Locus Coeruleus in Non-Mammalian Vertebrates
Abstract
:1. Introduction
2. Axonal Projections of the LC
2.1. Projection Targets
2.1.1. Telencephalon
2.1.2. Diencephalon
2.1.3. Mesencephalon
2.1.4. Rhombencephalon
2.1.5. Spinal Cord
2.2. Future Directions for Mapping LC Wiring Diagram
3. LC Development
4. Unique Gene Expression in LC
5. LC Regulates Body Homeostasis
6. LC Modulates Sensorimotor Transformation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smeets, W.J.A.J.; González, A. Catecholamine systems in the brain of vertebrates: New perspectives through a comparative approach. Brain Res. Rev. 2000, 33, 308–379. [Google Scholar] [CrossRef]
- Poe, G.R.; Foote, S.; Eschenko, O.; Johansen, J.P.; Bouret, S.; Aston-Jones, G.; Harley, C.W.; Manahan-Vaughan, D.; Weinshenker, D.; Valentino, R.; et al. Locus coeruleus: A new look at the blue spot. Nat. Rev. Neurosci. 2020, 21, 644–659. [Google Scholar] [CrossRef]
- Manger, P.R.; Eschenko, O. The Mammalian Locus Coeruleus Complex—Consistencies and Variances in Nuclear Organization. Brain Sci. 2021, 11, 1486. [Google Scholar] [CrossRef]
- Barreiro-Iglesias, A.; Laramore, C.; Shifman, M.I.; Anadón, R.; Selzer, M.E.; Rodicio, M.C. The sea lamprey tyrosine hydroxylase: cDNA cloning and in situ hybridization study in the brain. Neuroscience 2010, 168, 659–669. [Google Scholar] [CrossRef]
- Guglielmone, R.; Panzica, G.C. Topographic, morphologic and developmental characterization of the nucleus loci coerulei in the chicken. Cell Tissue Res. 1982, 225, 95–110. [Google Scholar] [CrossRef]
- Benarroch, E.E. Locus coeruleus. Cell Tissue Res. 2018, 373, 221–232. [Google Scholar] [CrossRef]
- Farrar, M.J.; Kolkman, K.E.; Fetcho, J.R. Features of the structure, development, and activity of the zebrafish noradrenergic system explored in new CRISPR transgenic lines. J. Comp. Neurol. 2018, 526, 2493–2508. [Google Scholar] [CrossRef] [PubMed]
- Holzschuh, J.; Ryu, S.; Aberger, F.; Driever, W. Dopamine transporter expression distinguishes dopaminergic neurons from other catecholaminergic neurons in the developing zebrafish embryo. Mech. Dev. 2001, 101, 237–243. [Google Scholar] [CrossRef]
- Castelino, C.B.; Schmidt, M.F. What birdsong can teach us about the central noradrenergic system. J. Chem. Neuroanat. 2010, 39, 96–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, Y.; Xu, T.; Graf, W.M.; Fobbs, A.; Sherwood, C.C.; Hof, P.R.; Allman, J.M.; Manaye, K.F. Comparative anatomy of the locus coeruleus in humans and nonhuman primates. J. Comp. Neurol. 2009, 518, 963–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouton, P.R.; Pakkenberg, B.; Gundersen, H.J.G.; Price, D.L. Absolute number and size of pigmented locus coeruleus neurons in young and aged individuals. J. Chem. Neuroanat. 1994, 7, 185–190. [Google Scholar] [CrossRef]
- Schwarz, L.A.; Luo, L. Organization of the Locus Coeruleus-Norepinephrine System. Curr. Biol. 2015, 25, R1051–R1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, P.M. Catecholaminergic systems in the zebrafish. II. Projection pathways and pattern of termination of the locus coeruleus. J. Comp. Neurol. 1994, 344, 256–269. [Google Scholar] [CrossRef]
- Prober, D.A.; Rihel, J.; Onah, A.A.; Sung, R.-J.; Schier, A.F. Hypocretin/Orexin Overexpression Induces An Insomnia-Like Phenotype in Zebrafish. J. Neurosci. 2006, 26, 13400–13410. [Google Scholar] [CrossRef] [PubMed]
- Lovett-Barron, M.; Andalman, A.S.; Allen, W.E.; Vesuna, S.; Kauvar, I.; Burns, V.M.; Deisseroth, K. Ancestral Circuits for the Coordinated Modulation of Brain State. Cell 2017, 171, 1411–1423.e17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, B.E.; Friedman, L. Atlas of catecholamine perikarya, varicosities and pathways in the brainstem of the cat. J. Comp. Neurol. 1983, 215, 382–396. [Google Scholar] [CrossRef]
- Ma, P.M. Catecholaminergic systems in the zebrafish. I. Number, morphology, and histochemical characteristics of neurons in the locus coeruleus. J. Comp. Neurol. 1994, 344, 242–255. [Google Scholar] [CrossRef]
- Northcutt, R. Localization of neurons afferent to the telencephalon in a primitive bony fish, Polypterus palmas. Neurosci. Lett. 1981, 22, 219–222. [Google Scholar] [CrossRef] [Green Version]
- Rink, E.; Wullimann, M.F. Connections of the ventral telencephalon (subpallium) in the zebrafish (Danio rerio). Brain Res. 2004, 1011, 206–220. [Google Scholar] [CrossRef]
- Tay, T.L.; Ronneberger, O.; Ryu, S.; Nitschke, R.; Driever, W. Comprehensive catecholaminergic projectome analysis reveals single-neuron integration of zebrafish ascending and descending dopaminergic systems. Nat. Commun. 2011, 2, 171. [Google Scholar] [CrossRef] [Green Version]
- Dubé, L.; Clairambault, P.; Malacarne, G. Striatal Afferents in the Newt Triturus cristatus. Brain, Behav. Evol. 1990, 35, 212–226. [Google Scholar] [CrossRef]
- Wolters, J.; Donkelaar, H.T.; Verhofstad, A. Distribution of catecholamines in the brain stem and spinal cord of the lizard Varanus exanthematicus: An immunohistochemical study based on the use of antibodies to tyrosine hydroxylase. Neuroscience 1984, 13, 469–493. [Google Scholar] [CrossRef]
