45, 342–348. [Google Scholar] [CrossRef]
- Liberman, A.M.; Cooper, F.S.; Shankweiler, D.P.; Studdert-Kennedy, M. Perception of the speech code. Psychol. Rev. 1967, 74, 431–461. [Google Scholar] [CrossRef] [PubMed]
- Liberman, A.M.; Mattingly, I.G. A specialization for speech perception. Science 1989, 243, 489–494. [Google Scholar] [CrossRef]
- Washington, S.D.; Tillinghast, J.S. Conjugating time and frequency: Hemispheric specialization, acoustic uncertainty, and the mustached bat. Front. Neurosci. 2015, 9, 143. [Google Scholar] [CrossRef]
- Belin, P.; Zilbovicius, M.; Crozier, S.; Thivard, L.; Fontaine, A.; Masure, M.C.; Samson, Y. Lateralization of speech and auditory temporal processing. J. Cogn. Neurosci. 1998, 10, 536–540. [Google Scholar] [CrossRef]
- Liegeois-Chauvel, C.; de Graaf, J.B.; Laguitton, V.; Chauvel, P. Specialization of left auditory cortex for speech perception in man depends on temporal coding. Cereb. Cortex 1999, 9, 484–496. [Google Scholar] [CrossRef]
- Nicholls, M.E.; Schier, M.; Stough, C.K.; Box, A. Psychophysical and electrophysiologic support for a left hemisphere temporal processing advantage. Neuropsychiatry Neuropsychol. Behav. Neurol. 1999, 12, 11–16. [Google Scholar]
- Yamasaki, T.; Goto, Y.; Taniwaki, T.; Kinukawa, N.; Kira, J.; Tobimatsu, S. Left hemisphere specialization for rapid temporal processing: A study with auditory 40 Hz steady-state responses. Clin. Neurophysiol. 2005, 116, 393–400. [Google Scholar] [CrossRef]
- Zatorre, R.J.; Belin, P. Spectral and temporal processing in human auditory cortex. Cereb. Cortex 2001, 11, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Jamison, H.L.; Watkins, K.E.; Bishop, D.V.; Matthews, P.M. Hemispheric specialization for processing auditory nonspeech stimuli. Cereb. Cortex 2006, 16, 1266–1275. [Google Scholar] [CrossRef] [PubMed]
- Hullett, P.W.; Hamilton, L.S.; Mesgarani, N.; Schreiner, C.E.; Chang, E.F. Human Superior Temporal Gyrus Organization of Spectrotemporal Modulation Tuning Derived from Speech Stimuli. J. Neurosci. 2016, 36, 2014–2026. [Google Scholar] [CrossRef]
- Papanicolaou, A.C.; Kilintari, M.; Rezaie, R.; Narayana, S.; Babajani-Feremi, A. The Role of the Primary Sensory Cortices in Early Language Processing. J. Cogn. Neurosci. 2017, 29, 1755–1765. [Google Scholar] [CrossRef] [PubMed]
- Vigneau, M.; Beaucousin, V.; Herve, P.Y.; Duffau, H.; Crivello, F.; Houde, O.; Tzourio-Mazoyer, N. Meta-analyzing left hemisphere language areas: Phonology, semantics, and sentence processing. Neuroimage 2006, 30, 1414–1432. [Google Scholar] [CrossRef] [PubMed]
- Vigneau, M.; Beaucousin, V.; Herve, P.Y.; Jobard, G.; Petit, L.; Crivello, F.; Tzourio-Mazoyer, N. What is right-hemisphere contribution to phonological, lexico-semantic, and sentence processing? Insights from a meta-analysis. Neuroimage 2011, 54, 577–593. [Google Scholar] [CrossRef]
- Zatorre, R.J.; Evans, A.C.; Meyer, E.; Gjedde, A. Lateralization of phonetic and pitch discrimination in speech processing. Science 1992, 256, 846–849. [Google Scholar] [CrossRef]
- Braun, A.R.; Varga, M.; Stager, S.; Schulz, G.; Selbie, S.; Maisog, J.M.; Ludlow, C.L. Altered patterns of cerebral activity during speech and language production in developmental stuttering. An H2(15)O positron emission tomography study. Brain 1997, 120 Pt 5, 761–784. [Google Scholar] [CrossRef]
