Computer Programming E-Learners’ Personality Traits, Self-Reported Cognitive Abilities, and Learning Motivating Factors
Abstract
:1. Introduction
1.1. Learning Motivation
1.2. Cognitive Abilities
1.3. Personality Traits
2. Materials and Methods
2.1. Sample
2.2. Instruments
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Computer Programming E-Learners Demonstrated Significantly Lower Extraversion Scores Than Non-Participants of E-Learning Based Computer Programming Courses
4.2. No Significant Differences Were Found in the Scores of Self-Reported Cognitive Abilities between the Groups of Participants and Non-Participants of E-Learning Based Computer Programming Courses
4.3. Computer Programming E-Learners Demonstrated Significantly Lower Scores of Motivating Factors of Individual Attitude and Expectation, Reward and Recognition, and Punishment
4.4. Personality Traits Predict Learning Motivating Factors in Both Groups of Participants and Non-Participants of Computer Programming Courses
4.5. Self-Reported Cognitive Abilities Predict Learning Motivating Factors in Both Groups of Participants and Non-Participants of Computer Programming Courses
4.6. There Exist Associations between Learning Motivating Factors, Personality Traits, and Self-Reported Cognitive Abilities in Groups of Participants and Non-Participants of E-Learning Based Computer Programming Courses
4.7. Limitations and Future Directions
4.8. Practical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scherer, R.; Siddiq, F.; Sánchez Viveros, B. The cognitive benefits of learning computer programming: A meta-analysis of transfer effects. J. Educ. Psychol. 2019, 111, 764–792. [Google Scholar] [CrossRef] [Green Version]
- Brehm, L.; Günzel, H. Learning Lab “Digital Technologies”—Concept, Streams and Experiences. In Proceedings of the 4th International Conference on Higher Education Advances (HEAd’18), Universitat Politècnica València, Valencia, Spain, 20–22 June 2018. [Google Scholar]
- Blut, M.; Wang, C. Technology readiness: A meta-analysis of conceptualizations of the construct and its impact on technology usage. J. Acad. Mark. Sci. 2020, 48, 649–669. [Google Scholar] [CrossRef] [Green Version]
- Law, K.M.Y.; Lee, V.C.S.; Yu, Y.T. Learning motivation in e-learning facilitated computer programming courses. Comput. Educ. 2010, 55, 218–228. [Google Scholar] [CrossRef]
- Hawi, N. Causal attributions of success and failure made by undergraduate students in an introductory-level computer programming course. Comput. Educ. 2010, 54, 1127–1136. [Google Scholar] [CrossRef]
- Kintu, M.J.; Zhu, C.; Kagambe, E. Blended learning effectiveness: The relationship between student characteristics, design features and outcomes. Int. J. Educ. Technol. High. Educ. 2017, 14, 7. [Google Scholar] [CrossRef] [Green Version]
- Law, K.M.Y.; Sandnes, F.E.; Jian, H.L.; Huang, Y.P. A comparative study of learning motivation among engineering students in south east asia and beyond. Int. J. Eng. Educ. 2009, 25, 144. [Google Scholar]
- Law, K.M.Y.; Geng, S.; Li, T. Student enrollment, motivation and learning performance in a blended learning environment: The mediating effects of social, teaching, and cognitive presence. Comput. Educ. 2019, 136, 1–12. [Google Scholar] [CrossRef]
- Friedman, N.P.; Miyake, A.; Young, S.E.; DeFries, J.C.; Corley, R.P.; Hewitt, J.K. Individual differences in executive functions are almost entirely genetic in origin. J. Exp. Psychol. Gen. 2008, 137, 201–225. [Google Scholar] [CrossRef]
