Serum Inflammatory Profile in Hereditary Transthyretin Amyloidosis: Mechanisms and Possible Therapeutic Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Cytokines Profiling
2.3. Clinical and Instrumental Evaluation
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adams, D.; Koike, H.; Slama, M.; Coelho, T. Hereditary transthyretin amyloidosis: A model of medical progress for a fatal disease. Nat. Rev. Neurol. 2019, 15, 387–404. [Google Scholar] [CrossRef] [PubMed]
- Manganelli, F.; Fabrizi, G.M.; Luigetti, M.; Mandich, P.; Mazzeo, A.; Pareyson, D. Hereditary Hereditary transthyretin amyloidosis overview. Neurol. Sci. 2020. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Sekijima, Y. Transthyretin (ATTR) amyloidosis: Clinical spectrum, molecular pathogenesis and disease-modifying treatments. J. Neurol. Neurosurg. Psychiatry 2015, 86, 1036–1043. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, P.M.; D’Ambrosio, V.; Di Paolantonio, A.; Guglielmino, V.; Calabresi, P.; Sabatelli, M.; Luigetti, M. Renal Involvement in Hereditary Transthyretin Amyloidosis: An Italian Single-Centre Experience. Brain Sci. 2021, 11, 980. [Google Scholar] [CrossRef] [PubMed]
- Minnella, A.M.; Rissotto, R.; Maceroni, M.; Romano, A.; Fasciani, R.; Luigetti, M.; Sabatelli, M.; Rizzo, S.; Falsini, B. Ocular Involvement in Hereditary Transthyretin Amyloidosis: A Case Series Describing Novel Potential Biomarkers. Genes 2021, 12, 927. [Google Scholar] [CrossRef]
- Luigetti, M.; Tortora, A.; Romano, A.; Di Paolantonio, A.; Guglielmino, V.; Bisogni, G.; Gasbarrini, A.; Calabresi, P.; Sabatelli, M. Gastrointestinal Manifestations in Hereditary Transthyretin Amyloidosis: A Single-Centre Experience. J. Gastrointestin. Liver Dis. 2020, 29, 339–343. [Google Scholar] [CrossRef]
- Luigetti, M.; Guglielmino, V.; Antonini, G.; Casali, C.; Ceccanti, M.; Chiappini, M.G.; De Giglio, L.; Di Lazzaro, V.; Di Muzio, A.; Goglia, M.; et al. ATTRv in Lazio-Italy: A High-Prevalence Region in a Non-Endemic Country. Genes 2021, 12, 829. [Google Scholar] [CrossRef]
- Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell 2010, 140, 918–934. [Google Scholar] [CrossRef] [Green Version]
- Sousa, M.M.; Du Yan, S.; Fernandes, R.; Guimaraes, A.; Stern, D.; Saraiva, M.J. Familial amyloid polyneuropathy: Receptor for advanced glycation end products-dependent triggering of neuronal inflammatory and apoptotic pathways. J. Neurosci. 2001, 21, 7576–7586. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, E.P.; Guimaraes-Costa, A.B.; Bandeira-Melo, C.; Chimelli, L.; Waddington-Cruz, M.; Saraiva, E.M.; Palhano, F.L.; Foguel, D. Inflammatory profiling of patients with familial amyloid polyneuropathy. BMC Neurol. 2019, 19, 146. [Google Scholar] [CrossRef]
- Gonçalves, N.P.; Vieira, P.; Saraiva, M.J. Interleukin-1 signaling pathway as a therapeutic target in transthyretin amyloidosis. Amyloid 2014, 21, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Luigetti, M.; Bisogni, G.; Romano, A.; Di Paolantonio, A.; Barbato, F.; Primicerio, G.; Rossini, P.M.; Servidei, S.; Sabatelli, M. Sudoscan in the evaluation and follow-up of patients and carriers with TTR mutations: Experience from an Italian Centre. Amyloid 2018, 25, 242–246. [Google Scholar] [CrossRef]