- Bookheimer, S.Y.; Zeffiro, T.A.; Blaxton, T.A.; Gaillard, P.W.; Theodore, W.H. Activation of language cortex with automatic speech tasks. Neurology 2000, 55, 1151–1157. [Google Scholar] [CrossRef]
- Booth, J.R.; Burman, D.D.; Meyer, J.R.; Gitelman, D.R.; Parrish, T.B.; Mesulam, M.M. Modality independence of word comprehension. Hum. Brain Mapp. 2002, 16, 251–261. [Google Scholar] [CrossRef]
- Hugdahl, K.; Thomsen, T.; Ersland, L.; Rimol, L.M.; Niemi, J. The effects of attention on speech perception: An fMRI study. Brain Lang. 2003, 85, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Joanisse, M.F.; Gati, J.S. Overlapping neural regions for processing rapid temporal cues in speech and nonspeech signals. Neuroimage 2003, 19, 64–79. [Google Scholar] [CrossRef] [PubMed]
- Wildgruber, D.; Ackermann, H.; Grodd, W. Differential contributions of motor cortex, basal ganglia, and cerebellum to speech motor control: Effects of syllable repetition rate evaluated by fMRI. Neuroimage 2001, 13, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Belin, P.; Zatorre, R.J.; Lafaille, P.; Ahad, P.; Pike, B. Voice-selective areas in human auditory cortex. Nature 2000, 403, 309–312. [Google Scholar] [CrossRef]
- Jancke, L.; Wustenberg, T.; Scheich, H.; Heinze, H.J. Phonetic perception and the temporal cortex. Neuroimage 2002, 15, 733–746. [Google Scholar] [CrossRef]
- Sekiyama, K.; Kanno, I.; Miura, S.; Sugita, Y. Auditory-visual speech perception examined by fMRI and PET. Neurosci. Res. 2003, 47, 277–287. [Google Scholar] [CrossRef]
- Poeppel, D.; Guillemin, A.; Thompson, J.; Fritz, J.; Bavelier, D.; Braun, A.R. Auditory lexical decision, categorical perception, and FM direction discrimination differentially engage left and right auditory cortex. Neuropsychologia 2004, 42, 183–200. [Google Scholar] [CrossRef]
- Binder, J.R.; Frost, J.A.; Hammeke, T.A.; Bellgowan, P.S.; Springer, J.A.; Kaufman, J.N.; Possing, E.T. Human temporal lobe activation by speech and nonspeech sounds. Cereb. Cortex 2000, 10, 512–528. [Google Scholar] [CrossRef]
- Price, C.J.; Wise, R.J.; Warburton, E.A.; Moore, C.J.; Howard, D.; Patterson, K.; Friston, K.J. Hearing and saying. The functional neuro-anatomy of auditory word processing. Brain 1996, 119 Pt 3, 919–931. [Google Scholar] [CrossRef]
- Poldrack, R.A.; Wagner, A.D.; Prull, M.W.; Desmond, J.E.; Glover, G.H.; Gabrieli, J.D. Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. Neuroimage 1999, 10, 15–35. [Google Scholar] [CrossRef]
- Warburton, E.; Wise, R.J.; Price, C.J.; Weiller, C.; Hadar, U.; Ramsay, S.; Frackowiak, R.S. Noun and verb retrieval by normal subjects. Studies with PET. Brain 1996, 119 Pt 1, 159–179. [Google Scholar] [CrossRef] [PubMed]
- Mechelli, A.; Friston, K.J.; Price, C.J. The effects of presentation rate during word and pseudoword reading: A comparison of PET and fMRI. J. Cogn. Neurosci. 2000, 12 (Suppl. 2), 145–156. [Google Scholar] [CrossRef] [PubMed]
- Riecker, A.; Ackermann, H.; Wildgruber, D.; Meyer, J.; Dogil, G.; Haider, H.; Grodd, W. Articulatory/phonetic sequencing at the level of the anterior perisylvian cortex: A functional magnetic resonance imaging (fMRI) study. Brain Lang. 2000, 75, 259–276. [Google Scholar] [CrossRef]
