Increased Inertia Triggers Linear Responses in Motor Cortices during Large-Extent Movements—A fNIRS Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Task Design
- (1)
- The experimenter reminded the subject of the correct dumbbell for the next block;
- (2)
- The subject picked up the assigned dumbbell (if any);
- (3)
- The computer played a starting sound;
- (4)
- The subject performed lifting movements following the metronome tempo;
- (5)
- The computer played an ending sound;
- (6)
- The subject put down the dumbbell and rested.
- (7)
- Brain-hemodynamic data were acquired.
2.3. Brain-Hemodynamic-Signal Processing
2.4. Statistical Analysis
3. Results
3.1. Activation Analysis (Channel-Wise)
3.2. Activation Analysis (ROI-Wise)
3.3. Correlation Analysis (Channel-Wise)
3.4. Correlation Analysis (ROI-Wise)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Edemekong, P.F.; Bomgaars, D.L.; Sukumaran, S.; Schoo, C. Activities of Daily Living; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Gottlieb, G.L. On the voluntary movement of compliant (inertial-viscoelastic) loads by parcellated control mechanisms. J. Neurophysiol. 1996, 76, 3207–3229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, M.B.; Niu, C.M.; Poon, C.; David, F.J.; Corcos, D.M. Proprioceptive feedback during point-to-point arm movements is tuned to the expected dynamics of the task. Exp. Brain Res. 2009, 195, 575–591. [Google Scholar] [CrossRef] [PubMed]
- Flansbjer, U.; Miller, M.; Downham, D.; Lexell, J. Progressive resistance training after stroke: Effects on muscle strength, muscle tone, gait performance and perceived participation. Acta. Derm. Venereol. 2008, 40, 42–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, L.O.; Scianni, A.; Rodrigues-De-Paula, F. Progressive resistance exercise improves strength and physical performance in people with mild to moderate Parkinson’s disease: A systematic review. J. Physiother. 2013, 59, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Corcos, D.M.; Robichaud, J.A.; David, F.; Leurgans, S.E.; Vaillancourt, D.E.; Poon, C.; Rafferty, M.R.; Kohrt, W.M.; Comella, C.L. A two-year randomized controlled trial of progressive resistance exercise for Parkinson’s disease. Mov. Disord. 2013, 28, 1230–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wist, S.; Clivaz, J.; Sattelmayer, K.M. Muscle strengthening for hemiparesis after stroke: A meta-analysis. Ann. Phys. Rehabil. Med. 2016, 59, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Dai, R.; Xu, X.; Huai, B.; Bai, Z.; Zhang, J.; Jin, M.; Niu, W. Cortical mapping of active and passive upper limb training in stroke patients and healthy people: A functional near-infrared spectroscopy study. Brain Res. 2022, 1788. [Google Scholar] [CrossRef]
- Shi, P.; Li, A.; Yu, H. Response of the Cerebral Cortex to Resistance and Non-resistance Exercise Under Different Trajectories: A Functional Near-Infrared Spectroscopy Study. Front. Neurosci. 2021, 15. [Google Scholar] [CrossRef]
- Strotzer, M. One Century of Brain Mapping Using Brodmann Areas*. Clin. Neuroradiol. 2009, 19, 179–186. [Google Scholar] [CrossRef]
- Dai, T.H.; Liu, J.Z.; Sahgal, V.; Brown, R.W.; Yue, G.H. Relationship between muscle output and functional MRI-measured brain activation. Exp. Brain Res. 2001, 140, 290–300. [Google Scholar] [CrossRef]
- van Duinen, H.; Renken, R.; Maurits, N.M.; Zijdewind, I. Relation between muscle and brain activity during isometric contractions of the first dorsal interosseus muscle. Hum. Brain Mapp. 2007, 29, 281–299. [Google Scholar] [CrossRef] [PubMed]
- Cramer, S.C.; Weisskoff, R.M.; Schaechter, J.D.; Nelles, G.; Foley, M.; Finklestein, S.P.; Rosen, B.R. Motor cortex activation is related to force of squeezing. Hum. Brain Mapp. 2002, 16, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Keisker, B.; Hepp-Reymond, M.-C.; Blickenstorfer, A.; Meyer, M.; Kollias, S.S. Differential force scaling of fine-graded power grip force in the sensorimotor network. Hum. Brain Mapp. 2009, 30, 2453–2465. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Z.; Yang, Q.; Yao, B.; Brown, R.; Yue, G.H. Linear correlation between fractal dimension of EEG signal and handgrip force. Biol. Cybern. 2005, 93, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Siemionow, V.; Yue, G.H.; Ranganathan, V.K.; Liu, J.Z.; Sahgal, V. Relationship between motor activity-related cortical po-tential and voluntary muscle activation. Exp. Brain Res. 2000, 133, 303–311. [Google Scholar] [CrossRef]
