Mathematics and Numerosity but Not Visuo-Spatial Working Memory Correlate with Mathematical Anxiety in Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Math Anxiety
2.2.2. Mathematical Abilities
2.2.3. Numerosity Estimation Abilities
2.2.4. Visuo-Spatial Working Memory
2.2.5. Reading Abilities
2.3. Procedure
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hembree, R. The Nature, Effects, and Relief of Mathematics Anxiety. J. Res. Math. Educ. 1990, 21, 33–46. [Google Scholar] [CrossRef]
- Beilock, S.L.; Maloney, E.A. Math Anxiety: A Factor in Math Achievement Not to Be Ignored. Policy Insights Behav. Brain Sci. 2015, 2, 4–12. [Google Scholar] [CrossRef]
- Dougherty, C. Numeracy, literacy and earnings: Evidence from the National Longitudinal Survey of Youth. Econ. Educ. Rev. 2003, 22, 511–521. [Google Scholar] [CrossRef] [Green Version]
- Parsons, S.; Bynner, J. Does Numeracy Matter More? 1st ed.; NRDC: London, UK, 2005. [Google Scholar]
- Ashcraft, M.H. Math anxiety: Personal, educational, and cognitive consequences. Curr. Dir. Psychol. Sci. 2002, 11, 181–185. [Google Scholar] [CrossRef]
- Richardson, F.C.; Suinn, R.M. The Mathematics Anxiety Rating Scale: Psychometric data. J. Couns. Psychol. 1972, 19, 551. [Google Scholar] [CrossRef]
- Ashcraft, M.H.; Faust, M.W. Mathematics Anxiety and Mental Arithmetic Performance: An Exploratory Investigation. Cogn. Emot. 1994, 8, 97–125. [Google Scholar] [CrossRef]
- Ashcraft, M.H.; Krause, J.A.; Hopko, D.R. Is math anxiety a mathematical learning disability? In Why Is Math So Hard for Some Children? The Nature and Origins of Mathematical Learning Difficulties and Disabilities; Berch, D.B., Mazzocco, M.M.M., Eds.; Brookes: Baltimore, MD, USA, 2007; pp. 329–348. [Google Scholar]
- Devine, A.; Fawcett, K.; Szucs, D.; Dowker, A. Gender differences in mathematics anxiety and the relation to mathematics performance while controlling for test anxiety. Behav. Brain Funct. 2012, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- Krinzinger, H.; Kaufmann, L.; Willmes, K. Math anxiety and math ability in early primary school years. J. Psychoeduc. Assess. 2009, 27, 206–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez, G.; Gunderson, E.A.; Levine, S.C.; Beilock, S.L. Math Anxiety, Working Memory, and Math Achievement in Early Elementary School. J. Cogn. Dev. 2013, 14, 187–202. [Google Scholar] [CrossRef]
- Lee, J. Universals and specifics of math self-concept, math self-efficacy, and math anxiety across 41 PISA 2003 participating countries. Learn. Individ. Differ. 2009, 19, 355–365. [Google Scholar] [CrossRef]
- Malanchini, M.; Rimfeld, K.; Shakeshaft, N.G.; Rodic, M.; Schofield, K.; Selzam, S.; Dale, P.S.; Petrill, S.A.; Kovas, Y. The genetic and environmental aetiology of spatial, mathematics and general anxiety. Sci. Rep. 2017, 7, 42218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malanchini, M.; Rimfeld, K.; Wang, Z.; Petrill, S.A.; Tucker-Drob, E.M.; Plomin, R.; Kovas, Y. Genetic factors underlie the association between anxiety, attitudes and performance in mathematics. Transl. Psychiatry 2020, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Ashcraft, M.H.; Kirk, E.P. The relationships among working memory, math anxiety, and performance. J. Exp. Psychol. Gen. 2001, 130, 224. [Google Scholar] [CrossRef] [PubMed]
- Maloney, E.A.; Ansari, D.; Fugelsang, J.A. The effect of mathematics anxiety on the processing of numerical magnitude. Q. J. Exp. Psychol. 2011, 64, 10–16. [Google Scholar] [CrossRef]
- Wang, Z.; Hart, S.A.; Kovas, Y.; Lukowski, S.; Soden, B.; Thompson, L.A.; Plomin, R.; McLoughlin, G.; Bartlett, C.W.; Lyons, I.M.; et al. Who is afraid of math? Two sources of genetic variance for mathematical anxiety. J. Child Psychol. Psychiatry Allied Discip. 2014, 55, 1056–1064. [Google Scholar] [CrossRef] [PubMed]
- Baddeley, A. The episodic buffer: A new component of working memory? Trends Cogn. Sci. 2000, 4, 417–423. [Google Scholar] [CrossRef]