- Penfield, W.; Roberts, L. Speech and Brain Mechanisms; Princeton University Press: Princeton, NJ, USA, 1959. [Google Scholar]
- Ojemann, G.; Ojemann, J.; Lettich, E.; Berger, M. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J. Neurosurg. 1989, 71, 316–326. [Google Scholar] [CrossRef]
- Wager, T.D.; Smith, E.E. Neuroimaging studies of working memory: A meta-analysis. Cogn. Affect. Behav. Neurosci. 2003, 3, 255–274. [Google Scholar] [CrossRef]
- Zago, L.; Petit, L.; Turbelin, M.R.; Andersson, F.; Vigneau, M.; Tzourio-Mazoyer, N. How verbal and spatial manipulation networks contribute to calculation: An fMRI study. Neuropsychologia 2008, 46, 2403–2414. [Google Scholar] [CrossRef]
- Yang, F.G.; Edens, J.; Simpson, C.; Krawczyk, D.C. Differences in task demands influence the hemispheric lateralization and neural correlates of metaphor. Brain Lang. 2009, 111, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.D.; Koutstaal, W.; Maril, A.; Schacter, D.L.; Buckner, R.L. Task-specific repetition priming in left inferior prefrontal cortex. Cereb. Cortex 2000, 10, 1176–1184. [Google Scholar] [CrossRef]
- Wagner, A.D.; Pare-Blagoev, E.J.; Clark, J.; Poldrack, R.A. Recovering meaning: Left prefrontal cortex guides controlled semantic retrieval. Neuron 2001, 31, 329–338. [Google Scholar] [CrossRef]
- Adams, R.B.; Janata, P. A comparison of neural circuits underlying auditory and visual object categorization. Neuroimage 2002, 16, 361–377. [Google Scholar] [CrossRef]
- Braver, T.S.; Bongiolatti, S.R. The role of frontopolar cortex in subgoal processing during working memory. Neuroimage 2002, 15, 523–536. [Google Scholar] [CrossRef] [PubMed]
- Binder, J.R.; McKiernan, K.A.; Parsons, M.E.; Westbury, C.F.; Possing, E.T.; Kaufman, J.N.; Buchanan, L. Neural correlates of lexical access during visual word recognition. J. Cogn. Neurosci. 2003, 15, 372–393. [Google Scholar] [CrossRef] [PubMed]
- Bright, P.; Moss, H.; Tyler, L.K. Unitary vs multiple semantics: PET studies of word and picture processing. Brain Lang. 2004, 89, 417–432. [Google Scholar] [CrossRef] [PubMed]
- Jennings, J.M.; McIntosh, A.R.; Kapur, S.; Zipursky, R.B.; Houle, S. Functional network differences in schizophrenia: A rCBF study of semantic processing. Neuroreport 1998, 9, 1697–1700. [Google Scholar] [CrossRef] [PubMed]
- Perani, D.; Cappa, S.F.; Schnur, T.; Tettamanti, M.; Collina, S.; Rosa, M.M.; Fazio, F. The neural correlates of verb and noun processing. A PET study. Brain 1999, 122 Pt 12, 2337–2344. [Google Scholar] [CrossRef]
- Chee, M.W.; Weekes, B.; Lee, K.M.; Soon, C.S.; Schreiber, A.; Hoon, J.J.; Chee, M. Overlap and dissociation of semantic processing of Chinese characters, English words, and pictures: Evidence from fMRI. Neuroimage 2000, 12, 392–403. [Google Scholar] [CrossRef]
- Grossman, M.; Koenig, P.; DeVita, C.; Glosser, G.; Alsop, D.; Detre, J.; Gee, J. Neural representation of verb meaning: An fMRI study. Hum. Brain Mapp. 2002, 15, 124–134. [Google Scholar] [CrossRef]
- Heim, S.; Opitz, B.; Friederici, A.D. Broca’s area in the human brain is involved in the selection of grammatical gender for language production: Evidence from event-related functional magnetic resonance imaging. Neurosci. Lett. 2002, 328, 101–104. [Google Scholar] [CrossRef]