- Sánchez-Camacho, C.; Peña, J.J.; González, A. Catecholaminergic innervation of the septum in the frog: A combined immunohistochemical and tract-tracing study. J. Comp. Neurol. 2002, 455, 310–323. [Google Scholar] [CrossRef]
- Bruce, L.L.; Butler, A.B. Telencephalic connections in lizards. II. Projections to anterior dorsal ventricular ridge. J. Comp. Neurol. 1984, 229, 602–615. [Google Scholar] [CrossRef] [PubMed]
- Hoogland, P.V. Brainstem afferents to the thalamus in a lizard, Varanus exanthematicus. J. Comp. Neurol. 1982, 210, 152–162. [Google Scholar] [CrossRef]
- Tuinhof, R.; Artero, C.; Fasolo, A.; Franzoni, M.; Donkelaar, H.T.; Wismans, P.; Roubos, E. Involvement of retinohypothalamic input, suprachiasmatic nucleus, magnocellular nucleus and locus coeruleus in control of melanotrope cells of Xenopus Laevis: A retrograde and anterograde tracing study. Neuroscience 1994, 61, 411–420. [Google Scholar] [CrossRef]
- González, A.; Smeets, W.J. Noradrenaline in the brain of the south african clawed frogXenopus laevis: A study with antibodies against noradrenaline and dopamine-β-hydroxylase. J. Comp. Neurol. 1993, 331, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Camacho, C.; Marín, O.; González, A. Distribution and origin of the catecholaminergic innervation in the amphibian mesencephalic tectum. Vis. Neurosci. 2002, 19, 321–333. [Google Scholar] [CrossRef]
- Bangma, G.C.; Donkelaar, H.J.T. Afferent connections of the cerebellum in various types of reptiles. J. Comp. Neurol. 1982, 207, 255–273. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Camacho, C.; Martín, O.; Ten Donkelaar, H.J.; González, A. Descending supraspinal pathways in amphibians: III. Development of descending projections to the spinal cord in Xenopus laevis with emphasis on the catecholaminergic inputs. J. Comp. Neurol. 2002, 446, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Leutgeb, S.; Husband, S.; Riters, L.V.; Shimizu, T.; Bingman, V.P. Telencephalic afferents to the caudolateral neostriatum of the pigeon. Brain Res. 1996, 730, 173–181. [Google Scholar] [CrossRef]
- Kitt, C.A.; Brauth, S.E. Telencephalic projections from midbrain and isthmal cell groups in the pigeon. I. Locus coeruleus and subcoeruleus. J. Comp. Neurol. 1986, 247, 69–91. [Google Scholar] [CrossRef] [PubMed]
- Bagnoli, P.; Burkhalter, A. Organization of the afferent projections to the Wulst in the pigeon. J. Comp. Neurol. 1983, 214, 103–113. [Google Scholar] [CrossRef]
- Barr, H.J.; Wall, E.M.; Woolley, S.C. Dopamine in the songbird auditory cortex shapes auditory preference. Curr. Biol. 2021, 31, 4547–4559.e5. [Google Scholar] [CrossRef]
- Dubé, L.; Parent, A. The monoamine-containing neurons in avian brain: I. A study of the brain stem of the chicken (Gallus domesticus) by means of fluorescence and acetylcholinesterase histochemistry. J. Comp. Neurol. 1981, 196, 695–708. [Google Scholar] [CrossRef]
- Rodman, H.R.; Karten, H.J. Laminar distribution and sources of catecholaminergic input to the optic tectum of the pigeon (Columba livia). J. Comp. Neurol. 1995, 359, 424–442. [Google Scholar] [CrossRef]
- Lucchi, M.L.; Callegari, E.; Barazzoni, A.M.; Chiocchetti, R.; Clavenzani, P.; Bortolami, R. Cerebellar and spinal projections of the coeruleus complex in the duck: A fluorescent retrograde double-labeling study. Anat Rec. 1998, 251, 392–397. [Google Scholar] [CrossRef]
- Mugnaini, E.; Dahl, A.-L. Mode of distribution of aminergic fibers in the cerebellar cortex of the chicken. J. Comp. Neurol. 1975, 162, 417–432. [Google Scholar] [CrossRef] [PubMed]
- Szabadi, E. Functional neuroanatomy of the central noradrenergic system. J. Psychopharmacol. 2013, 27, 659–693. [Google Scholar] [CrossRef] [PubMed]
- Rodenkirch, C.; Liu, Y.; Schriver, B.J.; Wang, Q. Locus coeruleus activation enhances thalamic feature selectivity via norepinephrine regulation of intrathalamic circuit dynamics. Nat. Neurosci. 2018, 22, 120–133. [Google Scholar] [CrossRef] [PubMed]
- Pickel, V.M.; Segal, M.; Bloom, F.E. A radioautographic study of the efferent pathways of the nucleus locus coeruleus. J. Comp. Neurol. 1974, 155, 15–41. [Google Scholar] [CrossRef]
- Uematsu, A.; Tan, B.Z.; Ycu, E.A.; Cuevas, J.S.; Koivumaa, J.; Junyent, F.; Kremer, E.; Witten, I.B.; Deisseroth, K.; Johansen, J.P. Modular organization of the brainstem noradrenaline system coordinates opposing learning states. Nat. Neurosci. 2017, 20, 1602–1611. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, T.; Duszkiewicz, A.J.; Sonneborn, A.; Spooner, P.A.; Yamasaki, M.; Watanabe, M.; Smith, C.C.; Fernández, G.; Deisseroth, K.; Greene, R.W.; et al. Locus coeruleus and dopaminergic consolidation of everyday memory. Nature 2016, 537, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.E.; Yang, T.-Z. The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat. J. Comp. Neurol. 1985, 242, 56–92. [Google Scholar] [CrossRef] [PubMed]
- Clark, F.M.; Proudfit, H.K. The projection of locus coeruleus neurons to the spinal cord in the rat determined by anterograde tracing combined with immunocytochemistry. Brain Res. 1991, 538, 231–245. [Google Scholar] [CrossRef]
- Sluka, K.; Westlund, K. Spinal projections of the locus coeruleus and the nucleus subcoeruleus in the Harlan and the Sasco Sprague-Dawley rat. Brain Res. 1992, 579, 67–73. [Google Scholar] [CrossRef]
