Review of the Treatments for Central Neuropathic Pain
Abstract
:1. Introduction
2. Pathologies of CNP
3. Methodology of Review
4. Pharmacologic Treatments
4.1. First-Line Pharmaceuticals
4.2. Second-Line Pharmaceuticals
4.3. Additional Pharmaceutical Agents
4.4. Emerging Therapies and Ongoing Clinical Trials
5. Surgical Treatments for Central Pain
5.1. Motor Cortex Stimulation
5.2. Deep Brain Stimulation
5.3. Lesioning
5.4. Focused Ultrasound
5.5. Spinal Cord Stimulation
6. Alternative Therapies
6.1. Noninvasive Central Stimulation
6.2. Repetitive Transcranial Magnetic Stimulation
7. Cognitive, Affective, and Emotional Approaches
7.1. Mindfulness Meditation
7.2. Cognitive Behavioral Therapy and Methods of Clinical Assessment
8. Future Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dydyk, A.M.; Givler, A. Central Pain Syndrome; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Finnerup, N.B.; Kuner, R.; Jensen, T.S. Neuropathic Pain: From Mechanisms to Treatment. Physiol. Rev. 2021, 101, 259–301. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.C.; Sandroni, P. Central Neuropathic Pain Syndromes. Mayo Clin. Proc. 2016, 91, 372–385. [Google Scholar] [CrossRef] [Green Version]
- Meacham, K.; Shepherd, A.; Mohapatra, D.P.; Haroutounian, S. Neuropathic Pain: Central vs. Peripheral Mechanisms. Curr. Pain Headache Rep. 2017, 21, 28. [Google Scholar] [CrossRef] [PubMed]
- Jahngir, M.U.; Qureshi, A.I. Dejerine Roussy Syndrome; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Liampas, A.; Velidakis, N.; Georgiou, T.; Vadalouca, A.; Varrassi, G.; Hadjigeorgiou, G.M.; Tsivgoulis, G.; Zis, P. Prevalence and Management Challenges in Central Post-Stroke Neuropathic Pain: A Systematic Review and Meta-analysis. Adv. Ther. 2020, 37, 3278–3291. [Google Scholar] [CrossRef] [PubMed]
- Khoury, S.; Benavides, R. Pain with traumatic brain injury and psychological disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 87, 224–233. [Google Scholar] [CrossRef]
- Leung, A.; Shukla, S.; Yang, E.; Canlas, B.; Kadokana, M.; Heald, J.; Davani, A.; Song, D.; Lin, L.; Polston, G.; et al. Diminished supraspinal pain modulation in patients with mild traumatic brain injury. Mol. Pain 2016, 12, 1744806916662661. [Google Scholar] [CrossRef]
- Kang, J.; Cho, S.S.; Kim, H.Y.; Lee, B.H.; Cho, H.J.; Gwak, Y.S. Regional Hyperexcitability and Chronic Neuropathic Pain Following Spinal Cord Injury. Cell Mol. Neurobiol. 2020, 40, 861–878. [Google Scholar] [CrossRef]
- Li, X.; Li, M.; Tian, L.; Chen, J.; Liu, R.; Ning, B. Reactive Astrogliosis: Implications in Spinal Cord Injury Progression and Therapy. Oxid Med. Cell. Longev. 2020, 2020, 9494352. [Google Scholar] [CrossRef]
- Solaro, C.; Trabucco, E.; Messmer Uccelli, M. Pain and multiple sclerosis: Pathophysiology and treatment. Curr. Neurol. Neurosci. Rep. 2013, 13, 320. [Google Scholar] [CrossRef]
- Mostofi, A.; Morgante, F.; Edwards, M.J.; Brown, P.; Pereira, E.A.C. Pain in Parkinson’s disease and the role of the subthalamic nucleus. Brain A J. Neurol. 2021, 144, 1342–1350. [Google Scholar] [CrossRef]