- Howard, D.; Patterson, K.; Wise, R.; Brown, W.D.; Friston, K.; Weiller, C.; Frackowiak, R. The cortical localization of the lexicons. Positron emission tomography evidence. Brain 1992, 115 Pt 6, 1769–1782. [Google Scholar] [CrossRef]
- Moore, C.J.; Price, C.J. Three distinct ventral occipitotemporal regions for reading and object naming. Neuroimage 1999, 10, 181–192. [Google Scholar] [CrossRef]
- Small, S.L.; Noll, D.C.; Perfetti, C.A.; Hlustik, P.; Wellington, R.; Schneider, W. Localizing the lexicon for reading aloud:replication of a PET study using fMRI. Neuroreport 1996, 7, 961–965. [Google Scholar] [CrossRef] [PubMed]
- Fiez, J.A.; Balota, D.A.; Raichle, M.E.; Petersen, S.E. Effects of lexicality, frequency, and spelling-to-sound consistency on the functional anatomy of reading. Neuron 1999, 24, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Fiebach, C.J.; Friederici, A.D.; Muller, K.; von Cramon, D.Y. fMRI evidence for dual routes to the mental lexicon in visual word recognition. J. Cogn. Neurosci. 2002, 14, 11–23. [Google Scholar] [CrossRef]
- Demonet, J.F.; Price, C.; Wise, R.; Frackowiak, R.S. Differential activation of right and left posterior sylvian regions by semantic and phonological tasks: A positron-emission tomography study in normal human subjects. Neurosci. Lett. 1994, 182, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Binder, J.R.; Frost, J.A.; Hammeke, T.A.; Bellgowan, P.S.; Rao, S.M.; Cox, R.W. Conceptual processing during the conscious resting state. A functional MRI study. J. Cogn. Neurosci. 1999, 11, 80–95. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.H.; Meunier, F.; Marslen-Wilson, W.D. Neural responses to morphological, syntactic, and semantic properties of single words: An fMRI study. Brain Lang. 2004, 89, 439–449. [Google Scholar] [CrossRef]
- Andreasen, N.C.; O’Leary, D.S.; Arndt, S.; Cizadlo, T.; Rezai, K.; Watkins, G.L.; Hichwa, R.D.I. PET studies of memory: Novel and practiced free recall of complex narratives. Neuroimage 1995, 2, 284–295. [Google Scholar] [CrossRef]
- Wiggins, G.C.; Elisevich, K.; Smith, B.J. Morbidity and infection in combined subdural grid and strip electrode investigation for intractable epilepsy. Epilepsy Res. 1999, 37, 73–80. [Google Scholar] [CrossRef]
- Crinion, J.T.; Lambon-Ralph, M.A.; Warburton, E.A.; Howard, D.; Wise, R.J. Temporal lobe regions engaged during normal speech comprehension. Brain 2003, 126 Pt 5, 1193–1201. [Google Scholar] [CrossRef]
- Vingerhoets, G.; Van Borsel, J.; Tesink, C.; van den Noort, M.; Deblaere, K.; Seurinck, R.; Achten, E. Multilingualism: An fMRI study. Neuroimage 2003, 20, 2181–2196. [Google Scholar] [CrossRef]
- Papanicolaou, A.C.; Levin, H.S.; Eisenberg, H.M.; Moore, B.D. Evoked potential indices of selective hemispheric engagement in affective and phonetic tasks. Neuropsychologia 1983, 21, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Witteman, J.; Van Heuven, V.J.; Schiller, N.O. Hearing feelings: A quantitative meta-analysis on the neuroimaging literature of emotional prosody perception. Neuropsychologia 2012, 50, 2752–2763. [Google Scholar] [CrossRef] [PubMed]
- Stokoe, W.C., Jr. Sign language structure: An outline of the visual communication systems of the American deaf. J. Deaf. Stud. Deaf. Educ. 2005, 10, 3–37. [Google Scholar] [CrossRef] [PubMed]