- Leong, S.K.; Shieh, J.Y.; Wong, W.C. Localizing spinal-cord-projecting neurons in adult albino rats. J. Comp. Neurol. 1984, 228, 1–17. [Google Scholar] [CrossRef]
- Berridge, C.W.; Waterhouse, B.D. The locus coeruleus–noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Res. Rev. 2003, 42, 33–84. [Google Scholar] [CrossRef]
- Bari, B.A.; Chokshi, V.; Schmidt, K. Locus coeruleus-norepinephrine: Basic functions and insights into Parkinson’s disease. Neural. Regen Res. 2020, 15, 1006. [Google Scholar] [CrossRef]
- Waterhouse, B.D.; Navarra, R.L. The locus coeruleus-norepinephrine system and sensory signal processing: A historical review and current perspectives. Brain Res. 2018, 1709, 1–15. [Google Scholar] [CrossRef]
- Ornstein, K.; Milon, H.; McRae-Degueurce, A.; Alvarez, C.; Berger, B.; Würzner, H.P. Biochemical and radioautographic evidence for dopaminergic afferents of the locus coeruleus originating in the ventral tegmental area. J. Neural. Transm. 1987, 70, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Fritschy, J.-M.; Grzanna, R. Demonstration of two separate descending noradrenergic pathways to the rat spinal cord: Evidence for an intragriseal trajectory of locus coeruleus axons in the superficial layers of the dorsal horn. J. Comp. Neurol. 1990, 291, 553–582. [Google Scholar] [CrossRef] [PubMed]
- West, W.L.; Yeomans, D.C.; Proudfit, H.K. The function of noradrenergic neurons in mediating antinociception induced by electrical stimulation of the locus coeruleus in two different sources of Sprague-Dawley rats. Brain Res. 1993, 626, 127–135. [Google Scholar] [CrossRef]
- White, S.; Fung, S.; Barnes, C. Norepinephrine effects on spinal motoneurons. Prog. Brain Res. 1991, 88, 343–350. [Google Scholar] [CrossRef]
- Westlund, K.N.; Coulter, J.D. Descending projections of the locus coeruleus and subcoeruleus/medial parabrachial nuclei in monkey: Axonal transport studies and dopamine-β-hydroxylase immunocytochemistry. Brain Res. Rev. 1980, 2, 235–264. [Google Scholar] [CrossRef]
- Lewis, D.; Coote, J. Excitation and inhibition of rat sympathetic preganglionic neurones by catecholamines. Brain Res. 1990, 530, 229–234. [Google Scholar] [CrossRef]
- Shefchyk, S.J. Sacral spinal interneurones and the control of urinary bladder and urethral striated sphincter muscle function. J. Physiol. 2001, 533, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Sas, E.; Maler, L.; Tinner, B. Catecholaminergic systems in the brain of a gymnotiform teleost fish: An immunohistochemical study. J. Comp. Neurol. 1990, 292, 127–162. [Google Scholar] [CrossRef]
- Kamei, I.; Shiosaka, S.; Senba, E.; Takagi, H.; Sakanaka, M.; Inagaki, S.; Takatsuki, K.; Nakai, K.; Imai, H.; Itakura, T.; et al. Comparative anatomy of the distribution of catecholamines within the inferior olivary complex from teleosts to primates. J. Comp. Neurol. 1981, 202, 125–133. [Google Scholar] [CrossRef]
- Echteler, S.M.; Saidel, W.M. Forebrain Connections in the Goldfish Support Telencephalic Homologies with Land Vertebrates. Science 1981, 212, 683–685. [Google Scholar] [CrossRef]
- Castelino, C.B.; Diekamp, B.; Ball, G.F. Noradrenergic projections to the song control nucleus area X of the medial striatum in male zebra finches (Taeniopygia guttata). J. Comp. Neurol. 2007, 502, 544–562. [Google Scholar] [CrossRef]
- Hornby, P.J.; Piekut, D.T. Immunoreactive dopamine β-hydroxylase in neuronal groups in the goldfish brain. Brain Behav. Evol. 1988, 32, 252–256. [Google Scholar] [CrossRef]
- Adrio, F.; Anadón, R.; Rodríguez-Moldes, I. Distribution of tyrosine hydroxylase (TH) and dopamine β-hydroxylase (DBH) immunoreactivity in the central nervous system of two chondrostean fishes (Acipenser baeri and Huso huso). J. Comp. Neurol. 2002, 448, 280–297. [Google Scholar] [CrossRef] [PubMed]
- Moons, L.; D’Hondt, E.; Pijcke, K.; Vandesande, F. Noradrenergic system in the chicken brain: Immunocytochemical study with antibodies to noradrenaline and dopamine-β-hydroxylase. J. Comp. Neurol. 1995, 360, 331–348. [Google Scholar] [CrossRef]
- Totah, N.K.; Neves, R.M.; Panzeri, S.; Logothetis, N.K.; Eschenko, O. The Locus Coeruleus Is a Complex and Differentiated Neuromodulatory System. Neuron 2018, 99, 1055–1068.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandler, D.J.; Gao, W.-J.; Waterhouse, B.D. Heterogeneous organization of the locus coeruleus projections to prefrontal and motor cortices. Proc. Natl. Acad. Sci. USA 2014, 111, 6816–6821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandler, D.J.; Jensen, P.; McCall, J.G.; Pickering, A.E.; Schwarz, L.A.; Totah, N.K. Redefining Noradrenergic Neuromodulation of Behavior: Impacts of a Modular Locus Coeruleus Architecture. J. Neurosci. 2019, 39, 8239–8249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kebschull, J.M.; da Silva, P.G.; Reid, A.P.; Peikon, I.D.; Albeanu, D.; Zador, A.M. High-Throughput Mapping of Single-Neuron Projections by Sequencing of Barcoded RNA. Neuron 2016, 91, 975–987. [Google Scholar] [CrossRef]
- Winnubst, J.; Bas, E.; Ferreira, T.A.; Wu, Z.; Economo, M.N.; Edson, P.; Arthur, B.J.; Bruns, C.; Rokicki, K.; Schauder, D.; et al. Reconstruction of 1,000 Projection Neurons Reveals New Cell Types and Organization of Long-Range Connectivity in the Mouse Brain. Cell 2019, 179, 268–281.e13. [Google Scholar] [CrossRef]