- Vila-Chã, N.; Cavaco, S.; Mendes, A.; Gonçalves, A.; Moreira, I.; Fernandes, J.; Damásio, J.; Azevedo, L.F.; Castro-Lopes, J.M. Central Pain in Parkinson’s Disease: Behavioral and Cognitive Characteristics. Park. Dis. 2021, 2021, 5553460. [Google Scholar] [CrossRef] [PubMed]
- Colloca, L.; Ludman, T.; Bouhassira, D.; Baron, R.; Dickenson, A.H.; Yarnitsky, D.; Freeman, R.; Truini, A.; Attal, N.; Finnerup, N.B.; et al. Neuropathic pain. Nat. Rev. Dis. Prim. 2017, 3, 17002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finnerup, N.B.; Attal, N.; Haroutounian, S.; McNicol, E.; Baron, R.; Dworkin, R.H.; Gilron, I.; Haanpää, M.; Hansson, P.; Jensen, T.S.; et al. Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis. Lancet Neurol. 2015, 14, 162–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patetsos, E.; Horjales-Araujo, E. Treating Chronic Pain with SSRIs: What Do We Know? Pain Res. Manag. 2016, 2016, 2020915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szok, D.; Tajti, J.; Nyári, A.; Vécsei, L. Therapeutic Approaches for Peripheral and Central Neuropathic Pain. Behav. Neurol. 2019, 2019, 8685954. [Google Scholar] [CrossRef] [PubMed]
- Obata, H. Analgesic Mechanisms of Antidepressants for Neuropathic Pain. Int. J. Mol. Sci. 2017, 18, 2483. [Google Scholar] [CrossRef] [Green Version]
- Kremer, M.; Yalcin, I.; Goumon, Y.; Wurtz, X.; Nexon, L.; Daniel, D.; Megat, S.; Ceredig, R.A.; Ernst, C.; Turecki, G.; et al. A Dual Noradrenergic Mechanism for the Relief of Neuropathic Allodynia by the Antidepressant Drugs Duloxetine and Amitriptyline. J. Neurosci. 2018, 38, 9934–9954. [Google Scholar] [CrossRef] [Green Version]
- Alles, S.R.A.; Smith, P.A. Etiology and Pharmacology of Neuropathic Pain. Pharmacol. Rev. 2018, 70, 315–347. [Google Scholar] [CrossRef]
- Edinoff, A.N.; Kaplan, L.A.; Khan, S.; Petersen, M.; Sauce, E.; Causey, C.D.; Cornett, E.M.; Imani, F.; Moradi Moghadam, O.; Kaye, A.M.; et al. Full Opioid Agonists and Tramadol: Pharmacological and Clinical Considerations. Anesth. Pain Med. 2021, 11, e119156. [Google Scholar] [CrossRef]
- Sultana, A.; Singla, R.K.; He, X.; Sun, Y.; Alam, M.S.; Shen, B. Topical Capsaicin for the Treatment of Neuropathic Pain. Curr. Drug Metab. 2021, 22, 198–207. [Google Scholar] [CrossRef]
- Lelic, D.; Olesen, A.E.; Grønlund, D.; Jure, F.A.; Drewes, A.M. Opioid Specific Effects on Central Processing of Sensation and Pain: A Randomized, Cross-Over, Placebo-Controlled Study. J. Pain Off. J. Am. Pain Soc. 2021, 22, 1477–1496. [Google Scholar] [CrossRef] [PubMed]
- Matak, I.; Bölcskei, K.; Bach-Rojecky, L.; Helyes, Z. Mechanisms of Botulinum Toxin Type A Action on Pain. Toxins 2019, 11, 459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emery, E.C.; Luiz, A.P.; Wood, J.N. Nav1.7 and other voltage-gated sodium channels as drug targets for pain relief. Expert Opin. Ther. Targets 2016, 20, 975–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.; Coppes, O.J.M.; Urman, R.D. Receptor and Molecular Targets for the Development of Novel Opioid and Non-Opioid Analgesic Therapies. Pain Phys. 2021, 24, 153–163. [Google Scholar]