- Monk, A.M.; Dalton, M.A.; Barnes, G.R.; Maguire, E.A. The Role of Hippocampal–Ventromedial Prefrontal Cortex Neural Dynamics in Building Mental Representations. J. Cogn. Neurosci. 2021, 33, 89–103. [Google Scholar] [CrossRef]
- Haier, R.J.; Siegel, B.; Tang, C.; Abel, L.; Buchsbaum, M.S. Intelligence and changes in regional cerebral glucose metabolic rate following learning. Intelligence 1992, 16, 415–426. [Google Scholar] [CrossRef]
- Schurr, A. Cerebral Energy Metabolism: Measuring and Understanding Its Rate. In Cellular Metabolism and Related Disorders; IntechOpen: London, UK, 2020. [Google Scholar]
- Echouffo-Tcheugui, J.B.; Conner, S.C.; Himali, J.J.; Maillard, P.; DeCarli, C.S.; Beiser, A.S.; Vasan, R.S.; Seshadri, S. Circulating cortisol and cognitive and structural brain measures. Neurology 2018, 91, e1961–e1970. [Google Scholar] [CrossRef] [PubMed]
- Deveci, S.; Matur, Z.; Kesim, Y.; Senturk, G.; Sargın-Kurt, G.; Ugur, S.A.; Oge, A.E. Effect of the brain-derived neurotrophic factor gene Val66Met polymorphism on sensory-motor integration during a complex motor learning exercise. Brain Res. 2020, 1732, 146652. [Google Scholar] [CrossRef] [PubMed]
- Vidaurre, D.; Abeysuriya, R.; Becker, R.; Quinn, A.J.; Alfaro-Almagro, F.; Smith, S.M.; Woolrich, M.W. Discovering dynamic brain networks from big data in rest and task. NeuroImage 2018, 180, 646–656. [Google Scholar] [CrossRef]
- Ofen, N.; Yu, Q.; Chen, Z. Memory and the developing brain: Are insights from cognitive neuroscience applicable to education? Curr. Opin. Behav. Sci. 2016, 10, 81–88. [Google Scholar] [CrossRef]
- Faingold, C.; Tupal, S. Neuronal Network Interactions in the Startle Reflex, Learning Mechanisms, and CNS Disorders, Including Sudden Unexpected Death in Epilepsy; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Bangasser, D.A.; Shors, T.J. Critical brain circuits at the intersection between stress and learning. Neurosci. Biobehav. Rev. 2010, 34, 1223–1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oby, E.R.; Golub, M.D.; Hennig, J.A.; Degenhart, A.D.; Tyler-Kabara, E.C.; Yu, B.M.; Chase, S.M.; Batista, A.P. New neural activity patterns emerge with long-term learning. Proc. Natl. Acad. Sci. USA 2019, 116, 15210–15215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tortella, G.R.; Seabra, A.B.; Padrão, J.; Díaz-San Juan, R. Mindfulness and Other Simple Neuroscience-Based Proposals to Promote the Learning Performance and Mental Health of Students during the COVID-19 Pandemic. Brain Sci. 2021, 11, 552. [Google Scholar] [CrossRef]
- Deci, E.L. (Ed.) The Psychology of Self-Determination; Lexington Books: Lexington, MA, USA, 1980; ISBN 0669040452. [Google Scholar]
- Ryan, R.M.; Deci, E.L. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am. Psychol. 2000, 55, 68–78. [Google Scholar] [CrossRef]
- Zimmerman, B.J.; Schunk, D.H. Motivation: An essential dimension of self-regulated learning. In Motivation and Self-Regulated Learning: Theory, Research, and Applications; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 2008; pp. 1–30. ISBN 0-8058-5898-9. [Google Scholar]
- Vroom, V.H. Work and Motivation; Wiley: Oxford, UK, 1964. [Google Scholar]
- Harackiewicz, J.M.; Barron, K.E.; Carter, S.M.; Lehto, A.T.; Elliot, A.J. Predictors and consequences of achievement goals in the college classroom: Maintaining interest and making the grade. J. Personal. Soc. Psychol. 1997, 73, 1284–1295. [Google Scholar] [CrossRef]