- Suenaga, G.; Ikeda, T.; Masuda, T.; Motokawa, H.; Yamashita, T.; Takamatsu, K.; Misumi, Y.; Ueda, M.; Matsui, H.; Senju, S.; et al. Inflammatory state exists in familial amyloid polyneuropathy that may be triggered by mutated transthyretin. Sci. Rep. 2017, 7, 1579. [Google Scholar] [CrossRef] [Green Version]
- Sousa, M.M.; Yan, S.D.; Stern, D.; Saraiva, M.J. Interaction of the receptor for advanced glycation end products (RAGE) with transthyretin triggers nuclear transcription factor kB (NF-kB) activation. Lab. Investig. 2000, 80, 1101–1110. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Liang, H.; Zen, K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front. Immunol. 2014, 5, 614. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [Green Version]
- Oh, H.; Ghosh, S. NF-κB: Roles and regulation in different CD4+ T-cell subsets. Immunol. Rev. 2013, 252, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Walter, M.R. The Role of Structure in the Biology of Interferon Signaling. Front. Immunol. 2020, 11, 606489. [Google Scholar] [CrossRef]
- Psarras, A.; Emery, P.; Vital, E.M. Type I interferon-mediated autoimmune diseases: Pathogenesis, diagnosis and targeted therapy. Rheumatology 2017, 56, 1662–1675. [Google Scholar] [CrossRef] [Green Version]
- Kann, O.; Almouhanna, F.; Chausse, B. Interferon γ: A master cytokine in microglia-mediated neural network dysfunction and neurodegeneration. Trends Neurosci. 2022, 45, 913–927. [Google Scholar] [CrossRef]
- Niewold, T.B.; Clark, D.N.; Salloum, R.; Poole, B.D. Interferon alpha in systemic lupus erythematosus. J. Biomed. Biotechnol. 2010, 2010, 948364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muskardin, T.L.W.; Niewold, T.B. Type I interferon in rheumatic diseases. Nat. Rev. Rheumatol. 2018, 14, 214–228. [Google Scholar] [CrossRef] [PubMed]
- Theofilopoulos, A.N.; Koundouris, S.; Kono, D.H.; Lawson, B.R. The role of IFN-gamma in systemic lupus erythematosus: A challenge to the Th1/Th2 paradigm in autoimmunity. Arthritis Res. 2001, 3, 136–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, M. New insights into IFN-γ in rheumatoid arthritis: Role in the era of JAK inhibitors. Immunol. Med. 2020, 43, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Del Papa, N.; Minniti, A.; Lorini, M.; Carbonelli, V.; Maglione, W.; Pignataro, F.; Montano, N.; Caporali, R.; Vitali, C. The Role of Interferons in the Pathogenesis of Sjögren’s Syndrome and Future Therapeutic Perspectives. Biomolecules 2021, 11, 251. [Google Scholar] [CrossRef] [PubMed]
- Khorooshi, R.; Owens, T. Injury-induced type I IFN signaling regulates inflammatory responses in the central nervous system. J. Immunol. 2010, 185, 1258–1264. [Google Scholar] [CrossRef] [Green Version]
- Hosmane, S.; Tegenge, M.A.; Rajbhandari, L.; Uapinyoying, P.; Ganesh Kumar, N.; Thakor, N.; Venkatesan, A. Toll/interleukin-1 receptor domain-containing adapter inducing interferon-β mediates microglial phagocytosis of degenerating axons. J. Neurosci. 2012, 32, 7745–7757. [Google Scholar] [CrossRef] [Green Version]