- Kunst, M.; Laurell, E.; Mokayes, N.; Kramer, A.; Kubo, F.; Fernandes, A.M.; Förster, D.; Maschio, M.D.; Baier, H. A Cellular-Resolution Atlas of the Larval Zebrafish Brain. Neuron 2019, 103, 21–38.e5. [Google Scholar] [CrossRef]
- Randlett, O.; Wee, C.; Naumann, E.A.; Nnaemeka, O.; Schoppik, D.; Fitzgerald, J.E.; Portugues, R.; Lacoste, A.; Riegler, C.; Engert, F.; et al. Whole-brain activity mapping onto a zebrafish brain atlas. Nat. Methods 2015, 12, 1039–1046. [Google Scholar] [CrossRef] [Green Version]
- Tabor, K.M.; Marquart, G.D.; Hurt, C.; Smith, T.S.; Geoca, A.K.; Bhandiwad, A.A.; Subedi, A.; Sinclair, J.L.; Rose, H.M.; Polys, N.F.; et al. Brain-wide cellular resolution imaging of Cre transgenic zebrafish lines for functional circuit-mapping. eLife 2019, 8, e42687. [Google Scholar] [CrossRef]
- Ahrens, M.B.; Orger, M.B.; Robson, D.N.; Li, J.M.; Keller, P.J. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 2013, 10, 413–420. [Google Scholar] [CrossRef]
- Dunn, T.W.; Mu, Y.; Narayan, S.; Randlett, O.; Naumann, E.A.; Yang, C.-T.; Schier, A.F.; Freeman, J.; Engert, F.; Ahrens, M.B. Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion. eLife 2016, 5, e12741. [Google Scholar] [CrossRef]
- Mu, Y.; Bennett, D.; Rubinov, M.; Narayan, S.; Yang, C.-T.; Tanimoto, M.; Mensh, B.D.; Looger, L.L.; Ahrens, M.B. Glia Accumulate Evidence that Actions Are Futile and Suppress Unsuccessful Behavior. Cell 2019, 178, 27–43.e19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, J.; Zhang, C.; Lischinsky, J.E.; Jing, M.; Zhou, J.; Wang, H.; Zhang, Y.; Dong, A.; Wu, Z.; Wu, H.; et al. A Genetically Encoded Fluorescent Sensor for Rapid and Specific In Vivo Detection of Norepinephrine. Neuron 2019, 102, 745–761.e8. [Google Scholar] [CrossRef]
- Du, Y.; Guo, Q.; Shan, M.; Wu, Y.; Huang, S.; Zhao, H.; Hong, H.; Yang, M.; Yang, X.; Ren, L.; et al. Spatial and Temporal Distribution of Dopaminergic Neurons during Development in Zebrafish. Front. Neuroanat. 2016, 10. [Google Scholar] [CrossRef] [Green Version]
- McLean, D.L.; Fetcho, J.R. Ontogeny and innervation patterns of dopaminergic, noradrenergic, and serotonergic neurons in larval zebrafish. J. Comp. Neurol. 2004, 480, 38–56. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, J.; Löhr, H.; Filippi, A.; Driever, W. Dopaminergic and noradrenergic circuit development in zebrafish. Dev. Neurobiol. 2012, 72, 256–268. [Google Scholar] [CrossRef]
- Becker, C.G.; Becker, T. Model Organisms in Spinal Cord Regeneration; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Rink, E.; Wullimann, M.F. Development of the catecholaminergic system in the early zebrafish brain: An immunohistochemical study. Dev. Brain Res. 2002, 137, 89–100. [Google Scholar] [CrossRef]
- Sun, P.; Wang, J.; Zhang, M.; Duan, X.; Wei, Y.; Xu, F.; Ma, Y.; Zhang, Y.-H. Sex-Related Differential Whole-Brain Input Atlas of Locus Coeruleus Noradrenaline Neurons. Front. Neural Circuits 2020, 14. [Google Scholar] [CrossRef]
- Mulvey, B.; Bhatti, D.L.; Gyawali, S.; Lake, A.M.; Kriaucionis, S.; Ford, C.P.; Bruchas, M.R.; Heintz, N.; Dougherty, J.D. Neurons in the Mouse Locus Coeruleus. Cell Rep. 2018, 23, 2225–2235. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Brush, J.; Teraoka, H.; Goddard, A.; Wilson, S.W.; Mullins, M.C.; Rosenthal, A. Development of noradrenergic neurons in the zebrafish hindbrain requires BMP, FGF8, and the homeodomain protein soulless/Phox2a. Neuron 1999, 24, 555–566. [Google Scholar] [CrossRef] [Green Version]
- Stuesse, S.L.; Cruce, W.L.R. Immunohistochemical localization of serotoninergic, enkephalinergic, and catecholaminergic cells in the brainstem and diencephalon of a cartilaginous fish, hydrolagus colliei. J. Comp. Neurol. 1991, 309, 535–548. [Google Scholar] [CrossRef]
- Von Bartheld, C.; Schober, A.; Kinoshita, Y.; Williams, R.; Ebendal, T.; Bothwell, M. Noradrenergic neurons in the locus coeruleus of birds express TrkA, transport NGF, and respond to NGF. J. Neurosci. 1995, 15, 2225–2239. [Google Scholar] [CrossRef]
- Feng, C.-Y.; Wiggins, L.M.; von Bartheld, C.S. The Locus Ceruleus Responds to Signaling Molecules Obtained from the CSF by Transfer through Tanycytes. J. Neurosci. 2011, 31, 9147–9158. [Google Scholar] [CrossRef] [Green Version]
- Schwab, M.; Otten, U.; Agid, Y.; Thoenen, H. Nerve growth factor (NGF) in the rat CNS: Absence of specific retrograde axonal transport and tyrosine hydroxylase induction in locus coeruleus and substantia nigra. Brain Res. 1979, 168, 473–483. [Google Scholar] [CrossRef]
- Warren, P.J.; Earl, C.J.; Thompson, R.H.S. The distribution of copper in human brain. Brain 1960, 83, 709–717. [Google Scholar] [CrossRef]
- Vendelboe, T.V.; Harris, P.; Zhao, Y.; Walter, T.S.; Harlos, K.; El Omari, K.; Christensen, H.E. The crystal structure of human dopamine β-hydroxylase at 2.9 Å resolution. Sci. Adv. 2016, 2, e1500980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaler, S.G. ATP7A-related copper transport diseases—emerging concepts and future trends. Nat. Rev. Neurol. 2011, 7, 15–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madsen, E.; Gitlin, J.D. Copper and Iron Disorders of the Brain. Annu. Rev. Neurosci. 2007, 30, 317–337. [Google Scholar] [CrossRef] [PubMed]