- Harackiewicz, J.M.; Barron, K.E.; Elliot, A.J. Rethinking achievement goals: When are they adaptive for college students and why? Educ. Psychol. 1998, 33, 1–21. [Google Scholar] [CrossRef]
- Harackiewicz, J.M.; Barron, K.E.; Tauer, J.M.; Elliot, A.J. Predicting success in college: A longitudinal study of achievement goals and ability measures as predictors of interest and performance from freshman year through graduation. J. Educ. Psychol. 2002, 94, 562–575. [Google Scholar] [CrossRef]
- Hendry, G.D.; Lyon, P.M.; Prosser, M.; Sze, D. Conceptions of problem-based learning: The perspectives of students entering a problem-based medical program. Med Teach. 2006, 28, 573–575. [Google Scholar] [CrossRef] [PubMed]
- Stipek, D.J. Motivation and instruction. In Handbook of Educational Psychology; Prentice Hall International: London, UK, 1996; pp. 85–113. ISBN 0-02-897089-6. [Google Scholar]
- Skinner, B.F. Contingencies of Reinforcement: A Theoretical Analysis; Prentice Hall: Englewood Cliffs, NJ, USA, 1969; ISBN1 0131717286. ISBN2 9780131717282. [Google Scholar]
- Jenkins, T. The motivation of students of programming. In Proceedings of the 6th Annual Conference on Innovation and Technology in Computer Science Education—ITiCSE ’01, Canterbury, UK, 25–27 June 2001; ACM Press: New York, NY, USA, 2001; pp. 53–56. [Google Scholar]
- Chan, C.C.A.; Pearson, C.; Entrekin, L. Examining the effects of internal and external team learning on team performance. Team Perform. Manag. Int. J. 2003, 9, 174–181. [Google Scholar] [CrossRef]
- Rassuli, A.; Manzer, J.P. “Teach Us to Learn”: Multivariate Analysis of Perception of Success in Team Learning. J. Educ. Bus. 2005, 81, 21–27. [Google Scholar] [CrossRef]
- Lee, Y.; Ertmer, P.A. Examining the Effect of Small Group Discussions and Question Prompts on Vicarious Learning Outcomes. J. Res. Technol. Educ. 2006, 39, 66–80. [Google Scholar] [CrossRef]
- Zimmerman, B.J.; Kitsantas, A. The Hidden Dimension of Personal Competence: Self-Regulated Learning and Practice. In Handbook of Competence And Motivation; Guilford Publications: New York, NY, USA, 2005; pp. 509–526. ISBN 1-59385-123-5. [Google Scholar]
- Locke, E.A.; Latham, G.P. A Theory of Goal Setting & Task Performance; Prentice-Hall, Inc: Englewood Cliffs, NJ, USA, 1990; ISBN 0-13-913138-8. [Google Scholar]
- Bong, M. Academic Motivation in Self-Efficacy, Task Value, Achievement Goal Orientations, and Attributional Beliefs. J. Educ. Res. 2004, 97, 287–298. [Google Scholar] [CrossRef]
- Margolis, H.; McCabe, P.P. Self-Efficacy: A Key to Improving the Motivation of Struggling Learners. Clear. House 2004, 77, 241–249. [Google Scholar] [CrossRef]
- Law, K.M.Y.; Breznik, K. Impacts of innovativeness and attitude on entrepreneurial intention: Among engineering and non-engineering students. Int. J. Technol. Des. Educ. 2017, 27, 683–700. [Google Scholar] [CrossRef]
- Law, K.M.Y.; Geng, S. How innovativeness and handedness affect learning performance of engineering students? Int. J. Technol. Des. Educ. 2019, 29, 897–914. [Google Scholar] [CrossRef]
- Barak, M. Motivating self-regulated learning in technology education. Int. J. Technol. Des. Educ. 2010, 20, 381–401. [Google Scholar] [CrossRef]
- Ng, C. What kind of students persist in science learning in the face of academic challenges? J. Res. Sci. Teach. 2021, 58, 195–224. [Google Scholar] [CrossRef]
- Cattell, R.B. Abilities: Their Structure, Growth, and Action; Houghton Mifflin: Oxford, UK, 1971. [Google Scholar]
- Horn, J. Remodeling old models of intelligence. In Handbook of Intelligence: Theories, Measurements, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 1985; pp. 267–300. [Google Scholar]
