Decreased Functional Connectivity of the Core Pain Matrix in Herpes Zoster and Postherpetic Neuralgia Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Image Acquisition
2.3. Data Preprocessing
2.4. Seed-Based Functional Connectivity Analysis
2.5. Classifier and Performance Evaluation
2.6. Statistical Analysis
3. Results
3.1. Demographic and Clinical Features
3.2. Altered Functional Connectivity in Patients with HZ and PHN
3.3. Classification Results
3.4. Correlations with Clinical Features in HZ and PHN
4. Discussion
4.1. Altered Functional Connectivity with the Thalamus
4.2. Altered Functional Connectivity with the Insula and ACC
4.3. Altered Functional Connectivity with IPL
4.4. Altered Functional Connectivity with M1 and S1
4.5. Identifying Potential Functional Connectivity Differences between PHN and HZ Patients
4.6. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmader, K. Herpes Zoster. Ann. Intern. Med. 2018, 169, ITC19–ITC31. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Yu, S.; Fan, B.; Liu, Y.; Chen, Y.X.; Kudel, I.; Concialdi, K.; DiBonaventura, M.; Hopps, M.; Hlavacek, P.; et al. The Epidemiology of Herpes Zoster and Postherpetic Neuralgia in China: Results from a Cross-Sectional Study. Pain Ther. 2019, 8, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Kawai, K.; Gebremeskel, B.G.; Acosta, C.J. Systematic review of incidence and complications of herpes zoster: Towards a global perspective. BMJ Open 2014, 4, e004833. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.W.; Bouhassira, D.; Kassianos, G.; Leplège, A.; Schmader, K.E.; Weinke, T. The impact of herpes zoster and post-herpetic neuralgia on quality-of-life. BMC Med. 2010, 8, 37. [Google Scholar] [CrossRef] [PubMed]
- Gershon, A.A.; Breuer, J.; Cohen, J.I.; Cohrs, R.J.; Gershon, M.D.; Gilden, D.; Grose, C.; Hambleton, S.; Kennedy, P.G.; Oxman, M.N.; et al. Varicella zoster virus infection. Nat. Rev. Dis. Primers 2015, 1, 15016. [Google Scholar] [CrossRef]
- Raimondo, L.; Oliveira, Ĺ.A.F.; Heij, J.; Priovoulos, N.; Kundu, P.; Leoni, R.F.; van der Zwaag, W. Advances in resting state fMRI acquisitions for functional connectomics. Neuroimage 2021, 243, 118503. [Google Scholar] [CrossRef]
- Legrain, V.; Iannetti, G.D.; Plaghki, L.; Mouraux, A. The pain matrix reloaded: A salience detection system for the body. Prog. Neurobiol. 2011, 93, 111–124. [Google Scholar] [CrossRef]
- Salomons, T.V.; Iannetti, G.D.; Liang, M.; Wood, J.N. The “Pain Matrix” in Pain-Free Individuals. JAMA Neurol. 2016, 73, 755–756. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, M.; Zheng, T.; Xiao, Y.; Wang, S.; Han, F.; Chen, G. Structural and functional brain abnormalities in postherpetic neuralgia: A systematic review of neuroimaging studies. Brain Res. 2021, 1752, 147219. [Google Scholar] [CrossRef]
- Cao, S.; Li, Y.; Deng, W.; Qin, B.; Zhang, Y.; Xie, P.; Yuan, J.; Yu, B.; Yu, T. Local Brain Activity Differences between Herpes Zoster and Postherpetic Neuralgia Patients: A Resting-State Functional MRI Study. Pain Physician 2017, 20, E687–E699. [Google Scholar]
- Cao, S.; Song, G.; Zhang, Y.; Xie, P.; Tu, Y.; Li, Y.; Yu, T.; Yu, B. Abnormal Local Brain Activity Beyond the Pain Matrix in Postherpetic Neuralgia Patients: A Resting-State Functional MRI Study. Pain Physician 2017, 20, E303–E314. [Google Scholar] [PubMed]