- Xiao, T.; Ackerman, C.M.; Carroll, E.C.; Jia, S.; Hoagland, A.; Chan, J.; Thai, B.; Liu, C.S.; Isacoff, E.; Chang, C.J. Copper regulates rest-activity cycles through the locus coeruleus-norepinephrine system. Nat. Chem. Biol. 2018, 14, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, K.; Ralle, M.; Schaffer, T.; Jayakanthan, S.; Bari, B.; Muchenditsi, A.; Lutsenko, S. ATP7A and ATP7B copper transporters have distinct functions in the regulation of neuronal dopamine-β-hydroxylase. J. Biol. Chem. 2018, 293, 20085–20098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, K.M.; Bohic, S.; Carmona, A.; Ortega, R.; Cottam, V.; Hare, D.J.; Finberg, J.P.; Reyes, S.; Halliday, G.M.; Mercer, J.F.; et al. Copper pathology in vulnerable brain regions in Parkinson’s disease. Neurobiol. Aging 2014, 35, 858–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benhamla, T.; Tirouche, Y.; Abaoub-Germain, A.; Theodore, F. Mode d’entrée psychiatrique dans la maladie de Wilson: À propos d’un cas à début tardif. L’encéphale 2007, 33, 924–932. [Google Scholar] [CrossRef]
- Montes, S.; Rivera-Mancía, S.; Díaz-Ruíz, A.; Tristán-López, L.; Ríos, C. Copper and Copper Proteins in Parkinson’s Disease. Oxidative Med. Cell. Longev. 2014, 2014, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Singh, C.; Oikonomou, G.; Prober, D.A. Norepinephrine is required to promote wakefulness and for hypocretin-induced arousal in zebrafish. eLife 2015, 4, e07000. [Google Scholar] [CrossRef]
- Du, W.-J.; Zhang, R.; Li, J.; Zhang, B.-B.; Peng, X.-L.; Cao, S.; Yuan, J.; Yuan, C.-D.; Yu, T.; Du, J.-L. The Locus Coeruleus Modulates Intravenous General Anesthesia of Zebrafish via a Cooperative Mechanism. Cell Rep. 2018, 24, 3146–3155.e3. [Google Scholar] [CrossRef] [Green Version]
- Santin, J.M.; Watters, K.C.; Putnam, R.W.; Hartzler, L.K. Temperature influences neuronal activity and CO2/pH sensitivity of locus coeruleus neurons in the bullfrog, Lithobates catesbeianus. Am. J. Physiol. Integr. Comp. Physiol. 2013, 305, R1451–R1464. [Google Scholar] [CrossRef] [Green Version]
- Santin, J.M.; Hartzler, L.K. Activation state of the hyperpolarization-activated current modulates temperature-sensitivity of firing in locus coeruleus neurons from bullfrogs. Am. J. Physiol. Integr. Comp. Physiol. 2015, 308, R1045–R1061. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Takahashi, T. Whole-cell properties of temperature-sensitive neurons in rat hypothalamic slices. Proc. R. Soc. B Boil. Sci. 1993, 251, 89–94. [Google Scholar] [CrossRef]
- Keenan, C.L.; Chu, N.-S. Thermosensitivity of dorsal raphe neurons in vitro. Brain Res. 1987, 410, 189–194. [Google Scholar] [CrossRef]
- Morilak, D.A.; Fornal, C.A.; Jacobs, B.L. Effects of physiological manipulations on locus coeruleus neuronal activity in freely moving cats. II. Cardiovascular challenge. Brain Res. 1987, 422, 24–31. [Google Scholar] [CrossRef]
- Noronha-De-Souza, C.R.; Bícego, K.C.; Michel, G.; Glass, M.L.; Branco, L.G.S.; Gargaglioni, L.H. Locus coeruleus is a central chemoreceptive site in toads. Am. J. Physiol. Integr. Comp. Physiol. 2006, 291, R997–R1006. [Google Scholar] [CrossRef]
- Gargaglioni, L.H.; Hartzler, L.K.; Putnam, R.W. The locus coeruleus and central chemosensitivity. Respir. Physiol. Neurobiol. 2010, 173, 264–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zena, L.A.; Fonseca, E.M.; Santin, J.M.; Porto, L.; Gargaglioni, L.; Bícego, K.C.; Hartzler, L.K. Effect of temperature on chemosensitive locus coeruleus neurons of Savannah monitor lizards Varanus exanthematicus. J. Exp. Biol. 2016, 219, 2856–2864. [Google Scholar] [CrossRef] [Green Version]
- Filosa, J.A.; Dean, J.B.; Putnam, R.W. Role of intracellular and extracellular pH in the chemosensitive response of rat locus coeruleus neurones. J. Physiol. 2002, 541, 493–509. [Google Scholar] [CrossRef] [PubMed]
- Oyamada, Y.; Ballantyne, D.; Mückenhoff, K.; Scheid, P. Respiration-modulated membrane potential and chemosensitivity of locus coeruleus neurones in thein vitrobrainstem-spinal cord of the neonatal rat. J. Physiol. 1998, 513, 381–398. [Google Scholar] [CrossRef]
- Gargaglioni, L.H.; Meier, J.T.; Branco, L.G.S.; Milsom, W.K. Role of midbrain in the control of breathing in anuran amphibians. Am. J. Physiol. Integr. Comp. Physiol. 2007, 293, R447–R457. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, C. Respiratory failure! Med. J. Aust. 1989, 150, 662–663. [Google Scholar] [CrossRef]
- Gallup, A.C.; Gallup, G.G. Yawning as a Brain Cooling Mechanism: Nasal Breathing and Forehead Cooling Diminish the Incidence of Contagious Yawning. Evol. Psychol. 2007, 5, 92–101. [Google Scholar] [CrossRef]
- Gallup, A.C.; Eldakar, O.T. The thermoregulatory theory of yawning: What we know from over 5 years of research. Front. Neurosci. 2013, 6, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva, G.S.F.; Glass, M.L.; Branco, L.G. Temperature and respiratory function in ectothermic vertebrates. J. Therm. Biol. 2013, 38, 55–63. [Google Scholar] [CrossRef]
- Schepers, R.J.; Ringkamp, M. Thermoreceptors and thermosensitive afferents. Neurosci. Biobehav. Rev. 2010, 34, 177–184. [Google Scholar] [CrossRef]