- Horn, J. Thinking about Human Abilities. In Handbook of Multivariate Experimental Psychology; Springer: Boston, MA, USA, 1988; pp. 645–685. [Google Scholar]
- Carroll, J.B. Human Cognitive Abilities: A Survey of Factor-Analytic Studies; Cambridge University Press: New York, NY, USA, 1993; ISBN 0-521-38275-0. [Google Scholar]
- Carroll, J.B. The three-stratum theory of cognitive abilities. In Contemporary Intellectual Assessment: Theories, Tests, and Issues; The Guilford Press: New York, NY, USA, 1997; pp. 122–130. ISBN 1-57230-147-3. [Google Scholar]
- McGrew, K.S. The Cattell-Horn-Carroll Theory of Cognitive Abilities: Past, Present, and Future. In Contemporary Intellectual Assessment: Theories, Tests, and Issues; The Guilford Press: New York, NY, USA, 2005; pp. 136–181. ISBN 1-59385-125-1. [Google Scholar]
- McGrew, K.S. CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence 2009, 37, 1–10. [Google Scholar] [CrossRef]
- Alfonso, V.C.; Flanagan, D.P.; Radwan, S. The Impact of the Cattell-Horn-Carroll Theory on Test Development and Interpretation of Cognitive and Academic Abilities. In Contemporary Intellectual Assessment: Theories, Tests, and Issues; The Guilford Press: New York, NY, USA, 2005; pp. 185–202. ISBN 1-59385-125-1. [Google Scholar]
- Keith, T.Z.; Reynolds, M.R. Cattell-Horn-Carroll abilities and cognitive tests: What we’ve learned from 20 years of research. Psychol. Sch. 2010, 47, 635–650. [Google Scholar] [CrossRef]
- Horn, J.L.; Blankson, N. Foundations for Better Understanding of Cognitive Abilities. In Contemporary Intellectual Assessment: Theories, Tests, and Issues; The Guilford Press: New York, NY, USA, 2005; pp. 41–68. ISBN 1-59385-125-1. [Google Scholar]
- Schneider, J.; McGrew, K.S. The Cattell-Horn-Carroll (CHC) Model of Intelligence. In Contemporary Intellectual Assessment: Theories, Tests, and Issues, 3rd ed.; Institute for Applied Psychometrics (IAP): Minneapolis, MN, USA, 2012. [Google Scholar]
- Wechsler, D. The Wechsler Intelligence Scale for Children, 3rd ed.; The Psychological Corporation: San Antonio, TX, USA, 1991. [Google Scholar]
- Wechsler, D. The Wechsler Abbreviated Scale of Intelligence, 2nd ed.; The Psychological Corporation: San Antonio, TX, USA, 2011. [Google Scholar]
- Thorndike, R.L.; Hagen, E.P.; Sattler, J.M. Stanford-Binet Intelligence Scale, 4th ed.; Riverside: Chicago, IL, USA, 1986. [Google Scholar]
- Kaufman, A.S.; Kaufman, N.L. Kaufman Brief Intelligence Test (KBIT-2), 2nd ed.; The Psychological Corporation: San Antonio, TX, USA, 2004. [Google Scholar]
- Flanagan, D.P.; Ortiz, S.O.; Alfonso, V.C. Essentials of Cross-Battery Assessment; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2013. [Google Scholar]
- Furnham, A. Self-estimates of intelligence: Culture and gender difference in self and other estimates of both general (g) and multiple intelligences. Personal. Individ. Differ. 2001, 31, 1381–1405. [Google Scholar] [CrossRef]
- Simms, L.J. Classical and Modern Methods of Psychological Scale Construction. Soc. Personal. Psychol. Compass 2008, 2, 414–433. [Google Scholar] [CrossRef]
- Chamorro-Premuzic, T.; Furnham, A. Personality and Intellectual Competence; Psychology Press: Hove, UK, 2005. [Google Scholar]
- Freund, P.A.; Kasten, N. How smart do you think you are? A meta-analysis on the validity of self-estimates of cognitive ability. Psychol. Bull. 2012, 138, 296–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furnham, A.; Dissou, G. The Relationship between Self-Estimated and Test-Derived Scores of Personality and Intelligence. J. Individ. Differ. 2007, 28, 37–44. [Google Scholar] [CrossRef]