- Veréb, D.; Kincses, B.; Spisák, T.; Schlitt, F.; Szabó, N.; Faragó, P.; Kocsis, K.; Bozsik, B.; Tóth, E.; Király, A.; et al. Resting-state functional heterogeneity of the right insula contributes to pain sensitivity. Sci. Rep. 2021, 11, 22945. [Google Scholar] [CrossRef]
- Liu, J.; Huang, Q.; Hong, S.; Zeng, X.; Zhang, D.; Zhou, F.; Jiang, J. Altered gray matter volume in patients with herpes zoster and postherpetic neuralgia. J. Pain Res. 2019, 12, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Seifert, F.; Maihöfner, C. Central mechanisms of experimental and chronic neuropathic pain: Findings from functional imaging studies. Cell. Mol. Life Sci. 2009, 66, 375–390. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, X.; Wang, J.; Gao, F.; Wiech, K.; Hu, L.; Kong, Y. Pain-related reorganization in the primary somatosensory cortex of patients with postherpetic neuralgia. Hum. Brain Mapp. 2022, 43, 5167–5179. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, X.; Feng, Y.; Gao, F.; Kong, Y.; Hu, L. Deficits in ascending and descending pain modulation pathways in patients with postherpetic neuralgia. Neuroimage 2020, 221, 117186. [Google Scholar] [CrossRef]
- Li, J.; Gu, L.; Hong, S.; Chen, Y.; Luo, Q.; Wu, Y.; Yang, J.; Xiong, J.; Lv, H.; Jiang, J. Greater functional connectivity between the ventral frontal cortex and occipital cortex in herpes zoster patients than postherpetic neuralgia patients. Br. J. Radiol. 2022, 96, 20220762. [Google Scholar] [CrossRef]
- Treede, R.D.; Jensen, T.S.; Campbell, J.N.; Cruccu, G.; Dostrovsky, J.O.; Griffin, J.W.; Hansson, P.; Hughes, R.; Nurmikko, T.; Serra, J. Neuropathic pain: Redefinition and a grading system for clinical and research purposes. Neurology 2008, 70, 1630–1635. [Google Scholar] [CrossRef]
- Ashburner, J. A fast diffeomorphic image registration algorithm. Neuroimage 2007, 38, 95–113. [Google Scholar] [CrossRef]
- Satterthwaite, T.D.; Elliott, M.A.; Gerraty, R.T.; Ruparel, K.; Loughead, J.; Calkins, M.E.; Eickhoff, S.B.; Hakonarson, H.; Gur, R.C.; Gur, R.E.; et al. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 2013, 64, 240–256. [Google Scholar] [CrossRef]
- Wu, Y.; Zhong, Y.; Zheng, G.; Liu, Y.; Pang, M.; Xu, H.; Ding, H.; Wang, C.; Zhang, N. Disrupted fronto-temporal function in panic disorder: A resting-state connectome study. Brain Imaging Behav. 2022, 16, 888–898. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Miao, S.; Han, J.; Liang, Z.; Ouyang, G.; Yang, J.; Li, X. Identifying ADHD children using hemodynamic responses during a working memory task measured by functional near-infrared spectroscopy. J. Neural Eng. 2018, 15, 035005. [Google Scholar] [CrossRef] [PubMed]
- Groh, A.; Krieger, P.; Mease, R.A.; Henderson, L. Acute and Chronic Pain Processing in the Thalamocortical System of Humans and Animal Models. Neuroscience 2018, 387, 58–71. [Google Scholar] [CrossRef]
- Starr, C.J.; Sawaki, L.; Wittenberg, G.F.; Burdette, J.H.; Oshiro, Y.; Quevedo, A.S.; McHaffie, J.G.; Coghill, R.C. The contribution of the putamen to sensory aspects of pain: Insights from structural connectivity and brain lesions. Brain. 2011, 134 Pt 7, 1987–2004. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Ren, C.; Wang, M.; Dai, G.; Xiao, Y.; Wang, S.; Han, F.; Chen, G. Altered gray matter volume and functional connectivity in patients with herpes zoster and postherpetic neuralgia. Brain Res. 2021, 1769, 147608. [Google Scholar] [CrossRef]