- Bilbao, A.; Spanagel, R. Medical cannabinoids: A pharmacology-based systematic review and meta-analysis for all relevant medical indications. BMC Med. 2022, 20, 259. [Google Scholar] [CrossRef]
- Mücke, M.; Phillips, T.; Radbruch, L.; Petzke, F.; Häuser, W. Cannabis-based medicines for chronic neuropathic pain in adults. Cochrane Database Syst. Rev. 2018, 3, CD012182. [Google Scholar]
- Awerbuch, G.I.; Sandyk, R. Mexiletine for thalamic pain syndrome. Int. J. Neurosci. 1990, 55, 129–133. [Google Scholar] [CrossRef]
- Olschewski, A.; Schnoebel-Ehehalt, R.; Li, Y.; Tang, B.; Bräu, M.E.; Wolff, M. Mexiletine and lidocaine suppress the excitability of dorsal horn neurons. Anesth. Analg. 2009, 109, 258–264. [Google Scholar] [CrossRef]
- Shaygan, M.; Böger, A.; Kröner-Herwig, B. Predicting factors of outcome in multidisciplinary treatment of chronic neuropathic pain. J. Pain Res. 2018, 11, 2433–2443. [Google Scholar] [CrossRef] [Green Version]
- Tsubokawa, T.; Katayama, Y.; Yamamoto, T.; Hirayama, T.; Koyama, S. Chronic motor cortex stimulation for the treatment of central pain. Acta Neurochir. Suppl. 1991, 52, 137–139. [Google Scholar] [CrossRef]
- Pagano, R.L.; Fonoff, E.T.; Dale, C.S.; Ballester, G.; Teixeira, M.J.; Britto, L.R.G. Motor cortex stimulation inhibits thalamic sensory neurons and enhances activity of PAG neurons: Possible pathways for antinociception. Pain 2012, 153, 2359–2369. [Google Scholar] [CrossRef] [PubMed]
- Chiou, R.J.; Chang, C.W.; Kuo, C.C. Involvement of the periaqueductal gray in the effect of motor cortex stimulation. Brain Res. 2013, 1500, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Sukul, V.V.; Slavin, K.V. Deep brain and motor cortex stimulation. Curr. Pain Headache Rep. 2014, 18, 427. [Google Scholar] [CrossRef] [PubMed]
- Levy, R.; Deer, T.R.; Henderson, J. Intracranial neurostimulation for pain control: A review. Pain Phys. 2010, 13, 157–165. [Google Scholar]
- Boccard, S.G.; Pereira, E.A.; Moir, L.; Aziz, T.Z.; Green, A.L. Long-term outcomes of deep brain stimulation for neuropathic pain. Neurosurgery 2013, 72, 221–230; discussion 231. [Google Scholar] [CrossRef]
- Bittar, R.G.; Kar-Purkayastha, I.; Owen, S.L.; Bear, R.E.; Green, A.; Wang, S.; Aziz, T.Z. Deep brain stimulation for pain relief: A meta-analysis. J. Clin. Neurosci. 2005, 12, 515–519. [Google Scholar] [CrossRef]
- Stadler, J.A.; Ellens, D.J.; Rosenow, J.M. Deep brain stimulation and motor cortical stimulation for neuropathic pain. Curr. Pain Headache Rep. 2011, 15, 8–13. [Google Scholar] [CrossRef]
- Mallory, G.W.; Abulseoud, O.; Hwang, S.C.; Gorman, D.A.; Stead, S.M.; Klassen, B.T.; Sandroni, P.; Watson, J.C.; Lee, K.H. The nucleus accumbens as a potential target for central poststroke pain. Mayo Clin. Proc. 2012, 87, 1025–1031. [Google Scholar] [CrossRef] [Green Version]
- Plow, E.B.; Pascual-Leone, A.; Machado, A. Brain stimulation in the treatment of chronic neuropathic and non-cancerous pain. J. Pain 2012, 13, 411–424. [Google Scholar] [CrossRef] [Green Version]
- Lefaucheur, J.P. Cortical neurostimulation for neuropathic pain: State of the art and perspectives. Pain 2016, 157 (Suppl. 1), S81–S89. [Google Scholar] [CrossRef]