- Rosenthal, T. The effect of temperature on the pH of blood and plasma in vitro. J. Biol. Chem. 1948, 173, 25–30. [Google Scholar] [CrossRef]
- Zwart, A.; Kwant, G.; Oeseburg, B.; Zijlstra, W.G. Human whole-blood oxygen affinity: Effect of temperature. J. Appl. Physiol. 1984, 57, 429–434. [Google Scholar] [CrossRef]
- Schiff, S.J.; Somjen, G.G. The effects of temperature on synaptic transmission in hippocampal tissue slices. Brain Res. 1985, 345, 279–284. [Google Scholar] [CrossRef]
- Howell, B.J.; Baumgardner, F.W.; Bondi, K.; Rahn, H. Acid-base balance in cold-blooded vertebrates as a function of body temperature. Am. J. Physiol. Content 1970, 218, 600–606. [Google Scholar] [CrossRef]
- Whitford, W.G. The Effects of Temperature on Respiration in the Amphibia. Am. Zool. 1973, 13, 505–512. [Google Scholar] [CrossRef]
- Biancardi, V.; Bícego, K.C.; Almeida, M.C.; Gargaglioni, L.H. Locus coeruleus noradrenergic neurons and CO2 drive to breathing. Pflug. Arch. Eur. J. Phy. 2007, 455, 1119–1128. [Google Scholar] [CrossRef]
- Sleiman, F.; Saab, S. Influence of environment on respiration, heart rate and body temperature of filial crosses compared to local Awassi sheep. Small Rumin. Res. 1995, 16, 49–53. [Google Scholar] [CrossRef]
- Ikeda, M.Z.; Jeon, S.D.; Cowell, R.A.; Remage-Healey, L. Norepinephrine Modulates Coding of Complex Vocalizations in the Songbird Auditory Cortex Independent of Local Neuroestrogen Synthesis. J. Neurosci. 2015, 35, 9356–9368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poirier, C.; Boumans, T.; Vellema, M.; de Groof, G.; Charlier, T.D.; Verhoye, M.; van der Linden, A.; Balthazart, J. Own Song Selectivity in the Songbird Auditory Pathway: Suppression by Norepinephrine. PLoS ONE 2011, 6, e20131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldon, Z.P.; Castelino, C.B.; Glaze, C.M.; Bibu, S.P.; Yau, E.; Schmidt, M.F. Regulation of vocal precision by noradrenergic modulation of a motor nucleus. J. Neurophysiol. 2020, 124, 458–470. [Google Scholar] [CrossRef]
- Farries, M.A. The Avian Song System in Comparative Perspective. Ann. N. Y. Acad. Sci. 2004, 1016, 61–76. [Google Scholar] [CrossRef]
- Alvarado, J.S.; Goffinet, J.; Michael, V.; Liberti, W.; Hatfield, J.; Gardner, T.; Pearson, J.; Mooney, R. Neural dynamics underlying birdsong practice and performance. Nature 2021, 599, 635–639. [Google Scholar] [CrossRef] [PubMed]
- Sizemore, M.; Perkel, D.J. Noradrenergic and GABAB Receptor Activation Differentially Modulate Inputs to the Premotor Nucleus RA in Zebra Finches. J. Neurophysiol. 2008, 100, 8–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vazey, E.M.; Moorman, D.E.; Aston-Jones, G. Phasic locus coeruleus activity regulates cortical encoding of salience information. Proc. Natl. Acad. Sci. USA 2018, 115, E9439–E9448. [Google Scholar] [CrossRef] [Green Version]
- Duzel, E.; Guitart-Masip, M. Not So Uncertain at Last: Locus Coeruleus and Decision Making. Neuron 2013, 79, 9–11. [Google Scholar] [CrossRef] [Green Version]
- Yu, A.J.; Dayan, P. Uncertainty, Neuromodulation, and Attention. Neuron 2005, 46, 681–692. [Google Scholar] [CrossRef] [Green Version]
- Payzan-LeNestour, E.; Dunne, S.; Bossaerts, P.; O’Doherty, J.P. The Neural Representation of Unexpected Uncertainty during Value-Based Decision Making. Neuron 2013, 79, 191–201. [Google Scholar] [CrossRef] [Green Version]
- Bouret, S.; Richmond, B.J. Sensitivity of Locus Ceruleus Neurons to Reward Value for Goal-Directed Actions. J. Neurosci. 2015, 35, 4005–4014. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, A.M.; Geiller, T.; Losonczy, A. A Role for the Locus Coeruleus in Hippocampal CA1 Place Cell Reorganization during Spatial Reward Learning. Neuron 2020, 105, 1018–1026.e4. [Google Scholar] [CrossRef]
- Paukert, M.; Agarwal, A.; Cha, J.; Doze, V.A.; Kang, J.U.; Bergles, D.E. Norepinephrine Controls Astroglial Responsiveness to Local Circuit Activity. Neuron 2014, 82, 1263–1270. [Google Scholar] [CrossRef] [Green Version]
- Deemyad, T.; Lüthi, J.; Spruston, N. Astrocytes integrate and drive action potential firing in inhibitory subnetworks. Nat. Commun. 2018, 9, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helmbrecht, T.O.; Maschio, M.D.; Donovan, J.C.; Koutsouli, S.; Baier, H. Topography of a Visuomotor Transformation. Neuron 2018, 100, 1429–1445.e4. [Google Scholar] [CrossRef] [Green Version]
- Borgonovo, J.; Ahumada-Galleguillos, P.; Oñate-Ponce, A.; Allende-Castro, C.; Henny, P.; Concha, M.L. Organization of the Catecholaminergic System in the Short-Lived Fish Nothobranchius furzeri. Front. Neuroanat. 2021, 15. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.M.; Lopez, M. Consistency in the number of dopaminergic paraventricular organ-accompanying neurons in the posterior tuberculum of the zebrafish brain. Brain Res. 2003, 967, 267–272. [Google Scholar] [CrossRef]
- Huesa, G.; Pol, A.N.V.D.; Finger, T.E. Differential distribution of hypocretin (orexin) and melanin-concentrating hormone in the goldfish brain. J. Comp. Neurol. 2005, 488, 476–491. [Google Scholar] [CrossRef] [PubMed]