- McIlwrath, S.L.; Montera, M.A.; Gott, K.M.; Yang, Y.; Wilson, C.M.; Selwyn, R.; Westlund, K.N. Manganese-enhanced MRI reveals changes within brain anxiety and aversion circuitry in rats with chronic neuropathic pain- and anxiety-like behaviors. Neuroimage 2020, 223, 117343. [Google Scholar] [CrossRef]
- Bushnell, M.C.; Ceko, M.; Low, L.A. Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci. 2013, 14, 502–511. [Google Scholar] [CrossRef]
- Coppieters, I.; Meeus, M.; Kregel, J.; Caeyenberghs, K.; De Pauw, R.; Goubert, D.; Cagnie, B. Relations between Brain Alterations and Clinical Pain Measures in Chronic Musculoskeletal Pain: A Systematic Review. J. Pain 2016, 17, 949–962. [Google Scholar] [CrossRef]
- Wiech, K.; Ploner, M.; Tracey, I. Neurocognitive aspects of pain perception. Trends Cogn. Sci. 2008, 12, 306–313. [Google Scholar] [CrossRef]
- Brighina, F.; De Tommaso, M.; Giglia, F.; Scalia, S.; Cosentino, G.; Puma, A.; Panetta, M.; Giglia, G.; Fierro, B. Modulation of pain perception by transcranial magnetic stimulation of left prefrontal cortex. J. Headache Pain 2011, 12, 185–191. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.; Sang, K.; Bodner, M.; Ma, K.; Dong, X.W. Modulation of prefrontal connectivity in postherpetic neuralgia patients with chronic pain: A resting-state functional magnetic resonance-imaging study. J. Pain Res. 2018, 11, 2131–2144. [Google Scholar] [CrossRef] [PubMed]
- Gogolla, N. The insular cortex. Curr. Biol. 2017, 27, R580–R586. [Google Scholar] [CrossRef]
- Timmann, D.; Drepper, J.; Frings, M.; Maschke, M.; Richter, S.; Gerwig, M.; Kolb, F.P. The human cerebellum contributes to motor, emotional and cognitive associative learning. A review. Cortex 2010, 46, 845–857. [Google Scholar] [CrossRef] [PubMed]
- Shackman, A.J.; Salomons, T.V.; Slagter, H.A.; Fox, A.S.; Winter, J.J.; Davidson, R.J. The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat. Rev. Neurosci. 2011, 12, 154–167. [Google Scholar] [CrossRef]
- Koyama, T.; McHaffie, J.G.; Laurienti, P.J.; Coghill, R.C. The subjective experience of pain: Where expectations become reality. Proc. Natl. Acad. Sci. USA 2005, 102, 12950–12955. [Google Scholar] [CrossRef] [PubMed]
- Goffaux, P.; Girard-Tremblay, L.; Marchand, S.; Daigle, K.; Whittingstall, K. Individual differences in pain sensitivity vary as a function of precuneus reactivity. Brain Topogr. 2014, 27, 366–374. [Google Scholar] [CrossRef]
- Fan, X.; Ren, H.; Bu, C.; Lu, Z.; Wei, Y.; Xu, F.; Fu, L.; Ma, L.; Kong, C.; Wang, T.; et al. Alterations in local activity and functional connectivity in patients with postherpetic neuralgia after short-term spinal cord stimulation. Front. Mol. Neurosci. 2022, 15, 938280. [Google Scholar] [CrossRef]
- Çırak, M.; Yağmurlu, K.; Kearns, K.N.; Ribas, E.C.; Urgun, K.; Shaffrey, M.E.; Kalani, M.Y.S. The Caudate Nucleus: Its Connections, Surgical Implications, and Related Complications. World Neurosurg. 2020, 139, e428–e438. [Google Scholar] [CrossRef]
- Burgmer, M.; Petzke, F.; Giesecke, T.; Gaubitz, M.; Heuft, G.; Pfleiderer, B. Cerebral activation and catastrophizing during pain anticipation in patients with fibromyalgia. Psychosom. Med. 2011, 73, 751–759. [Google Scholar] [CrossRef]