- Coffey, R.J. Deep brain stimulation for chronic pain: Results of two multicenter trials and a structured review. Pain Med. 2001, 2, 183–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eide, P.K.; Jørum, E.; Stenehjem, A.E. Somatosensory findings in patients with spinal cord injury and central dysaesthesia pain. J. Neurol. Neurosurg. Psychiatry 1996, 60, 411–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirotte, B. Neurosurgical treatments for pain. Rev. Med. Brux. 2012, 33, 359–366. [Google Scholar] [PubMed]
- Kanpolat, Y. The surgical treatment of chronic pain: Destructive therapies in the spinal cord. Neurosurg. Clin. N Am. 2004, 15, 307–317. [Google Scholar] [CrossRef]
- di Biase, L.; Falato, E.; Di Lazzaro, V. Transcranial Focused Ultrasound (tFUS) and Transcranial Unfocused Ultrasound (tUS) Neuromodulation: From Theoretical Principles to Stimulation Practices. Front. Neurol. 2019, 10, 549. [Google Scholar] [CrossRef] [Green Version]
- di Biase, L.; Falato, E.; Caminiti, M.L.; Pecoraro, P.M.; Narducci, F.; Di Lazzaro, V. Focused Ultrasound (FUS) for Chronic Pain Management: Approved and Potential Applications. Neurol. Res. Int. 2021, 2021, 8438498. [Google Scholar] [CrossRef]
- Jeanmonod, D.; Werner, B.; Morel, A.; Michels, L.; Zadicario, E.; Schiff, G.; Martin, E. Transcranial magnetic resonance imaging-guided focused ultrasound: Noninvasive central lateral thalamotomy for chronic neuropathic pain. Neurosurg. Focus 2012, 32, E1. [Google Scholar] [CrossRef] [Green Version]
- MacDonell, J.; Patel, N.; Fischer, G.; Burdette, E.C.; Qian, J.; Chumbalkar, V.; Ghoshal, G.; Heffter, T.; Williams, E.; Gounis, M.; et al. Robotic Assisted MRI-Guided Interventional Interstitial MR-Guided Focused Ultrasound Ablation in a Swine Model. Neurosurgery 2019, 84, 1138–1148. [Google Scholar] [CrossRef] [PubMed]
- Hellman, A.; Clum, A.; Maietta, T.; Srikanthan, A.; Patel, V.; Panse, D.; Zimmerman, O.; Neubauer, P.; Nalwalk, J.; Williams, E.; et al. Effects of external low intensity focused ultrasound on inflammatory markers in neuropathic pain. Neurosci. Lett. 2021, 757, 135977. [Google Scholar] [CrossRef]
- Hellman, A.; Maietta, T.; Clum, A.; Byraju, K.; Raviv, N.; Staudt, M.D.; Jeannotte, E.; Ghoshal, G.; Shin, D.; Neubauer, P.; et al. Pilot study on the effects of low intensity focused ultrasound in a swine model of neuropathic pain. J. Neurosurg. 2021, 1–8. [Google Scholar] [CrossRef]
- Tasker, R.R.; DeCarvalho, G.T.; Dolan, E.J. Intractable pain of spinal cord origin: Clinical features and implications for surgery. J. Neurosurg. 1992, 77, 373–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, A.B.; Parrent, A.G.; MacDougall, K.W. Cervical Spinal Cord and Dorsal Nerve Root Stimulation for Neuropathic Upper Limb Pain. Can. J. Neurol. Sci. 2017, 44, 83–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.L.; Murphy, K.R.; Hussaini, S.M.Q.; Yang, S.; Parente, B.; Xie, J.; Pagadala, P.; Lad, S.P. Explantation Rates and Healthcare Resource Utilization in Spinal Cord Stimulation. Neuromodulation 2017, 20, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Cameron, T. Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: A 20-year literature review. J. Neurosurg. 2004, 100, 254–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddall, P.J.; Middleton, J.W. Spinal cord injury-induced pain: Mechanisms and treatments. Pain Manag. 2015, 5, 493–507. [Google Scholar] [CrossRef] [PubMed]