- Dettmers, C.; Fink, G.R.; Lemon, R.N.; Stephan, K.M.; Passingham, R.E.; Silbersweig, D.; Holmes, A.; Ridding, M.C.; Brooks, D.; Frackowiak, R. Relation between cerebral activity and force in the motor areas of the human brain. J. Neurophysiol. 1995, 74, 802–815. [Google Scholar] [CrossRef]
- Toyoshima, T.; Yazawa, S.; Murahara, T.; Ishiguro, M.; Shinozaki, J.; Ichihara-Takeda, S.; Shiraishi, H.; Matsuhashi, M.; Shimohama, S.; Nagamine, T. Load effect on background rhythms during motor execution: A magnetoencephalographic study. Neurosci. Res. 2016, 112, 26–36. [Google Scholar] [CrossRef]
- Boas, D.A.; Elwell, C.E.; Ferrari, M.; Taga, G. Twenty years of functional near-infrared spectroscopy: Introduction for the special issue. NeuroImage 2013, 85, 1–5. [Google Scholar] [CrossRef]
- Dans, P.; Foglia, S.; Nelson, A. Data Processing in Functional Near-Infrared Spectroscopy (fNIRS) Motor Control Research. Brain Sci. 2021, 11, 606. [Google Scholar] [CrossRef]
- Seidel, O.; Carius, D.; Roediger, J.; Rumpf, S.; Ragert, P. Changes in neurovascular coupling during cycling exercise measured by multi-distance fNIRS: A comparison between endurance athletes and physically active controls. Exp. Brain Res. 2019, 237, 2957–2972. [Google Scholar] [CrossRef]
- Baechle, T.R.; Earle, R.W. Essentials of Strength Training and Conditioning; Human Kinetics: Champaign, IL, USA, 2008. [Google Scholar]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Epstein, L.H.; Wing, R.R. Aerobic exercise and weight. Addict. Behav. 1980, 5, 371–388. [Google Scholar] [CrossRef]
- Petrofsky, J.S.; Phillips, C.A. The Use of Functional Electrical Stimulation for Rehabilitation of Spinal Cord Injured Patients. Central Nerv. Syst. Trauma 1984, 1, 57–74. [Google Scholar] [CrossRef] [PubMed]
- Delpy, D.T.; Cope, M.; Van Der Zee, P.; Arridge, S.; Wray, S.; Wyatt, J. Estimation of optical pathlength through tissue from direct time of flight measurement. Phys. Med. Biol. 1988, 33, 1433–1442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheney, P.D. Role of Cerebral Cortex in Voluntary Movements: A Review. Phys. Ther. 1985, 65, 624–635. [Google Scholar] [CrossRef]
- Holper, L.; Biallas, M.; Wolf, M. Task complexity relates to activation of cortical motor areas during uni- and bimanual performance: A functional NIRS study. NeuroImage 2009, 46, 1105–1113. [Google Scholar] [CrossRef] [Green Version]
- Bajaj, S.; Drake, D.; Butler, A.J.; Dhamala, M. Oscillatory motor network activity during rest and movement: An fNIRS study. Front. Syst. Neurosci. 2014, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Homan, R.W. The 10–20 Electrode System and Cerebral Location. Am. J. EEG. Technol. 1988, 28, 269–279. [Google Scholar] [CrossRef]
- Singh, A.K.; Okamoto, M.; Dan, H.; Jurcak, V.; Dan, I. Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI. NeuroImage 2005, 27, 842–851. [Google Scholar] [CrossRef]
- Hou, X.; Zhang, Z.; Zhao, C.; Duan, L.; Gong, Y.; Li, Z.; Zhu, C. NIRS-KIT: A MATLAB toolbox for both resting-state and task fNIRS data analysis. Neurophotonics 2021, 8, 010802. [Google Scholar] [CrossRef]
- Jalalvandi, M.; Alam, N.R.; Sharini, H.; Hashemi, H.; Nadimi, M. Brain Cortical Activation during Imagining of the Wrist Movement Using Functional Near Infrared Spectroscopy (fNIRS). J. Biomed. Phys. Eng. 2021, 11, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J.; Holmes, A.P.; Worsley, K.J.; Poline, J.-P.; Frith, C.D.; Frackowiak, R.S.J. Statistical Parametric Maps in Functional Imaging: A General Linear Approach. Hum. Brain Mapp. 1994, 2, 189–210. [Google Scholar] [CrossRef]
- Bates, D. Fitting Linear Mixed Models in R. R News 2005, 5, 27–30. [Google Scholar]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Barton, K.; Barton, M.K. Package ‘Mumin’. Vienna, Austira. 2015, Volume 1, p. 439. Available online: https://www.r-project.org/ (accessed on 12 October 2022).