- Miller, H.; Bichsel, J. Anxiety, working memory, gender, and math performance. Pers. Individ. Dif. 2004, 37, 591–606. [Google Scholar] [CrossRef]
- Passolunghi, M.C.; Cargnelutti, E.; Pellizzoni, S. The relation between cognitive and emotional factors and arithmetic problem-solving. Educ. Stud. Math. 2019, 100, 271–290. [Google Scholar] [CrossRef]
- Passolunghi, M.C.; Caviola, S.; De Agostini, R.; Perin, C.; Mammarella, I.C. Mathematics anxiety, working memory, and mathematics performance in secondary-school children. Front. Psychol. 2016, 7, 42. [Google Scholar] [CrossRef] [Green Version]
- Beilock, S.L.; Carr, T.H. When high-powered people fail: Working memory and “Choking under pressure” in math. Psychol. Sci. 2005, 16, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Mattarella-Micke, A.; Mateo, J.; Kozak, M.N.; Foster, K.; Beilock, S.L. Choke or Thrive? The Relation Between Salivary Cortisol and Math Performance Depends on Individual Differences in Working Memory and Math-Anxiety. Emotion 2011, 11, 1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez, G.; Chang, H.; Maloney, E.A.; Levine, S.C.; Beilock, S.L. On the relationship between math anxiety and math achievement in early elementary school: The role of problem solving strategies. J. Exp. Child Psychol. 2016, 141, 83–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caviola, S.; Toffalini, E.; Giofrè, D.; Ruiz, J.M.; Szűcs, D.; Mammarella, I.C. Math Performance and Academic Anxiety Forms, from Sociodemographic to Cognitive Aspects: A Meta-analysis on 906,311 Participants. Educ. Psychol. Rev. 2021, 34, 363–399. [Google Scholar] [CrossRef]
- Maloney, E.A. Math anxiety: Causes, Consequences, and Remediation. In Handbook of Motivation at School; Routledge: New York, NY, USA, 2016; p. 16. [Google Scholar]
- Maloney, E.A.; Beilock, S.L. Math anxiety: Who has it, why it develops, and how to guard against it. Trends Cogn. Sci. 2012, 16, 404–406. [Google Scholar] [CrossRef]
- Maloney, E.A.; Risko, E.F.; Ansari, D.; Fugelsang, J. Mathematics anxiety affects counting but not subitizing during visual enumeration. Cognition 2010, 114, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Anobile, G.; Morrone, M.C.; Ricci, D.; Gallini, F.; Merusi, I.; Tinelli, F. Typical crossmodal numerosity perception in preterm newborns. Multisens. Res. 2021, 34, 693–714. [Google Scholar] [CrossRef]
- Coubart, A.; Izard, V.; Spelke, E.S.; Marie, J.; Streri, A. Dissociation between small and large numerosities in newborn infants. Dev. Sci. 2014, 17, 11–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izard, V.; Sann, C.; Spelke, E.S.; Streri, A. Newborn infants perceive abstract numbers. Proc. Natl. Acad. Sci. USA 2009, 106, 10382–10385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehaene, S. The Number Sense: How the Mind Creates Mathematics, 2nd ed.; Oxford University Press: New York, NY, USA, 2011. [Google Scholar]
- Anobile, G.; Arrighi, R.; Castaldi, E.; Grassi, E.; Pedonese, L.; Moscoso, P.A.M.; Burr, D.C. Spatial but not temporal numerosity thresholds correlate with formal math skills in children. Dev. Psychol. 2018, 54, 458. [Google Scholar] [CrossRef]
- Anobile, G.; Stievano, P.; Burr, D.C. Visual sustained attention and numerosity sensitivity correlate with math achievement in children. J. Exp. Child Psychol. 2013, 116, 380–391. [Google Scholar] [CrossRef] [PubMed]
- Piazza, M. Neurocognitive start-up tools for symbolic number representations. Trends Cogn. Sci. 2010, 14, 542–551. [Google Scholar] [CrossRef]
- Starr, A.; Libertus, M.E.; Brannon, E.M. Number sense in infancy predicts mathematical abilities in childhood. Proc. Natl. Acad. Sci. USA 2013, 110, 18116–18120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butterworth, B.; Varma, S.; Laurillard, D. Dyscalculia: From brain to education. Science 2011, 332, 1049–1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Smedt, B.; Verschaffel, L.; Ghesquière, P. The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. J. Exp. Child Psychol. 2009, 103, 469–479. [Google Scholar] [CrossRef]