- Neville, H.J.; Bavelier, D.; Corina, D.; Rauschecker, J.; Karni, A.; Lalwani, A.; Turner, R. Cerebral organization for language in deaf and hearing subjects: Biological constraints and effects of experience. Proc. Natl. Acad. Sci. USA 1998, 95, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.J.; Bavelier, D.; Corina, D.; Jezzard, P.; Neville, H.J. A critical period for right hemisphere recruitment in American Sign Language processing. Nat. Neurosci. 2002, 5, 76–80. [Google Scholar] [CrossRef]
- Sakai, K.L.; Tatsuno, Y.; Suzuki, K.; Kimura, H.; Ichida, Y. Sign and speech: Amodal commonality in left hemisphere dominance for comprehension of sentences. Brain 2005, 128 Pt 6, 1407–1417. [Google Scholar] [CrossRef]
- Newman, A.J.; Supalla, T.; Hauser, P.; Newport, E.L.; Bavelier, D. Dissociating neural subsystems for grammar by contrasting word order and inflection. Proc. Natl. Acad. Sci. USA 2010, 107, 7539–7544. [Google Scholar] [CrossRef]
- Newman, A.J.; Supalla, T.; Hauser, P.C.; Newport, E.L.; Bavelier, D. Prosodic and narrative processing in American Sign Language: An fMRI study. Neuroimage 2010, 52, 669–676. [Google Scholar] [CrossRef]
- Newman, A.J.; Supalla, T.; Fernandez, N.; Newport, E.L.; Bavelier, D. Neural systems supporting linguistic structure, linguistic experience, and symbolic communication in sign language and gesture. Proc. Natl. Acad. Sci. USA 2015, 112, 11684–11689. [Google Scholar] [CrossRef]
- Dejerine, J. Contribution à l’étude anatomo-pathologique et clinique des differentes variétés de cécité verbale. Comptes Rendu Société Biol. 1892, 4, 61–90. [Google Scholar] [CrossRef]
- Imtiaz, K.E.; Nirodi, G.; Khaleeli, A.A. Alexia without agraphia: A century later. Int. J. Clin. Pract. 2001, 55, 225–226. [Google Scholar] [CrossRef] [PubMed]
- Jobard, G.; Crivello, F.; Tzourio-Mazoyer, N. Evaluation of the dual route theory of reading: A metanalysis of 35 neuroimaging studies. Neuroimage 2003, 20, 693–712. [Google Scholar] [CrossRef] [PubMed]
- Cohen, L.; Dehaene, S.; Naccache, L.; Lehericy, S.; Dehaene-Lambertz, G.; Henaff, M.A.; Michel, F. The visual word form area: Spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain 2000, 123 Pt 2, 291–307. [Google Scholar] [CrossRef] [PubMed]
- Cohen, L.; Lehericy, S.; Chochon, F.; Lemer, C.; Rivaud, S.; Dehaene, S. Language-specific tuning of visual cortex? Functional properties of the Visual Word Form Area. Brain 2002, 125 Pt 5, 1054–1069. [Google Scholar] [CrossRef] [PubMed]
- Dehaene, S.; Cohen, L. The unique role of the visual word form area in reading. Trends Cogn. Sci. 2011, 15, 254–262. [Google Scholar] [CrossRef]
- Breier, J.I.; Simos, P.G.; Zouridakis, G.; Papanicolaou, A.C. Relative timing of neuronal activity in distinct temporal lobe areas during a recognition memory task for words. J. Clin. Exp. Neuropsychol. 1998, 20, 782–790. [Google Scholar] [CrossRef]
- Breier, J.I.; Simos, P.G.; Zouridakis, G.; Papanicolaou, A.C. Temporal course of regional brain activation associated with phonological decoding. J. Clin. Exp. Neuropsychol. 1999, 21, 465–476. [Google Scholar] [CrossRef]
- Simos, P.G.; Breier, J.I.; Fletcher, J.M.; Bergman, E.; Papanicolaou, A.C. Cerebral mechanisms involved in word reading in dyslexic children: A magnetic source imaging approach. Cereb. Cortex 2000, 10, 809–816. [Google Scholar] [CrossRef]