- Antony, A.B.; Mazzola, A.J.; Dhaliwal, G.S.; Hunter, C.W. Neurostimulation for the Treatment of Chronic Head and Facial Pain: A Literature Review. Pain Phys. 2019, 22, 447–477. [Google Scholar] [CrossRef]
- Sun, L.; Peng, C.; Joosten, E.; Cheung, C.W.; Tan, F.; Jiang, W.; Shen, X. Spinal Cord Stimulation and Treatment of Peripheral or Central Neuropathic Pain: Mechanisms and Clinical Application. Neural Plast. 2021, 2021, 5607898. [Google Scholar] [CrossRef]
- Kapural, L.; Yu, C.; Doust, M.W.; Gliner, B.E.; Vallejo, R.; Sitzman, B.T.; Amirdelfan, K.; Morgan, D.M.; Brown, L.L.; Yearwood, T.L.; et al. Novel 10-kHz High-frequency Therapy (HF10 Therapy) Is Superior to Traditional Low-frequency Spinal Cord Stimulation for the Treatment of Chronic Back and Leg Pain: The SENZA-RCT Randomized Controlled Trial. Anesthesiology 2015, 123, 851–860. [Google Scholar] [CrossRef]
- Aiudi, C.M.; Dunn, R.Y.; Burns, S.M.; Roth, S.A.; Opalacz, A.; Zhang, Y.; Chen, L.; Mao, J.; Ahmed, S.U. Loss of Efficacy to Spinal Cord Stimulator Therapy: Clinical Evidence and Possible Causes. Pain Phys. 2017, 20, E1073–E1080. [Google Scholar] [CrossRef]
- Slyer, J.; Scott, S.; Sheldon, B.; Hancu, M.; Bridger, C.; Pilitsis, J.G. Less Pain Relief, More Depression, and Female Sex Correlate With Spinal Cord Stimulation Explants. Neuromodulation 2020, 23, 673–679. [Google Scholar] [CrossRef]
- Moisset, X.; Bouhassira, D.; Avez Couturier, J.; Alchaar, H.; Conradi, S.; Delmotte, M.H.; Lanteri-Minet, M.; Lefaucheur, J.P.; Mick, G.; Piano, V.; et al. Pharmacological and non-pharmacological treatments for neuropathic pain: Systematic review and French recommendations. Rev. Neurol. 2020, 176, 325–352. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Michalsen, A. Management of chronic pain using complementary and integrative medicine. BMJ 2017, 357, j1284. [Google Scholar] [CrossRef] [PubMed]
- Zucchella, C.; Mantovani, E.; De Icco, R.; Tassorelli, C.; Sandrini, G.; Tamburin, S. Non-invasive Brain and Spinal Stimulation for Pain and Related Symptoms in Multiple Sclerosis: A Systematic Review. Front. Neurosci. 2020, 14, 547069. [Google Scholar] [CrossRef] [PubMed]
- Moisset, X.; Lefaucheur, J.P. Non pharmacological treatment for neuropathic pain: Invasive and non-invasive cortical stimulation. Rev. Neurol. 2019, 175, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Hosomi, K.; Seymour, B.; Saitoh, Y. Modulating the pain network–neurostimulation for central poststroke pain. Nat. Rev. Neurol. 2015, 11, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Nardone, R.; Höller, Y.; Leis, S.; Höller, P.; Thon, N.; Thomschewski, A.; Golaszewski, S.; Brigo, F.; Trinka, E. Invasive and non-invasive brain stimulation for treatment of neuropathic pain in patients with spinal cord injury: A review. J. Spinal Cord Med. 2014, 37, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Migita, K.; Uozumi, T.; Arita, K.; Monden, S. Transcranial magnetic coil stimulation of motor cortex in patients with central pain. Neurosurgery 1995, 36, 1037–1039; discussion 1039–1040. [Google Scholar] [CrossRef]