- Dehaene, S. The neural basis of the Weber-Fechner law: A logarithmic mental number line. Trends Cogn. Sci. 2003, 7, 145–147. [Google Scholar] [CrossRef]
- Feigenson, L.; Libertus, M.E.; Halberda, J. Links between the Intuitive Sense of Number and Formal Mathematics Ability. Child Dev. Perspect. 2013, 7, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Halberda, J.; Mazzocco, M.M.M.; Feigenson, L. Individual differences in non-verbal number acuity correlate with maths achievement. Nature 2008, 455, 665–668. [Google Scholar] [CrossRef]
- Libertus, M.E.; Feigenson, L.; Halberda, J. Preschool acuity of the approximate number system correlates with school math ability. Dev. Sci. 2011, 14, 1292–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Libertus, M.E.; Odic, D.; Halberda, J. Intuitive sense of number correlates with math scores on college-entrance examination. Acta Psychol. 2012, 141, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Mazzocco, M.M.M.; Feigenson, L.; Halberda, J. Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child Dev. 2011, 82, 1224–1237. [Google Scholar] [CrossRef]
- Lindskog, M.; Winman, A.; Poom, L. Individual differences in nonverbal number skills predict math anxiety. Cognition 2017, 159, 156–162. [Google Scholar] [CrossRef] [PubMed]
- De Smedt, B.; Noël, M.P.; Gilmore, C.; Ansari, D. How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends Neurosci. Educ. 2013, 2, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Lyons, I.M.; Beilock, S.L. Numerical ordering ability mediates the relation between number-sense and arithmetic competence. Cognition 2011, 121, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Lyons, I.M.; Price, G.R.; Vaessen, A.; Blomert, L.; Ansari, D. Numerical predictors of arithmetic success in grades 1–6. Dev. Sci. 2014, 17, 714–726. [Google Scholar] [CrossRef]
- Rousselle, L.; Noël, M.P. Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs. non-symbolic number magnitude processing. Cognition 2007, 102, 361–395. [Google Scholar] [CrossRef]
- Sasanguie, D.; De Smedt, B.; Defever, E.; Reynvoet, B. Association between basic numerical abilities and mathematics achievement. Br. J. Dev. Psychol. 2012, 30, 344–357. [Google Scholar] [CrossRef]
- Sasanguie, D.; Defever, E.; Maertens, B.; Reynvoet, B. The approximate number system is not predictive for symbolic number processing in kindergarteners. Q. J. Exp. Psychol. 2014, 67, 271–280. [Google Scholar] [CrossRef]
- Maldonado Moscoso, P.A.; Anobile, G.; Primi, C.; Arrighi, R. Math Anxiety Mediates the Link between Number Sense and Math Achievements in High Math Anxiety Young Adults. Front. Psychol. 2020, 11, 1095. [Google Scholar] [CrossRef]
- Szczygieł, M. The relationship between math anxiety and math achievement in young children is mediated through working memory, not by number sense, and it is not direct. Contemp. Educ. Psychol. 2021, 65, 101949. [Google Scholar] [CrossRef]
- Wang, Z.; Lukowski, S.L.; Hart, S.A.; Lyons, I.M.; Thompson, L.A.; Kovas, Y.; Mazzocco, M.M.M.; Plomin, R.; Petrill, S.A. Is Math Anxiety Always Bad for Math Learning? The Role of Math Motivation. Psychol. Sci. 2015, 26, 1863–1876. [Google Scholar] [CrossRef] [Green Version]
- Ashkenazi, S.; Danan, Y. The role of mathematical anxiety and working memory on the performance of different types of arithmetic tasks. Trends Neurosci. Educ. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Braham, E.J.; Libertus, M.E. When approximate number acuity predicts math performance: The moderating role of math anxiety. PLoS ONE 2018, 13, e0195696. [Google Scholar] [CrossRef]