- Simos, P.G.; Breier, J.I.; Fletcher, J.M.; Foorman, B.R.; Castillo, E.M.; Papanicolaou, A.C. Brain mechanisms for reading words and pseudowords: An integrated approach. Cereb. Cortex 2002, 12, 297–305. [Google Scholar] [CrossRef]
- Simos, P.G.; Fletcher, J.M.; Bergman, E.; Breier, J.I.; Foorman, B.R.; Castillo, E.M. Dyslexia-specific brain activation profile becomes normal following successful remedial training. Neurology 2002, 58, 1203–1213. [Google Scholar] [CrossRef]
- Papanicolaou, A.C.; Simos, P.G.; Breier, J.I.; Fletcher, J.M.; Foorman, B.R.; Francis, D.; Davis, R.N. Brain mechanisms for reading in children with and without dyslexia: A review of studies of normal development and plasticity. Dev. Neuropsychol. 2003, 24, 593–612. [Google Scholar] [CrossRef] [PubMed]
- Malins, J.G.; Gumkowski, N.; Buis, B.; Molfese, P.; Rueckl, J.G.; Frost, S.J.; Mencl, W.E. Dough, tough, cough, rough: A “fast” fMRI localizer of component processes in reading. Neuropsychologia 2016, 91, 394–406. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.S.; Rastle, K.; Davis, M.H. Can cognitive models explain brain activation during word and pseudoword reading? A meta-analysis of 36 neuroimaging studies. Psychol. Bull. 2013, 139, 766–791. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; Schurz, M.; Kronbichler, M.; Richlan, F. Reading in the brain of children and adults: A meta-analysis of 40 functional magnetic resonance imaging studies. Hum. Brain Mapp. 2015, 36, 1963–1981. [Google Scholar] [CrossRef] [PubMed]
- Richlan, F.; Kronbichler, M.; Wimmer, H. Functional abnormalities in the dyslexic brain: A quantitative meta-analysis of neuroimaging studies. Hum. Brain Mapp. 2009, 30, 3299–3308. [Google Scholar] [CrossRef] [PubMed]
- Paulesu, E.; Danelli, L.; Berlingeri, M. Reading the dyslexic brain: Multiple dysfunctional routes revealed by a new meta-analysis of PET and fMRI activation studies. Front. Hum. Neurosci. 2014, 8, 830. [Google Scholar] [CrossRef]
- Pollack, C.; Luk, G.; Christodoulou, J.A. A meta-analysis of functional reading systems in typically developing and struggling readers across different alphabetic languages. Front. Psychol. 2015, 6, 191. [Google Scholar] [CrossRef]
- Valaki, C.E.; Maestu, F.; Simos, P.G.; Zhang, W.; Fernandez, A.; Amo, C.; Ortiz, T.; Papanicolaou, A.C. Cortical organization for receptive language functions in Chinese, English and Spanish: A cross-linguistic MEG study. Neuropsychologia 2004, 42, 967–979. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papanicolaou, A.C. Non-Invasive Mapping of the Neuronal Networks of Language. Brain Sci. 2023, 13, 1457. https://doi.org/10.3390/brainsci13101457
Papanicolaou AC. Non-Invasive Mapping of the Neuronal Networks of Language. Brain Sciences. 2023; 13(10):1457. https://doi.org/10.3390/brainsci13101457
Chicago/Turabian StylePapanicolaou, Andrew C. 2023. "Non-Invasive Mapping of the Neuronal Networks of Language" Brain Sciences 13, no. 10: 1457. https://doi.org/10.3390/brainsci13101457
APA StylePapanicolaou, A. C. (2023). Non-Invasive Mapping of the Neuronal Networks of Language. Brain Sciences, 13(10), 1457. https://doi.org/10.3390/brainsci13101457