- Nazmi, A.; Field, R.H.; Griffin, E.W.; Haugh, O.; Hennessy, E.; Cox, D.; Reis, R.; Tortorelli, L.; Murray, C.L.; Lopez-Rodriguez, A.B.; et al. Chronic neurodegeneration induces type I interferon synthesis via STING, shaping microglial phenotype and accelerating disease progression. Glia 2019, 67, 1254–1276. [Google Scholar] [CrossRef] [Green Version]
- Fistonich, C.; Zehentmeier, S.; Bednarski, J.J.; Miao, R.; Schjerven, H.; Sleckman, B.P.; Pereira, J.P. Cell circuits between B cell progenitors and IL. Cell circuits between B cell progenitors and IL-7+ mesenchymal progenitor cells control B cell development. J. Exp. Med. 2018, 215, 2586–2599. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Tang, T.X.; Deng, H.; Yang, X.P.; Tang, Z.H. Interleukin-7 Biology and Its Effects on Immune Cells: Mediator of Generation, Differentiation, Survival, and Homeostasis. Front. Immunol. 2021, 12, 747324. [Google Scholar] [CrossRef]
- Alpdogan, O.; van den Brink, M.R. IL-7 and IL-15: Therapeutic cytokines for immunodeficiency. Trends Immunol. 2005, 26, 56–64. [Google Scholar] [CrossRef]
- Bach, J.P.; Dodel, R. Naturally occurring autoantibodies against β-Amyloid. Adv. Exp. Med. Biol. 2012, 750, 91–99. [Google Scholar]
- Liu, Y.H.; Wang, J.; Li, Q.X.; Fowler, C.J.; Zeng, F.; Deng, J.; Xu, Z.Q.; Zhou, H.D.; Doecke, J.D.; Villemagne, V.L.; et al. Association of naturally occurring antibodies to β-amyloid with cognitive decline and cerebral amyloidosis in Alzheimer’s disease. Sci. Adv. 2021, 7, eabb0457. [Google Scholar] [CrossRef]
- Braczynski, A.K.; Sevenich, M.; Gering, I.; Kupreichyk, T.; Agerschou, E.D.; Kronimus, Y.; Habib, P.; Stoldt, M.; Willbold, D.; Schulz, J.B.; et al. Alpha-Synuclein-Specific Naturally Occurring Antibodies Inhibit Aggregation In Vitro and In Vivo. Biomolecules 2022, 12, 469. [Google Scholar] [CrossRef]
- Qu, B.X.; Gong, Y.; Moore, C.; Fu, M.; German, D.C.; Chang, L.Y.; Rosenberg, R.; Diaz-Arrastia, R. Beta-amyloid auto-antibodies are reduced in Alzheimer’s disease. J. Neuroimmunol. 2014, 274, 168–173. [Google Scholar] [CrossRef] [Green Version]
- Cayrol, C. IL-33, an Alarmin of the IL-1 Family Involved in Allergic and Non Allergic Inflammation: Focus on the Mechanisms of Regulation of Its Activity. Cells 2021, 11, 107. [Google Scholar] [CrossRef]
- Cayrol, C.; Girard, J.P. Interleukin-33 (IL-33): A critical review of its biology and the mechanisms involved in its release as a potent extracellular cytokine. Cytokine 2022, 156, 155891. [Google Scholar] [CrossRef]
- Maggio, M.; Guralnik, J.M.; Longo, D.L.; Ferrucci, L. Interleukin-6 in aging and chronic disease: A magnificent pathway. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 575–584. [Google Scholar] [CrossRef]
Subject and Sex | TTR Variant | Age at Onset | Age at Evaluation | FAP Stage | PND Score | Systemic Involvement | IVS (mm) | NIS | Norkfolk QoL-DN | CADT | Sudoscan LL (μS) | Sudoscan UL (μS) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
M#1 | F64L | 72 | 75 | 1 | 2 | GI | 15 | 47,00 | 46 | 20 | 58 | 80 |