- Cargnelutti, E.; Tomasetto, C.; Passolunghi, M.C. The interplay between affective and cognitive factors in shaping early proficiency in mathematics. Trends Neurosci. Educ. 2017, 8, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Colomé, À. Representation of numerical magnitude in math-anxious individuals. Q. J. Exp. Psychol. 2019, 72, 424–435. [Google Scholar] [CrossRef]
- Dietrich, J.F.; Huber, S.; Moeller, K.; Klein, E. The influence of math anxiety on symbolic and non-symbolic magnitude processing. Front. Psychol. 2015, 6, 1621. [Google Scholar] [CrossRef]
- Gómez-Velázquez, F.R.; Berumen, G.; González-Garrido, A.A. Comparisons of numerical magnitudes in children with different levels of mathematical achievement. An ERP study. Brain Res. 2015, 1627, 189–200. [Google Scholar] [CrossRef]
- Guan, D.; Ai, J.; Gao, Y.; Li, H.; Huang, B.; Si, J. Non-symbolic representation is modulated by math anxiety and cognitive inhibition while symbolic representation not. Psychol. Res. 2021, 85, 1662–1672. [Google Scholar] [CrossRef]
- Hart, S.A.; Logan, J.A.R.; Thompson, L.; Kovas, Y.; McLoughlin, G.; Petrill, S.A. A latent profile analysis of math achievement, numerosity, and math anxiety in twins. J. Educ. Psychol. 2016, 108, 181. [Google Scholar] [CrossRef]
- Georges, C.; Hoffmann, D.; Schiltz, C. How math anxiety relates to number-space associations. Front. Psychol. 2016, 7, 1401. [Google Scholar] [CrossRef] [Green Version]
- Castaldi, E.; Piazza, M.; Eger, E. Resources Underlying Visuo-Spatial Working Memory Enable Veridical Large Numerosity Perception. Front. Hum. Neurosci. 2021, 15, 683. [Google Scholar] [CrossRef]
- Hopko, D.R.; Mahadevan, R.; Bare, R.L.; Hunt, M.K. The Abbreviated Math Anxiety Scale (AMAS): Construction, validity, and reliability. Assessment 2003, 10, 178–182. [Google Scholar] [CrossRef]
- Primi, C.; Busdraghi, C.; Tomasetto, C.; Morsanyi, K.; Chiesi, F. Measuring math anxiety in Italian college and high school students: Validity, reliability and gender invariance of the Abbreviated Math Anxiety Scale (AMAS). Learn. Individ. Differ. 2014, 34, 51–56. [Google Scholar] [CrossRef]
- Galli, S.; Chiesi, F.; Primi, C. Measuring mathematical ability needed for “non-mathematical” majors: The construction of a scale applying IRT and differential item functioning across educational contexts. Learn. Individ. Differ. 2011, 21, 392–402. [Google Scholar] [CrossRef]
- Primi, C.; Morsanyi, K.; Donati, M.A.; Galli, S.; Chiesi, F. Measuring Probabilistic Reasoning: The Construction of a New Scale Applying Item Response Theory. J. Behav. Decis. Mak. 2017, 30, 933–950. [Google Scholar] [CrossRef] [Green Version]
- Corsi, P.M. Human memory and the medial temporal region of the brain. Diss. Abstr. Int. 1973, 34, 891. [Google Scholar]
- Sartori, G.; Job, R.; Tressoldi, P.E. Batteria per la Valutazione Della Dislessia e Della Disortografia Evolutiva [Battery for the Assessment of Developmental Dyslexia and Dysorthographia]; Edizioni Organizzazioni Speciali: Firenze, Italy, 1995. [Google Scholar]
- Brainard, D.H. The Psychophysics Toolbox. Spat. Vis. 1997, 10, 433–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeffreys, H. The Theory of Probability; OUP Oxford: Oxford, UK, 1998. [Google Scholar]
- Kass, R.E.; Raftery, A.E. Bayes factors. J. Am. Stat. Assoc. 1995, 90, 773–795. [Google Scholar] [CrossRef]
- Maldonado Moscoso, P.A.; Castaldi, E.; Burr, D.C.; Arrighi, R.; Anobile, G. Grouping strategies in number estimation extend the subitizing range. Sci. Rep. 2020, 10, 14979. [Google Scholar] [CrossRef]
- Monaco, M.; Costa, A.; Caltagirone, C.; Carlesimo, G.A. Erratum to: Forward and backward span for verbal and visuo-spatial data: Standardization and normative data from an Italian adult population. Neurol. Sci. 2015, 36, 345–347. [Google Scholar] [CrossRef] [Green Version]
- Martino, M.G.; Pappalardo, F.; Re, A.M.; Tressoldi, P.E.; Lucangeli, D.; Cornoldi, C. La valutazione della dislessia nell’adulto [A evaluation of dyslexia in adult readers]. Dislessia 2011, 8, 119–134. [Google Scholar]