- Lefaucheur, J.P.; Drouot, X.; Keravel, Y.; Nguyen, J.P. Pain relief induced by repetitive transcranial magnetic stimulation of precentral cortex. Neuroreport 2001, 12, 2963–2965. [Google Scholar] [CrossRef]
- Ciampi de Andrade, D.; Mhalla, A.; Adam, F.; Texeira, M.J.; Bouhassira, D. Repetitive transcranial magnetic stimulation induced analgesia depends on N-methyl-D-aspartate glutamate receptors. Pain 2014, 155, 598–605. [Google Scholar] [CrossRef]
- de Andrade, D.C.; Mhalla, A.; Adam, F.; Texeira, M.J.; Bouhassira, D. Neuropharmacological basis of rTMS-induced analgesia: The role of endogenous opioids. Pain 2011, 152, 320–326. [Google Scholar] [CrossRef]
- Khedr, E.M.; Kotb, H.; Kamel, N.F.; Ahmed, M.A.; Sadek, R.; Rothwell, J.C. Longlasting antalgic effects of daily sessions of repetitive transcranial magnetic stimulation in central and peripheral neuropathic pain. J. Neurol. Neurosurg. Psychiatry 2005, 76, 833–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, S.; Hallett, M.; Rossini, P.M.; Pascual-Leone, A.; Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 2009, 120, 2008–2039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Q.; Duan, W.; Sivanesan, E.; Liu, S.; Yang, F.; Chen, Z.; Ford, N.C.; Chen, X.; Guan, Y. Spinal Cord Stimulation for Pain Treatment After Spinal Cord Injury. Neurosci. Bull 2019, 35, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Prabhala, T.; Kumar, V.; Gruenthal, E.; Collison, C.; Prusik, J.; Owusu, S.; Hobson, E.; McCallum, S.E.; Pilitsis, J.G. Use of a Psychological Evaluation Tool as a Predictor of Spinal Cord Stimulation Outcomes. Neuromodulation 2019, 22, 194–199. [Google Scholar] [CrossRef]
- Sheldon, B.L.; Khazen, O.; Feustel, P.J.; Gechtman, G.; Rosoklija, G.; Patel, S.; DiMarzio, M.; Bridger, C.; Dentinger, R.; Slyer, J.; et al. Correlations Between Family History of Psychiatric Illnesses and Outcomes of Spinal Cord Stimulation. Neuromodulation 2020, 23, 667–672. [Google Scholar] [CrossRef]
- Khazen, O.; Rosoklija, G.; Custozzo, A.; Gillogly, M.; Bridger, C.; Hobson, E.; Feustel, P.; Lambiase, L.; DiMarzio, M.; Pilitsis, J.G. Correlation Between Aspects of Perceived Patient Loneliness and Spinal Cord Stimulation Outcomes. Neuromodulation 2021, 24, 150–155. [Google Scholar] [CrossRef]
- Seth, A. Being You: A New Science of Consciousness; Penguin Random House LLC.: New York, NY, USA, 2021. [Google Scholar]
- Smith, A.M.; Leeming, A.; Fang, Z.; Hatchard, T.; Mioduszewski, O.; Schneider, M.A.; Ferdossifard, A.; Shergill, Y.; Khoo, E.L.; Poulin, P. Mindfulness-based stress reduction alters brain activity for breast cancer survivors with chronic neuropathic pain: Preliminary evidence from resting-state fMRI. J. Cancer Surviv. 2021, 15, 518–525. [Google Scholar] [CrossRef]