- Okamoto, M.; Tsuzuki, D.; Clowney, L.; Dan, H.; Singh, A.K.; Dan, I. Structural atlas-based spatial registration for functional near-infrared spectroscopy enabling inter-study data integration. Clin. Neurophysiol. 2009, 120, 1320–1328. [Google Scholar] [CrossRef]
- Abe, M.; Hanakawa, T. Functional coupling underlying motor and cognitive functions of the dorsal premotor cortex. Behav. Brain Res. 2009, 198, 13–23. [Google Scholar] [CrossRef]
- Rizzolatti, G.; Fogassi, L.; Gallese, V. Motor and cognitive functions of the ventral premotor cortex. Curr. Opin. Neurobiol. 2002, 12, 149–154. [Google Scholar] [CrossRef]
- Tanji, J. The supplementary motor area in the cerebral cortex. Neurosci. Res. 1994, 19, 251–268. [Google Scholar] [CrossRef]
- Wang, L.; Ma, L.; Yang, J.; Wu, J. Human Somatosensory Processing and Artificial Somatosensation. Cyborg Bionic Syst. 2021, 2021, 9843259. [Google Scholar] [CrossRef]
- Fujimoto, H.; Mihara, M.; Hattori, N.; Hatakenaka, M.; Kawano, T.; Yagura, H.; Miyai, I.; Mochizuki, H. Cortical changes underlying balance recovery in patients with hemiplegic stroke. NeuroImage 2014, 85, 547–554. [Google Scholar] [CrossRef]
- Mihara, M.; Miyai, I.; Hattori, N.; Hatakenaka, M.; Yagura, H.; Kawano, T.; Kubota, K. Cortical control of postural balance in patients with hemiplegic stroke. NeuroReport 2012, 23, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Wriessnegger, S.C.; Kirchmeyr, D.; Bauernfeind, G.; Müller-Putz, G.R. Force related hemodynamic responses during execution and imagery of a hand grip task: A functional near infrared spectroscopy study. Brain Cogn. 2017, 117, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Flansbjer, U.; Lexell, J.; Brogårdh, C. Long-term benefits of progressive resistance training in chronic stroke: A 4-year follow-up. J. Rehabil. Med. 2012, 44, 218–221. [Google Scholar] [CrossRef] [PubMed]
Channel | Anatomical Label in BA | MNI Coordinate | Probability |
---|---|---|---|
15 | 4—Primary Motor Cortex | (−13.67, −31.33, 79.33) | 0.868 |
16 | 4—Primary Motor Cortex | (−23.67, −31.33, 71) | 0.72 |
24 | 6—Pre-Motor and Supplementary Motor Cortex | (−14.67, −14.33, 78) | 0.818 |
25 | 6—Pre-Motor and Supplementary Motor Cortex | (−27.33, −16.33, 74.33) | 0.853 |
33 | 6—Pre-Motor and Supplementary Motor Cortex | (−14.67, 0.33, 74) | 1 |
34 | 6—Pre-Motor and Supplementary Motor Cortex | (−26.33, 0.33, 70.33) | 1 |
35 | 6—Pre-Motor and Supplementary Motor Cortex | (−38.33, −1.67, 64.67) | 0.982 |
36 | 6—Pre-Motor and Supplementary Motor Cortex | (−50.33, −2.67, 55.67) | 0.926 |
Channel | T-Value (df = 27) | Slope | p-Value | Location |
---|---|---|---|---|
6 | 3.464 | 0.002129 | 0.0018 | BA4 |
7 | 3.690 | 0.002125 | 0.0010 | BA4 |
8 | 2.576 | 0.001797 | 0.0158 | BA4 |
15 | 2.947 | 0.000988 | 0.0065 | BA4 |
16 | 2.767 | 0.000995 | 0.0101 | BA4 |
18 | 3.778 | 0.001724 | 0.0008 | BA4 |
24 | 4.181 | 0.001505 | 0.0003 | BA6 |
25 | 4.862 | 0.001784 | 0.0000 | BA6 |
26 | 4.042 | 0.001224 | 0.0004 | BA6 |
33 | 3.747 | 0.001739 | 0.0009 | BA6 |
34 | 2.856 | 0.001007 | 0.0082 | BA6 |
35 | 4.534 | 0.001260 | 0.0001 | BA6 |
36 | 4.426 | 0.001585 | 0.0001 | BA6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Song, X.; Qiao, Y.; Yan, J.; Zhu, C.; Xie, Q.; Niu, C.M. Increased Inertia Triggers Linear Responses in Motor Cortices during Large-Extent Movements—A fNIRS Study. Brain Sci. 2022, 12, 1539. https://doi.org/10.3390/brainsci12111539
Chen Z, Song X, Qiao Y, Yan J, Zhu C, Xie Q, Niu CM. Increased Inertia Triggers Linear Responses in Motor Cortices during Large-Extent Movements—A fNIRS Study. Brain Sciences. 2022; 12(11):1539. https://doi.org/10.3390/brainsci12111539
Chicago/Turabian StyleChen, Zhi, Xiaohui Song, Yongjun Qiao, Jin Yan, Chaozhe Zhu, Qing Xie, and Chuanxin M. Niu. 2022. "Increased Inertia Triggers Linear Responses in Motor Cortices during Large-Extent Movements—A fNIRS Study" Brain Sciences 12, no. 11: 1539. https://doi.org/10.3390/brainsci12111539
APA StyleChen, Z., Song, X., Qiao, Y., Yan, J., Zhu, C., Xie, Q., & Niu, C. M. (2022). Increased Inertia Triggers Linear Responses in Motor Cortices during Large-Extent Movements—A fNIRS Study. Brain Sciences, 12(11), 1539. https://doi.org/10.3390/brainsci12111539