- Singh, C.; Rihel, J.; Prober, D.A. Neuropeptide Y Regulates Sleep by Modulating Noradrenergic Signaling. Curr. Biol. 2017, 27, 3796–3811.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Camacho, C.; Marín, O.; López, J.; Moreno, N.; Smeets, W.; Donkelaar, H.T.; González, A. Origin and development of descending catecholaminergic pathways to the spinal cord in amphibians. Brain Res. Bull. 2002, 57, 325–330. [Google Scholar] [CrossRef]
- Marín, O.; González, A.; Smeets, W.J.A.J. Basal ganglia organization in amphibians: Efferent connections of the striatum and the nucleus accumbens. J. Comp. Neurol. 1997, 380, 23–50. [Google Scholar] [CrossRef]
- González, A.; Smeets, W.J.A.J. Comparative analysis of dopamine and tyrosine hydroxylase immunoreactivities in the brain of two amphibians, the anuranRana ridibunda and the urodelePleurodeles waltlii. J. Comp. Neurol. 1991, 303, 457–477. [Google Scholar] [CrossRef]
- Freudenmacher, L.; von Twickel, A.; Walkowiak, W. The habenula as an evolutionary conserved link between basal ganglia, limbic, and sensory systems—A phylogenetic comparison based on anuran amphibians. J. Comp. Neurol. 2019, 528, 705–728. [Google Scholar] [CrossRef] [PubMed]
- Dubé, L.; Parent, A. The organization of monoamine-containing neurons in the brain of the salamander, Necturus maculosus. J. Comp. Neurol. 1982, 211, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Marin, O.; Smeets, W.J.; González, A. Do amphibians have a true locus coeruleus? Neuroreport 1996, 7, 1447–1451. [Google Scholar] [CrossRef] [PubMed]
- Kolk, S.M.; Berghs, C.A.F.M.; Vaudry, H.; Verhage, M.; Roubos, E.W. Physiological Control of Xunc18 Expression in Neuroendocrine Melanotrope Cells of Xenopus laevis. Endocrinology 2001, 142, 1950–1957. [Google Scholar] [CrossRef]
- Brüning, G.; Mayer, B. Localization of nitric oxide synthase in the brain of the frog, Xenopus laevis. Brain Res. 1996, 741, 331–343. [Google Scholar] [CrossRef]
- Donkelaar, H.J.; Huizen, R. Brain stem afferents to the anterior dorsal ventricular ridge in a lizard (Varanus exanthematicus). Anat. Embryol. 1988, 177, 465–475. [Google Scholar] [CrossRef]
- Ouimet, C.C.; Patrick, R.L.; Ebner, F.F. The projection of three extrathalamic cell groups to the cerebral cortex of the turtlePseudemys. J. Comp. Neurol. 1985, 237, 77–84. [Google Scholar] [CrossRef]
- Siemen, M.; Künzle, H. Connections of the basal telencephalic areas c and d in the turtle brain. Anat. Embryol. 1994, 189, 339–359. [Google Scholar] [CrossRef] [PubMed]
- Norimoto, H.; Fenk, L.; Li, H.-H.; Tosches, M.A.; Gallego-Flores, T.; Hain, D.; Reiter, S.; Kobayashi, R.; Macias, A.; Arends, A.; et al. A claustrum in reptiles and its role in slow-wave sleep. Nature 2020, 578, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Donkelaar, H.J.; Bangma, G.C.; Huizen, R.B.-V. Reticulospinal and vestibulospinal pathways in the snake Python regius. Anat. Embryol. 1983, 168, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Welker, E.; Hoogland, P.V.; Lohman, A.H.M. Tectal connections inPython reticulatus. J. Comp. Neurol. 1983, 220, 347–354. [Google Scholar] [CrossRef]
- Ayala-Guerrero, F.; Mexicano, G. Topographical distribution of the locus coeruleus and raphe nuclei in the lizard Ctenosaura pectinata: Functional implications on sleep. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2007, 149, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Kitt, C.A.; Brauth, S.E. Telencephalic projections from midbrain and isthmal cell groups in the pigeon. II. The nigral complex. J. Comp. Neurol. 1986, 247, 92–110. [Google Scholar] [CrossRef]
- Atoji, Y.; Saito, S.; Wild, J.M. Fiber connections of the compact division of the posterior pallial amygdala and lateral part of the bed nucleus of the stria terminalis in the pigeon (Columba livia). J. Comp. Neurol. 2006, 499, 161–182. [Google Scholar] [CrossRef]
- Parent, A. Functional Anatomy and Evolution of Monoaminergic Systems. Am. Zool. 1984, 24, 783–790. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, S.; Mello, C. Gene Expression and Synaptic Plasticity in the Auditory Forebrain of Songbirds. Learn. Mem. 2000, 7, 235–243. [Google Scholar] [CrossRef] [Green Version]
- Wade, J.; Lampen, J.; Qi, L.; Tang, Y.P. Norepinephrine inhibition in juvenile male zebra finches modulates adult song quality. Brain Res. Bull. 2012, 90, 132–136. [Google Scholar] [CrossRef] [Green Version]
- Matragrano, L.L.; LeBlanc, M.M.; Chitrapu, A.; Blanton, Z.E.; Maney, D.L. Testosterone alters genomic responses to song and monoaminergic innervation of auditory areas in a seasonally breeding songbird. Dev. Neurobiol. 2013, 73, 455–468. [Google Scholar] [CrossRef]
- Soha, J.A.; Shimizu, T.; Doupe, A.J. Development of the catecholaminergic innervation of the song system of the male zebra finch. J. Neurobiol. 1996, 29, 473–489. [Google Scholar] [CrossRef]
- Waterman, S.A.; Harding, C.F. Neurotoxic effects of DSP-4 on the central noradrenergic system in male zebra finches. Behav. Brain Res. 2008, 188, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Barr, H.J.; Woolley, S.C. Developmental auditory exposure shapes responses of catecholaminergic neurons to socially-modulated song. Sci. Rep. 2018, 8, 11717. [Google Scholar] [CrossRef] [Green Version]