- Nathan, H.J.; Poulin, P.; Wozny, D.; Taljaard, M.; Smyth, C.; Gilron, I.; Sorisky, A.; Lochnan, H.; Shergill, Y. Randomized Trial of the Effect of Mindfulness-Based Stress Reduction on Pain-Related Disability, Pain Intensity, Health-Related Quality of Life, and A1C in Patients With Painful Diabetic Peripheral Neuropathy. Clin Diabetes 2017, 35, 294–304. [Google Scholar] [CrossRef] [Green Version]
- Eccleston, C.; Fisher, E.; Craig, L.; Duggan, G.B.; Rosser, B.A.; Keogh, E. Psychological therapies (Internet-delivered) for the management of chronic pain in adults. Cochrane Database Syst. Rev. 2014, 2, CD010152. [Google Scholar] [CrossRef]
- Eccleston, C.; Hearn, L.; Williams, A.C. Psychological therapies for the management of chronic neuropathic pain in adults. Cochrane Database Syst. Rev. 2015, CD011259. [Google Scholar] [CrossRef]
- Williams, A.C.C.; Fisher, E.; Hearn, L.; Eccleston, C. Psychological therapies for the management of chronic pain (excluding headache) in adults. Cochrane Database Syst. Rev. 2020, 8, CD007407. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.D.; Aghaeepour, N.; Ahn, A.H.; Angst, M.S.; Borsook, D.; Brenton, A.; Burczynski, M.E.; Crean, C.; Edwards, R.; Gaudilliere, B.; et al. Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: Challenges and opportunities. Nat. Rev. Neurol. 2020, 16, 381–400. [Google Scholar] [CrossRef] [PubMed]
- De La Cruz, P.; Fama, C.; Roth, S.; Haller, J.; Wilock, M.; Lange, S.; Pilitsis, J. Predictors of Spinal Cord Stimulation Success. Neuromodulation 2015, 18, 599–602; discussion 602. [Google Scholar] [CrossRef] [PubMed]
- Fama, C.A.; Chen, N.; Prusik, J.; Kumar, V.; Wilock, M.; Roth, S.; Pilitsis, J.G. The Use of Preoperative Psychological Evaluations to Predict Spinal Cord Stimulation Success: Our Experience and a Review of the Literature. Neuromodulation 2016, 19, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Mekhail, N.; Levy, R.M.; Deer, T.R.; Kapural, L.; Li, S.; Amirdelfan, K.; Hunter, C.W.; Rosen, S.M.; Costandi, S.J.; Falowski, S.M.; et al. Long-term safety and efficacy of closed-loop spinal cord stimulation to treat chronic back and leg pain (Evoke): A double-blind, randomised, controlled trial. Lancet Neurol. 2020, 19, 123–134. [Google Scholar] [CrossRef]
- Brooker, C.; Russo, M.; Cousins, M.J.; Taylor, N.; Holford, L.; Martin, R.; Boesel, T.; Sullivan, R.; Hanson, E.; Gmel, G.E.; et al. ECAP-Controlled Closed-Loop Spinal Cord Stimulation Efficacy and Opioid Reduction Over 24-Months: Final Results of the Prospective, Multicenter, Open-Label Avalon Study. Pain Pract. 2021, 21, 680–691. [Google Scholar] [CrossRef]
Drug Class | Site of Action | Pharmacotherapy | Recommendation Strength | Dosage Ranges | Indications for Recommendation |
---|---|---|---|---|---|
TCAs | Increase α2 adrenergic transmission in the dorsal horn; increase activity at β2 receptors peripherally | Amitriptyline | Strong | 25–150 mg/day | All conditions |
SNRIs | Duloxetine | Strong | 60–120 mg/day | All conditions | |