M#2 | V32R | 57 | 65 | 2 | 3b | H, Dys, K, GI | 18 | 148,00 | 84 | 7 | 30 | 40 |
M#3 | F64L | 69 | 80 | 2 | 3a | H, Dys, GI | 16 | 76,75 | 58 | 13 | 47 | 36 |
M#4 | F64L | 70 | 75 | 2 | 3a | H, Dys, GI | 13 | 112,75 | 98 | 11 | 22 | 23 |
M#5 | V30M | 62 | 66 | 2 | 3a | // | 10 | 65,00 | 47 | 17 | 26 | 56 |
M#6 | V30M | 58 | 66 | 2 | 3a | H, GI | 13 | 98,00 | 52 | 18 | 31 | 45 |
M#7 | V30M | 64 | 69 | 1 | 2 | H | 15 | 69,50 | 73 | 17 | 31 | 71 |
M#8 | V30M | 64 | 75 | 1 | 1 | H, GI | 19 | 38,50 | 32 | 11 | 80 | 30 |
M#9 | F64L | 51 | 53 | 1 | 1 | GI | 9 | 28,50 | 18 | 19 | 76 | 73 |
F#10 | F64L | 58 | 60 | 1 | 1 | // | 10 | 23,00 | 13 | 15 | 75 | 79 |
M#11 | F64L | 63 | 70 | 2 | 3a | H, Dys, K, GI | 22 | 77,75 | 100 | 15 | 45 | 67 |
F#12 | F64L | 75 | 75 | 1 | 1 | // | 12 | 2,00 | 56 | 13 | 59 | 71 |
M#13 | V30M | 54 | 54 | 1 | 1 | H | 15 | 12,00 | 2 | 20 | 76 | 89 |
F#14 | F64L | 61 | 69 | 1 | 2 | Dys, GI | 10 | 86,00 | 78 | 9 | 71 | 73 |
M#15 | A109S | 65 | 78 | 2 | 3b | Dys, GI | 19 | 138,50 | 61 | 10 | 18 | 10 |
M#16 | V30M | 56 | 70 | 1 | 2 | Dys, GI | 17 | 92,00 | 46 | 11 | 19 | 24 |
Examined Cytokine | ATTRv Patients (N = 16) | HCs (N = 25) | p value |
---|---|---|---|
IL-1Ra | 518.77 (416.98–981.42) | 587.67 (440.41–842.70) | 0.760 |
IL-2 | 0.30 (0.02–0.83) | 0.91 (0.58–1.16) | 0.100 |
IL-4 | 6.84 (3.78–10.11) | 4.75 (1.10–7.80) | 0.410 |
IL-6 | 0.88 (0.71–1.27) | 0.35 (0.16–0.59) | 0.090 |
IL-7 | 4.35 (3.70–5.73) | 6.55 (5.84–8.45) | 0.009 |
IL-33 | 0.56 (0.07–1.06) | 0.46 (0.20–0.76) | 0.990 |
IFN-α | 1.03 (0.63–1.28) | 0.00 (0.00–0.12) | 0.004 |
IFN-γ | 4.24 (3.09–4.95) | 0.00 (0.00–1.07) | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luigetti, M.; Romano, A.; Guglielmino, V.; Sciarrone, M.A.; Vitali, F.; Carbone, C.; Piro, G.; Sabino, A.; De Stefano, N.; Plantone, D.; et al. Serum Inflammatory Profile in Hereditary Transthyretin Amyloidosis: Mechanisms and Possible Therapeutic Implications. Brain Sci. 2022, 12, 1708. https://doi.org/10.3390/brainsci12121708
Luigetti M, Romano A, Guglielmino V, Sciarrone MA, Vitali F, Carbone C, Piro G, Sabino A, De Stefano N, Plantone D, et al. Serum Inflammatory Profile in Hereditary Transthyretin Amyloidosis: Mechanisms and Possible Therapeutic Implications. Brain Sciences. 2022; 12(12):1708. https://doi.org/10.3390/brainsci12121708
Chicago/Turabian StyleLuigetti, Marco, Angela Romano, Valeria Guglielmino, Maria Ausilia Sciarrone, Francesca Vitali, Carmine Carbone, Geny Piro, Andrea Sabino, Nicola De Stefano, Domenico Plantone, and et al. 2022. "Serum Inflammatory Profile in Hereditary Transthyretin Amyloidosis: Mechanisms and Possible Therapeutic Implications" Brain Sciences 12, no. 12: 1708. https://doi.org/10.3390/brainsci12121708
APA StyleLuigetti, M., Romano, A., Guglielmino, V., Sciarrone, M. A., Vitali, F., Carbone, C., Piro, G., Sabino, A., De Stefano, N., Plantone, D., & Primiano, G. (2022). Serum Inflammatory Profile in Hereditary Transthyretin Amyloidosis: Mechanisms and Possible Therapeutic Implications. Brain Sciences, 12(12), 1708. https://doi.org/10.3390/brainsci12121708