- Sun, J.; Sun, P. The relationship between numerosity perception and mathematics ability in adults: The moderating role of dots number. PeerJ 2021, 9, e12660. [Google Scholar] [CrossRef]
- Schneider, M.; Beeres, K.; Coban, L.; Merz, S.; Susan Schmidt, S.; Stricker, J.; De Smedt, B. Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Dev. Sci. 2017, 20, e12372. [Google Scholar] [CrossRef]
- Inglis, M.; Attridge, N.; Batchelor, S.; Gilmore, C. Non-verbal number acuity correlates with symbolic mathematics achievement: But only in children. Psychon. Bull. Rev. 2011, 18, 1222–1229. [Google Scholar] [CrossRef] [Green Version]
- Krueger, L.E. Perceived numerosity: A comparison of magnitude production, magnitude estimation, and discrimination judgments. Percept. Psychophys. 1984, 35, 536–542. [Google Scholar] [CrossRef]
- Ashcraft, M.H.; Krause, J.A. Working memory, math performance, and math anxiety. Psychon. Bull. Rev. 2007, 14, 243–248. [Google Scholar] [CrossRef] [Green Version]
- Hopko, D.R.; Ashcraft, M.H.; Gute, J.; Ruggiero, K.J.; Lewis, C. Mathematics anxiety and working memory: Support for the existence of a deficient inhibition mechanism. J. Anxiety Disord. 1998, 12, 343–355. [Google Scholar] [CrossRef]
- Caviola, S.; Carey, E.; Mammarella, I.C.; Szucs, D. Stress, time pressure, strategy selection and math anxiety in mathematics: A review of the literature. Front. Psychol. 2017, 8, 1488. [Google Scholar] [CrossRef] [Green Version]
- Namkung, J.M.; Peng, P.; Lin, X. The Relation between Mathematics Anxiety and Mathematics Performance among School-Aged Students: A Meta-Analysis. Rev. Educ. Res. 2019, 89, 459–496. [Google Scholar] [CrossRef]
- Pelegrina, S.; Justicia-Galiano, M.J.; Martín-Puga, M.E.; Linares, R. Math Anxiety and Working Memory Updating: Difficulties in Retrieving Numerical Information from Working Memory. Front. Psychol. 2020, 11, 669. [Google Scholar] [CrossRef]
- Trezise, K.; Reeve, R.A. Working memory, worry, and algebraic ability. J. Exp. Child Psychol. 2014, 121, 120–136. [Google Scholar] [CrossRef]
- Van Dijck, J.-P.; Fias, W.; Cipora, K. Spatialization in Working Memory and Its Relation to Math Anxiety. Available online: psyarxiv.com/jyr3m. (accessed on 30 January 2022).
- Hill, F.; Mammarella, I.C.; Devine, A.; Caviola, S.; Passolunghi, M.C.; Szucs, D. Maths anxiety in primary and secondary school students: Gender differences, developmental changes and anxiety specificity. Learn. Individ. Differ. 2016, 48, 45–53. [Google Scholar] [CrossRef]
- Hopko, D.R.; McNeil, D.W.; Lejuez, C.W.; Ashcraft, M.H.; Eifert, G.H.; Riel, J. The effects of anxious responding on mental arithmetic and lexical decision task performance. J. Anxiety Disord. 2003, 17, 647–665. [Google Scholar] [CrossRef]
- Núñez-Peña, M.I.; Suaŕez-Pellicioni, M. Processing of multi-digit additions in high math-anxious individuals: Psychophysiological evidence. Front. Psychol. 2015, 6, 1268. [Google Scholar] [CrossRef] [Green Version]
- Vukovic, R.K.; Kieffer, M.J.; Bailey, S.P.; Harari, R.R. Mathematics anxiety in young children: Concurrent and longitudinal associations with mathematical performance. Contemp. Educ. Psychol. 2013, 38, 1–10. [Google Scholar] [CrossRef]
- Cates, G.; Rhymer, K. Examining the Relationship between Mathematics Anxiety and Mathematics Performance: An Instructional Hierarchy Perspective. J. Behav. Educ. 2003, 12, 23–34. [Google Scholar] [CrossRef]
- Hart, S.A.; Ganley, C.M. The nature of math anxiety in adults: Prevalence and correlates. J. Numer. Cogn. 2019, 5, 122. [Google Scholar] [CrossRef] [Green Version]
- Ashcraft, M.H.; Moore, A.M. Mathematics anxiety and the affective drop in performance. J. Psychoeduc. Assess. 2009, 27, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Cipora, K.; Santos, F.H.; Kucian, K.; Dowker, A. Mathematics Anxiety–Where Are We and Where Shall We Go? Available online: psyarxiv.com/2xpcg (accessed on 30 January 2022).