Venlafaxine | Strong | 150–225 mg/day | All conditions | ||
Anticonvulsants | Decrease synaptic transmission by blocking presynaptic VGCC centrally and peripherally | Lamotrigine | Strong | 200 mg/day | All conditions |
Pregabalin | Strong | 300–600 mg/day * | Spinal cord injury (SCI), Traumatic brain injury (TBI), and Multiple sclerosis (MS) | ||
Gabapentin | Strong | 1200–3600 mg/day * | SCI, TBI, and MS | ||
SSRIs | Inhibit serotonin reuptake from the synapse | Zimelidine | Inconclusive | Inconclusive | All conditions |
Fluvoxamine | Inconclusive | Inconclusive | Central post-stroke pain (CPSP) | ||
Opioids | Weakly agonize mu receptors; inhibit norepinephrine and serotonin reuptake | Tramadol | Moderate | 200–400 mg/day * | TBI |
Potently agonize mu receptors, moderately agonize κ and δ receptors | Buprenorphine | Inconclusive | Inconclusive | Recommendation for those at risk of opioid use disorder | |
Morphine | Weak | 120–240 mg/day | All conditions | ||
Oxycodone | Weak | 120–240 mg/day | All conditions | ||
Topical agents | Selectively agonize TRPV1 channels on nociceptive fibers | Capsaicin 8% patch | Moderate | 1–4 patches for 60 min every 3 months | TBI |
Inhibit voltage-gated sodium channels | Lidocaine patch | Moderate | 1–3 patches for up to 12 h a day | TBI | |
Neurotoxin | Decrease neurotransmitter release at the NMJ and at supraspinal sensory nuclei | Botulinum toxin A | Moderate | 50–200 units every 3 months | SCI or pathologies with localized symptoms |
Clinical Trial | Site of Action | Pharmacotherapy | Dosage | CNP Indications |
---|---|---|---|---|
NCT02441660 | Selectively agonize TRPV1 channels on nociceptive fibers | 8% capsaicin patches | Sequence of low-dose vs. high-dose topical patch administration | SCI |
NCT04057456 | Agonize endocannabinoid receptors | Nabilone | 0.5 mg nabilone +/− anti-inflammatory diet | SCI |
NCT04459234 | Antagonize NMDA receptors | Ketamine | Not disclosed | General neuropathic pain |
NCT01324232 | Weakly agonize opioid receptors and antagonize NMDA receptors/Inhibit sodium channels | Dextromethorphan/quinidine | 20–45 mg dextromethorphan/10 mg quinidine | MS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheldon, B.L.; Olmsted, Z.T.; Sabourin, S.; Heydari, E.; Harland, T.A.; Pilitsis, J.G. Review of the Treatments for Central Neuropathic Pain. Brain Sci. 2022, 12, 1727. https://doi.org/10.3390/brainsci12121727
Sheldon BL, Olmsted ZT, Sabourin S, Heydari E, Harland TA, Pilitsis JG. Review of the Treatments for Central Neuropathic Pain. Brain Sciences. 2022; 12(12):1727. https://doi.org/10.3390/brainsci12121727
Chicago/Turabian StyleSheldon, Breanna L., Zachary T. Olmsted, Shelby Sabourin, Ehsaun Heydari, Tessa A. Harland, and Julie G. Pilitsis. 2022. "Review of the Treatments for Central Neuropathic Pain" Brain Sciences 12, no. 12: 1727. https://doi.org/10.3390/brainsci12121727
APA StyleSheldon, B. L., Olmsted, Z. T., Sabourin, S., Heydari, E., Harland, T. A., & Pilitsis, J. G. (2022). Review of the Treatments for Central Neuropathic Pain. Brain Sciences, 12(12), 1727. https://doi.org/10.3390/brainsci12121727