- Visser, B.A.; Ashton, M.C.; Vernon, P.A. What Makes You Think You’re so Smart? J. Individ. Differ. 2008, 29, 35–44. [Google Scholar] [CrossRef]
- Ackerman, P.L.; Wolman, S.D. Determinants and validity of self-estimates of abilities and self-concept measures. J. Exp. Psychol. Appl. 2007, 13, 57–78. [Google Scholar] [CrossRef] [PubMed]
- Steinmayr, R.; Spinath, B. What Explains Boys’ Stronger Confidence in their Intelligence? Sex Roles 2009, 61, 736–749. [Google Scholar] [CrossRef]
- Jacobs, K.E.; Roodenburg, J. The development and validation of the Self-Report Measure of Cognitive Abilities: A multitrait–multimethod study. Intelligence 2014, 42, 5–21. [Google Scholar] [CrossRef]
- Graziotin, D.; Wang, X.; Abrahamsson, P. Happy software developers solve problems better: Psychological measurements in empirical software engineering. PeerJ 2014, 2, e289. [Google Scholar] [CrossRef]
- Lee, S.; Matteson, A.; Hooshyar, D.; Kim, S.; Jung, J.; Nam, G.; Lim, H. Comparing Programming Language Comprehension between Novice and Expert Programmers Using EEG Analysis. In Proceedings of the 2016 IEEE 16th International Conference on Bioinformatics and Bioengineering (BIBE), Taichung, Taiwan, 31 October–2 November 2016; pp. 350–355. [Google Scholar]
- Soto, C.J.; John, O.P. The next Big Five Inventory (BFI-2): Developing and assessing a hierarchical model with 15 facets to enhance bandwidth, fidelity, and predictive power. J. Personal. Soc. Psychol. 2017, 113, 117–143. [Google Scholar] [CrossRef]
- Costa, P.T., Jr.; McCrae, R.R. Domains and Facets: Hierarchical Personality Assessment Using the Revised NEO Personality Inventory. J. Personal. Assess. 1995, 64, 21–50. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Lithopoulos, A.; Zhang, C.-Q.; Garcia-Barrera, M.A.; Rhodes, R.E. Personality and perceived stress during COVID-19 pandemic: Testing the mediating role of perceived threat and efficacy. Personal. Individ. Differ. 2021, 168, 110351. [Google Scholar] [CrossRef]
- Şener, İ.; Abunasser, N. Bireysel Öncüllerinin İş-Aile Çatışmasına Etkisi: Covid-19 Pandemisi Nedeniyle Evden Çalışanlar Üzerine Bir Araştırma. İş Ve İnsan Derg. 2020, 7, 189–201. [Google Scholar] [CrossRef]
- Komarraju, M.; Karau, S.J. The relationship between the big five personality traits and academic motivation. Personal. Individ. Differ. 2005, 39, 557–567. [Google Scholar] [CrossRef]
- Komarraju, M.; Karau, S.J.; Schmeck, R.R. Role of the Big Five personality traits in predicting college students’ academic motivation and achievement. Learn. Individ. Differ. 2009, 19, 47–52. [Google Scholar] [CrossRef]
- Shih, H.-F.; Chen, S.-H.E.; Chen, S.-C.; Wey, S.-C. The Relationship among Tertiary Level EFL Students’ Personality, Online Learning Motivation and Online Learning Satisfaction. Procedia Soc. Behav. Sci. 2013, 103, 1152–1160. [Google Scholar] [CrossRef] [Green Version]
- Heaven, P. Attitudinal and personality correlates of achievement motivation among high school students. Personal. Individ. Differ. 1990, 11, 705–710. [Google Scholar] [CrossRef]
- Busato, V.V.; Prins, F.J.; Elshout, J.J.; Hamaker, C. The relation between learning styles, the Big Five personality traits and achievement motivation in higher education. Personal. Individ. Differ. 1999, 26, 129–140. [Google Scholar] [CrossRef]