- Velho, T.A.F.; Lü, K.; Ribeiro, S.; Pinaud, R.; Vicario, D.; Mello, C.V. Noradrenergic Control of Gene Expression and Long-Term Neuronal Adaptation Evoked by Learned Vocalizations in Songbirds. PLoS ONE 2012, 7, e36276. [Google Scholar] [CrossRef]
- Lynch, K.S.; Diekamp, B.; Ball, G.F. Catecholaminergic cell groups and vocal communication in male songbirds. Physiol. Behav. 2008, 93, 870–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barclay, S.R.; Harding, C.F.; Waterman, S.A. Correlations between catecholamine levels and sexual behavior in male zebra finches. Pharmacol. Biochem. Behav. 1992, 41, 195–201. [Google Scholar] [CrossRef]
- Lynch, K.S.; Diekamp, B.; Ball, G.F. Colocalization of Immediate Early Genes in Catecholamine Cells after Song Exposure in Female Zebra Finches (Taeniopygia guttata). Brain, Behav. Evol. 2012, 79, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Cross, D.; Marzluff, J.M.; Palmquist, I.; Minoshima, S.; Shimizu, T.; Miyaoka, R. Distinct neural circuits underlie assessment of a diversity of natural dangers by American crows. Proc. R. Soc. B Boil. Sci. 2013, 280, 20131046. [Google Scholar] [CrossRef] [Green Version]
- Aroca, P.; Lorente-Cánovas, B.; Mateos, F.R.; Puelles, L. Locus coeruleus neurons originate in alar rhombomere 1 and migrate into the basal plate: Studies in chick and mouse embryos. J. Comp. Neurol. 2006, 496, 802–818. [Google Scholar] [CrossRef]
- Yekimova, I.V.; Pastukhov, I.F. The GABAergic midbrain system is involved in the control of sleep and temperature homeostasis in pigeons. Dokl. Biol. Sci. 2002, 387, 485–487. [Google Scholar] [CrossRef] [PubMed]
Class | Contents | Species | References |
---|---|---|---|
Fish | Identified anatomical location, cell types, cell markers and cell morphology in the locus coeruleus (LC). | Electric fish, Apteronotus leptorhynchus Chondrostean fish, Acipenser baeri Chondrostean fish, Huso huso Short-lived fish, Nothobranchius furzeri Cartilaginous fish, Hydrolagus colliei Goldfish, Carassius auratus Zebrafish, Danio rerio | [8,17,58,62,63,78,82,86,138,139] |
Ascending and descending pathways. | Zebrafish, Danio rerio | [13,19,20,79,137] | |
Circuit: hypocretin(Hcrt) and melanin-concentrating hormone(MCH) neurons project to the vicinity of the LC. | Goldfish, Carassius auratus Zebrafish, Danio rerio | [14,98,140] | |
Regulating sleep and wakefulness. | Goldfish, Carassius auratus Zebrafish, Danio rerio | [14,93,98,140,141] | |
Development: the LC cell appears between 8–12 hour post fertilization (hpf), differentiates between 24–48 hpf. | Zebrafish, Danio rerio | [7,77,78,79,81] | |
Modulating brain states, including anxiety, anethesia, and passivity. | Zebrafish, Danio rerio | [15,75,99] | |
Highly and specifically expression of copper transporter. | Zebrafish, Danio rerio | [93] | |
Amphibians | Ascending and descending pathways. | Newt, Triturus cristatus Newt, Pleurodeles waltlii Frog, Xenopus laevis Frog, Rana perezi Toad, Bombian orientalis Salamaner, Necturus maculosus | [21,27,142,143,144,145,146,147] |
Thermosensitivity and chemosensitivity. | Toad, Bufo schneideri Frog, Lithobates catesbeianus | [100,101,105,106] | |
Controlling the melanotrope cells during background adaptation. | Frog, Xenopus laevis | [26,148] | |
Expression of nitric oxide synthase. | Frog, Xenopus laevis | [149] | |
Reptiles | Ascending and descending pathways. | Turtle, Pseudemys scripta elegans Lizard, Pogona vitticeps Snake, Python regius Snake, Python reticulatus Green iguana, Iguana iguana Lizard, Varanus exanthematicus Lizard, Gekko gecko | [22,24,25,29,150,151,152,153,154,155] |
Reduced chemosensitivity at higher temperatures. | Lizard, Varanus exanthematicus | [107] | |
Projections to claustrum: regulating slow-wave sleep. | Lizard, Pogona vitticeps | [153] | |
Identified the anatomical location and measured the soma size. | Lizard, Ctenosaura pectinata | [156] | |
Birds | Ascending and descending pathways. | Pigeon, Columba livia Chicken, Gallus gallus domesticus Duck, Anas platyrhinochos L. Zebra finch, Taeniopygia guttata | [31,32,33,36,37,38,61,157,158,159] |
Regulating song quality, song preference and song variability. | Zebra finch, Taeniopygia guttata | [34,123,124,125,127,160,161,162,163,164,165,166,167,168,169] | |
The LC activates during mobbing behavior. | Crow, Corvus brachyrhynchos | [170] | |
Development: origin and migration. | Chicken, Gallus gallus domesticus | [5,171] | |
High expression of neurotropin receptors; uptake neurotophin directly through axons and indirectly through tanycytes. | Chicken, Gallus gallus domesticus | [86,87] | |
Modulation on body temperature and sleep | Pigeon, Columba livia | [172] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wang, Z.; Mu, Y. Locus Coeruleus in Non-Mammalian Vertebrates. Brain Sci. 2022, 12, 134. https://doi.org/10.3390/brainsci12020134
Wang S, Wang Z, Mu Y. Locus Coeruleus in Non-Mammalian Vertebrates. Brain Sciences. 2022; 12(2):134. https://doi.org/10.3390/brainsci12020134
Chicago/Turabian StyleWang, Sijia, Zhirong Wang, and Yu Mu. 2022. "Locus Coeruleus in Non-Mammalian Vertebrates" Brain Sciences 12, no. 2: 134. https://doi.org/10.3390/brainsci12020134
APA StyleWang, S., Wang, Z., & Mu, Y. (2022). Locus Coeruleus in Non-Mammalian Vertebrates. Brain Sciences, 12(2), 134. https://doi.org/10.3390/brainsci12020134