- Lin, Y.H.; Young, I.M.; Conner, A.K.; Glenn, C.A.; Chakraborty, A.R.; Nix, C.E.; Bai, M.Y.; Dhanaraj, V.; Fonseka, R.D.; Hormovas, J.; et al. Anatomy and White Matter Connections of the Inferior Temporal Gyrus. World Neurosurg. 2020, 143, e656–e666. [Google Scholar] [CrossRef]
- Weiner, K.S.; Zilles, K. The anatomical and functional specialization of the fusiform gyrus. Neuropsychologia 2016, 83, 48–62. [Google Scholar] [CrossRef] [PubMed]
- Allen, H.N.; Bobnar, H.J.; Kolber, B.J. Left and right hemispheric lateralization of the amygdala in pain. Prog. Neurobiol. 2021, 196, 101891. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Su, J.; He, X.W.; Ban, S.; Zhu, Q.; Cui, Y.; Zhang, J.; Hu, Y.; Liu, Y.S.; Zhao, R.; et al. Disrupted functional connectivity between sub-regions in the sensorimotor areas and cortex in migraine without aura. J. Headache Pain 2020, 21, 47. [Google Scholar] [CrossRef] [PubMed]
- Niddam, D.M.; Wang, S.J.; Tsai, S.Y. Pain sensitivity and the primary sensorimotor cortices: A multimodal neuroimaging study. Pain 2021, 162, 846–855. [Google Scholar] [CrossRef] [PubMed]
- Brumagne, S.; Diers, M.; Danneels, L.; Moseley, G.L.; Hodges, P.W. Neuroplasticity of Sensorimotor Control in Low Back Pain. J. Orthop. Sports Phys. Ther. 2019, 49, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Tu, Y.; Gollub, R.L.; Ortiz, A.; Napadow, V.; Yu, S.; Wilson, G.; Park, J.; Lang, C.; Jung, M.; et al. Visual network alterations in brain functional connectivity in chronic low back pain: A resting state functional connectivity and machine learning study. Neuroimage Clin. 2019, 22, 101775. [Google Scholar] [CrossRef]
- Ichesco, E.; Peltier, S.J.; Mawla, I.; Harper, D.E.; Pauer, L.; Harte, S.E.; Clauw, D.J.; Harris, R.E. Prediction of Differential Pharmacologic Response in Chronic Pain Using Functional Neuroimaging Biomarkers and a Support Vector Machine Algorithm: An Exploratory Study. Arthritis. Rheumatol. 2021, 73, 2127–2137. [Google Scholar] [CrossRef]
- Cao, S.; Qin, B.; Zhang, Y.; Yuan, J.; Fu, B.; Xie, P.; Song, G.; Li, Y.; Yu, T. Herpes zoster chronification to postherpetic neuralgia induces brain activity and grey matter volume change. Am. J. Transl. Res. 2018, 10, 184–199. [Google Scholar]
Clinical Information | HC | HZ | PHN | Statistic Results (p Values) |
---|---|---|---|---|
n = 54 | n = 52 | n = 54 | ||
Age (years) | 58.6 ± 6.3 | 61.0 ± 9.0 | 61.8 ± 8.6 | F = 2.337 (0.100) |
Sex (male: female) | 27:27 | 24:28 | 28:26 | χ2 = 0.357 (0.837) |
Skin lesions (L: R) | — | 27:25 | 25:29 | χ2 = 0.336 (0.562) |
Illness duration (days) | — | 10.0 (8.8) | 60.0 (90.0) a | Z = −8.908 (<0.001) * |
VAS score | — | 6.0 (1.0) | 6.0 (1.0) | Z = −0.695 (0.487) |
HAMA score | 6.9 ± 1.8 | 12.9 ± 3.6 b | 13.0 ± 3.3 c | F = 74.692 (<0.001) * |
HAMD score | 6.6 ± 1.9 | 15.4 ± 3.8 b | 17.9 ± 5.4 a,c | F = 119.813 (<0.001) * |
Regions of Interest | Contrast | Brain Region | Cluster Size (Number of Voxels) | Peak Intensity | MNI Coordinates | |||
---|---|---|---|---|---|---|---|---|
X | Y | Z | ||||||
Left THA | PHN < HC | Inferior Frontal Gyrus | R | 102 | −5.10 | 54 | 21 | −9 |
Superior Temporal Gyrus | L | 128 | −5.32 | −45 | 18 | −18 | ||
Putamen | L | 629 | −5.21 | −12 | 9 | −3 | ||
Putamen | R | 503 | −5.63 | 15 | 0 | 9 | ||
ACC | L | 438 | −4.91 | 0 | 9 | 24 | ||
Right THA | HZ < HC | Putamen | R | 66 | −4.33 | 21 | 18 | 0 |
Putamen | L | 131 | −4.83 | −36 | −12 | −6 | ||
PHN < HC | Putamen | R | 863 | −5.62 | 12 | 6 | 0 | |