- Payne, S.C.; Youngcourt, S.S.; Beaubien, J.M. A meta-analytic examination of the goal orientation nomological net. J. Appl. Psychol. 2007, 92, 128–150. [Google Scholar] [CrossRef]
- Tlili, A.; Denden, M.; Essalmi, F.; Jemni, M.; Huang, R.; Chang, T.-W. Personality Effects on Students’ Intrinsic Motivation in a Gamified Learning Environment. In Proceedings of the 2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT), Maceió, Brazil, 15–18 July 2019; pp. 100–102. [Google Scholar]
- Vedel, A. The Big Five and tertiary academic performance: A systematic review and meta-analysis. Personal. Individ. Differ. 2014, 71, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Yeh, C.-H.; Wang, Y.-S.; Wang, Y.-M.; Liao, T.-J. Drivers of mobile learning app usage: An integrated perspective of personality, readiness, and motivation. Interact. Learn. Environ. 2021, 1–18. [Google Scholar] [CrossRef]
- Clark, M.H.; Schroth, C.A. Examining relationships between academic motivation and personality among college students. Learn. Individ. Differ. 2010, 20, 19–24. [Google Scholar] [CrossRef]
- Giluk, T.L.; Postlethwaite, B.E. Big Five personality and academic dishonesty: A meta-analytic review. Personal. Individ. Differ. 2015, 72, 59–67. [Google Scholar] [CrossRef]
- Medford, E.; McGeown, S.P. The influence of personality characteristics on children’s intrinsic reading motivation. Learn. Individ. Differ. 2012, 22, 786–791. [Google Scholar] [CrossRef]
- Bishop-Clark, C. Cognitive style, personality, and computer programming. Comput. Hum. Behav. 1995, 11, 241–260. [Google Scholar] [CrossRef]
- Gilal, A.R.; Jaafar, J.; Abro, A.; Omar, M.; Basri, S.; Saleem, M.Q. Effective Personality Preferences of Software Programmer: A Systematic Review. J. Inf. Sci. Eng. 2017, 33, 1399–1416. [Google Scholar]
- Amin, A.; Rehman, M.; Akbar, R.; Basri, S.; Hassan, M.F. Trait-Based Personality Profile of Software Programmers: A Study on Pakistan’s Software Industry. In Proceedings of the 2018 8th International Conference on Intelligent Systems, Modelling and Simulation (ISMS), Kuala Lumpur, Malaysia, 8–10 May 2018; pp. 90–94. [Google Scholar]
- Gnambs, T. What makes a computer wiz? Linking personality traits and programming aptitude. J. Res. Personal. 2015, 58, 31–34. [Google Scholar] [CrossRef]
- Karimi, Z.; Baraani-Dastjerdi, A.; Ghasem-Aghaee, N.; Wagner, S. Using Personality Traits to Understand the Influence of Personality on Computer Programming. J. Cases Inf. Technol. 2016, 18, 28–48. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 4th ed.; Methodology in the social sciences; Guilford Press: New York, NY, USA, 2016; ISBN 978-1-4625-2334-4. [Google Scholar]
- Byrne, B.M. Structural Equation Modeling With AMOS; Routledge: Abingdon, UK, 2016; ISBN 9781315757421. [Google Scholar]
- Murtaugh, P.A. In defense of P values. Ecology 2014, 95, 611–617. [Google Scholar] [CrossRef] [Green Version]
- Gardini, S.; Cloninger, C.R.; Venneri, A. Individual differences in personality traits reflect structural variance in specific brain regions. Brain Res. Bull. 2009, 79, 265–270. [Google Scholar] [CrossRef]
- Kabbara, A.; Paban, V.; Weill, A.; Modolo, J.; Hassan, M. Brain Network Dynamics Correlate with Personality Traits. Brain Connect. 2020, 10, 108–120. [Google Scholar] [CrossRef]