- Barroso, C.; Ganley, C.M.; McGraw, A.L.; Geer, E.A.; Hart, S.A.; Daucourt, M.C. A Meta-Analysis of the Relation between Math Anxiety and Math Achievement. Psychol. Bull. 2021, 147, 134. [Google Scholar] [CrossRef]
- Ma, X. A meta-analysis of the relationship between anxiety toward mathematics and achievement in mathematics. J. Res. Math. Educ. 1999, 30, 520–540. [Google Scholar] [CrossRef]
- Kazelskis, R.; Reeves, C.; Kersh, M.E.; Bailey, G.; Cole, K.; Larmon, M.; Hall, L.; Holliday, D.C. Mathematics anxiety and test anxiety: Separate constructs? J. Exp. Educ. 2000, 68, 137–146. [Google Scholar] [CrossRef]
Measures | Mean | SD |
---|---|---|
Math anxiety evaluation | 14.78 | 3.57 |
Math anxiety learning | 9.91 | 4.04 |
Simple calculation accuracy | 0.96 | 0.04 |
Simple calculation RT | 1.79 | 0.27 |
Complex calculation accuracy | 0.75 | 0.14 |
Complex calculation RT | 15.88 | 6.44 |
Mathematics Prerequisites for Psychometrics | 24.22 | 3.37 |
Probabilistic Reasoning Scale | 13.67 | 1.90 |
Numerosity Wf | 0.07 | 0.02 |
VSWM forward | 6.22 | 1.17 |
VSWM backward | 6.35 | 0.87 |
Word reading accuracy | 0.35 | 0.64 |
Non-word reading accuracy | 1.65 | 1.95 |
Word reading speed | 5.53 | 0.93 |
Non-word reading speed | 3.59 | 0.73 |
Variables | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Math Anxiety | Formal Math Performance | Numerosity Wf | VSWM | Reading Index | |
1 | -- | ||||
2 | rho = –0.44 p = 0.002 | -- | |||
3 | rho = 0.48 p = 0.0006 | rho = –0.43 p = 0.003 | -- | ||
4 | rho = –0.09 p = 0.55 | rho = 0.14 p = 0.36 | rho = 0.07 p = 0.6 | -- | |
5 | rho = 0.19 p = 0.20 | rho = –0.08 p = 0.58 | rho = 0.23 p = 0.12 | rho = –0.17 p = 0.26 | -- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maldonado Moscoso, P.A.; Castaldi, E.; Arrighi, R.; Primi, C.; Caponi, C.; Buonincontro, S.; Bolognini, F.; Anobile, G. Mathematics and Numerosity but Not Visuo-Spatial Working Memory Correlate with Mathematical Anxiety in Adults. Brain Sci. 2022, 12, 422. https://doi.org/10.3390/brainsci12040422
Maldonado Moscoso PA, Castaldi E, Arrighi R, Primi C, Caponi C, Buonincontro S, Bolognini F, Anobile G. Mathematics and Numerosity but Not Visuo-Spatial Working Memory Correlate with Mathematical Anxiety in Adults. Brain Sciences. 2022; 12(4):422. https://doi.org/10.3390/brainsci12040422
Chicago/Turabian StyleMaldonado Moscoso, Paula A., Elisa Castaldi, Roberto Arrighi, Caterina Primi, Camilla Caponi, Salvatore Buonincontro, Francesca Bolognini, and Giovanni Anobile. 2022. "Mathematics and Numerosity but Not Visuo-Spatial Working Memory Correlate with Mathematical Anxiety in Adults" Brain Sciences 12, no. 4: 422. https://doi.org/10.3390/brainsci12040422
APA StyleMaldonado Moscoso, P. A., Castaldi, E., Arrighi, R., Primi, C., Caponi, C., Buonincontro, S., Bolognini, F., & Anobile, G. (2022). Mathematics and Numerosity but Not Visuo-Spatial Working Memory Correlate with Mathematical Anxiety in Adults. Brain Sciences, 12(4), 422. https://doi.org/10.3390/brainsci12040422