Putamen | L | 761 | −4.96 | −27 | −15 | 9 | ||
Superior Temporal Gyrus | L | 142 | −5.15 | −45 | 18 | −18 | ||
ACC | R | 383 | −4.71 | 6 | 24 | 21 | ||
Middle Frontal Gyrus | L | 84 | −4.78 | −33 | 51 | 15 | ||
Left INS | HZ < HC | Putamen | R | 362 | −5.29 | 30 | 9 | 9 |
Median Cingulate Gyrus | R | 128 | −4.34 | 3 | 21 | 33 | ||
PHN < HC | Bilateral Cerebellum Posterior Lobe | 1057 | −5.46 | −36 | −57 | −57 | ||
Middle Frontal Gyrus | L | 111 | −4.63 | −33 | 45 | 21 | ||
Bilateral Median Cingulate Gyrus | 1324 | −5.87 | −9 | 12 | 39 | |||
Right INS | PHN < HC | Cerebellum Posterior Lobe | L | 295 | −5.60 | −36 | −57 | −57 |
Insula | L | 663 | −5.52 | −42 | −3 | −6 | ||
Middle Frontal Gyrus | L | 128 | −4.74 | −33 | 42 | 18 | ||
Bilateral Supplementary Motor Area | 996 | −5.16 | −12 | −9 | 54 | |||
Precuneus | L | 113 | −4.24 | −12 | −45 | 54 | ||
Left ACC | PHN < HC | Putamen | L | 340 | −5.16 | −24 | −12 | 0 |
Putamen | R | 260 | −4.64 | 18 | 18 | −6 | ||
Median Cingulate Gyrus | R | 141 | −4.47 | 6 | −33 | 45 | ||
Right ACC | PHN < HC | Putamen | L | 408 | −5.17 | −24 | −12 | 0 |
Putamen | R | 290 | −4.55 | 18 | 18 | −6 | ||
Left IPL | PHN < HC | Inferior Temporal Gyrus | R | 134 | −5.30 | 51 | −54 | −15 |
Amygdala | R | 124 | −4.75 | 27 | 0 | −18 | ||
M1 | L | 102 | −4.53 | −51 | 3 | 9 | ||
Right IPL | PHN < HC | Inferior Temporal Gyrus | R | 104 | −4.70 | 51 | −54 | −15 |
Fusiform Gyrus | L | 90 | −4.69 | −45 | −57 | −21 | ||
Middle Frontal Gyrus | R | 75 | −4.30 | 33 | 9 | 51 | ||
Left M1 | PHN < HC | Amygdala | R | 154 | −4.82 | 30 | 0 | −21 |
Superior Temporal Gyrus | L | 152 | −4.69 | −51 | 6 | −18 | ||
Insula | L | 301 | −4.64 | −33 | −18 | 3 | ||
Inferior Frontal Gyrus | R | 126 | −4.61 | 51 | 21 | 18 | ||
Right M1 | PHN < HC | Inferior Temporal Gyrus | L | 172 | −4.60 | −42 | 9 | −36 |
Insula | L | 135 | −5.12 | −39 | −15 | 3 | ||
Putamen | R | 120 | −4.22 | 30 | −12 | 12 | ||
S1 | L | 209 | −4.56 | −51 | −18 | 33 | ||
S1 | R | 120 | −4.33 | 42 | −30 | 36 | ||
Left S1 | PHN < HC | Amygdala | R | 85 | −4.89 | 27 | −3 | −18 |
S1 | R | 690 | −5.28 | 36 | −42 | 60 | ||
Right S1 | PHN < HC | Insula | L | 359 | −5.25 | −39 | −15 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Jiang, X.; Gu, L.; Li, J.; Wu, Y.; Li, L.; Xiong, J.; Lv, H.; Kuang, H.; Jiang, J. Decreased Functional Connectivity of the Core Pain Matrix in Herpes Zoster and Postherpetic Neuralgia Patients. Brain Sci. 2023, 13, 1357. https://doi.org/10.3390/brainsci13101357
Yang J, Jiang X, Gu L, Li J, Wu Y, Li L, Xiong J, Lv H, Kuang H, Jiang J. Decreased Functional Connectivity of the Core Pain Matrix in Herpes Zoster and Postherpetic Neuralgia Patients. Brain Sciences. 2023; 13(10):1357. https://doi.org/10.3390/brainsci13101357
Chicago/Turabian StyleYang, Jiaojiao, Xiaofeng Jiang, Lili Gu, Jiahao Li, Ying Wu, Linghao Li, Jiaxin Xiong, Huiting Lv, Hongmei Kuang, and Jian Jiang. 2023. "Decreased Functional Connectivity of the Core Pain Matrix in Herpes Zoster and Postherpetic Neuralgia Patients" Brain Sciences 13, no. 10: 1357. https://doi.org/10.3390/brainsci13101357
APA StyleYang, J., Jiang, X., Gu, L., Li, J., Wu, Y., Li, L., Xiong, J., Lv, H., Kuang, H., & Jiang, J. (2023). Decreased Functional Connectivity of the Core Pain Matrix in Herpes Zoster and Postherpetic Neuralgia Patients. Brain Sciences, 13(10), 1357. https://doi.org/10.3390/brainsci13101357