- Lewis, G.J.; Dickie, D.A.; Cox, S.R.; Karama, S.; Evans, A.C.; Starr, J.M.; Bastin, M.E.; Wardlaw, J.M.; Deary, I.J. Widespread associations between trait conscientiousness and thickness of brain cortical regions. NeuroImage 2018, 176, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, R.L.C.; Kumari, V. Hans Eysenck’s interface between the brain and personality: Modern evidence on the cognitive neuroscience of personality. Personal. Individ. Differ. 2016, 103, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Andari, E.; Schneider, F.C.; Mottolese, R.; Vindras, P.; Sirigu, A. Oxytocin’s Fingerprint in Personality Traits and Regional Brain Volume. Cereb. Cortex 2014, 24, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Gosnell, S.N.; Crooks, K.E.; Robinson, M.; Oldham, J.; Patriquin, M.A.; Fowler, J.C.; Salas, R. Subcortical brain morphometry of avoidant personality disorder. J. Affect. Disord. 2020, 274, 1057–1061. [Google Scholar] [CrossRef] [PubMed]
- Breukelaar, I.A.; Williams, L.M.; Antees, C.; Grieve, S.M.; Foster, S.L.; Gomes, L.; Korgaonkar, M.S. Cognitive ability is associated with changes in the functional organization of the cognitive control brain network. Hum. Brain Mapp. 2018, 39, 5028–5038. [Google Scholar] [CrossRef] [Green Version]
- Oschwald, J.; Guye, S.; Liem, F.; Rast, P.; Willis, S.; Röcke, C.; Jäncke, L.; Martin, M.; Mérillat, S. Brain structure and cognitive ability in healthy aging: A review on longitudinal correlated change. Rev. Neurosci. 2019, 31, 1–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeo, R.A.; Ryman, S.G.; Pommy, J.; Thoma, R.J.; Jung, R.E. General cognitive ability and fluctuating asymmetry of brain surface area. Intelligence 2016, 56, 93–98. [Google Scholar] [CrossRef]
- Karama, S.; Ad-Dab’bagh, Y.; Haier, R.J.; Deary, I.J.; Lyttelton, O.C.; Lepage, C.; Evans, A.C. Positive association between cognitive ability and cortical thickness in a representative US sample of healthy 6 to 18 year-olds. Intelligence 2009, 37, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Ponsoda, V.; Martínez, K.; Pineda-Pardo, J.A.; Abad, F.J.; Olea, J.; Román, F.J.; Barbey, A.K.; Colom, R. Structural brain connectivity and cognitive ability differences: A multivariate distance matrix regression analysis. Hum. Brain Mapp. 2017, 38, 803–816. [Google Scholar] [CrossRef]
- Bowren, M.; Adolphs, R.; Bruss, J.; Manzel, K.; Corbetta, M.; Tranel, D.; Boes, A.D. Multivariate Lesion-Behavior Mapping of General Cognitive Ability and Its Psychometric Constituents. J. Neurosci. 2020, 40, 8924–8937. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Baran, T.M.; Turnbull, A.; Zhang, Z.; Rebok, G.W.; Lin, F.V. Increased segregation of structural brain networks underpins enhanced broad cognitive abilities of cognitive training. Hum. Brain Mapp. 2021, 42, 3202–3215. [Google Scholar] [CrossRef]
- Hong, J.-C.; Hwang, M.-Y.; Chang, H.-W.; Tai, K.-H.; Kuo, Y.-C.; Tsai, Y.-H. Internet cognitive failure and fatigue relevant to learners’ self-regulation and learning progress in English vocabulary with a calibration scheme. J. Comput. Assist. Learn. 2015, 31, 450–461. [Google Scholar] [CrossRef]
- Hong, J.-C.; Hwang, M.-Y.; Tai, K.-H.; Lin, P.-H. Intrinsic motivation of Chinese learning in predicting online learning self-efficacy and flow experience relevant to students’ learning progress. Comput. Assist. Lang. Learn. 2017, 30, 552–574. [Google Scholar] [CrossRef]
- Lee, D.M.C.; Rodrigo, M.M.T.; Baker, R.S.J.D.; Sugay, J.O.; Coronel, A. Exploring the relationship between novice programmer confusion and achievement. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2011; Volume 6974, pp. 175–184. ISBN 9783642245992. [Google Scholar]
- Lin, Y.G.; McKeachie, W.J.; Kim, Y.C. College student intrinsic and/or extrinsic motivation and learning. Learn. Individ. Differ. 2003, 13, 251–258. [Google Scholar] [CrossRef]
- Serrano-Cámara, L.M.; Paredes-Velasco, M.; Alcover, C.-M.; Velazquez-Iturbide, J.Á. An evaluation of students’ motivation in computer-supported collaborative learning of programming concepts. Comput. Hum. Behav. 2014, 31, 499–508. [Google Scholar] [CrossRef]
- Xiu, Y.; Thompson, P. Flipped University Class: A Study of Motivation and Learning. J. Inf. Technol. Educ. Res. 2020, 19, 041–063. [Google Scholar] [CrossRef]
- Yin, J.; Goh, T.-T.; Yang, B.; Xiaobin, Y. Conversation Technology With Micro-Learning: The Impact of Chatbot-Based Learning on Students’ Learning Motivation and Performance. J. Educ. Comput. Res. 2021, 59, 154–177. [Google Scholar] [CrossRef]
- Young, A.M.; Wendel, P.J.; Esson, J.M.; Plank, K.M. Motivational decline and recovery in higher education STEM courses. Int. J. Sci. Educ. 2018, 40, 1016–1033. [Google Scholar] [CrossRef] [Green Version]
- Mills, J.S.; Blankstein, K.R. Perfectionism, intrinsic vs extrinsic motivation, and motivated strategies for learning: A multidimensional analysis of university students. Personal. Individ. Differ. 2000, 29, 1191–1204. [Google Scholar] [CrossRef]
- Truzoli, R.; Viganò, C.; Galmozzi, P.G.; Reed, P. Problematic internet use and study motivation in higher education. J. Comput. Assist. Learn. 2020, 36, 480–486. [Google Scholar] [CrossRef]
- Moore, K.P.; Richards, A.S. The Effects of Instructor Credibility, Grade Incentives, and Framing of a Technology Policy on Students’ Intent to Comply and Motivation to Learn. Commun. Stud. 2019, 70, 394–411. [Google Scholar] [CrossRef]
- Murty, V.P.; LaBar, K.S.; Hamilton, D.A.; Adcock, R.A. Is all motivation good for learning? Dissociable influences of approach and avoidance motivation in declarative memory. Learn. Mem. 2011, 18, 712–717. [Google Scholar] [CrossRef] [Green Version]
- Luria, E.; Shalom, M.; Levy, D.A. Cognitive Neuroscience Perspectives on Motivation and Learning: Revisiting Self-Determination Theory. Mind Brain Educ. 2021, 15, 5–17. [Google Scholar] [CrossRef]
- Rigolizzo, M.; Zhu, Z. The ebb and flow of learning motivation: The differentiated impact of the implicit theory of intelligence on learning behaviors. Hum. Resour. Dev. Q. 2021, 32, 273–299. [Google Scholar] [CrossRef]
- Reis, S.; Coelho, F.; Coelho, L. Success Factors in Students’ Motivation with Project Based Learning: From Theory to Reality. Int. J. Online Biomed. Eng. 2020, 16, 4. [Google Scholar] [CrossRef]
- Li, W.; Lee, A.M.; Solmon, M. Effects of Dispositional Ability Conceptions, Manipulated Learning Environments, and Intrinsic Motivation on Persistence and Performance. Res. Q. Exerc. Sport 2008, 79, 51–61. [Google Scholar] [CrossRef]
- Karlen, Y.; Suter, F.; Hirt, C.; Maag Merki, K. The role of implicit theories in students’ grit, achievement goals, intrinsic and extrinsic motivation, and achievement in the context of a long-term challenging task. Learn. Individ. Differ. 2019, 74, 101757. [Google Scholar] [CrossRef]
- Forsythe, A.; Jellicoe, M. Predicting gainful learning in Higher Education; a goal-orientation approach. High. Educ. Pedagog. 2018, 3, 103–117. [Google Scholar] [CrossRef] [Green Version]
- Jayalath, J.; Esichaikul, V. Gamification to Enhance Motivation and Engagement in Blended eLearning for Technical and Vocational Education and Training. Technol. Knowl. Learn. 2020, 1–28. [Google Scholar] [CrossRef]
- Borovay, L.A.; Shore, B.M.; Caccese, C.; Yang, E.; Hua, O. (Liv) Flow, Achievement Level, and Inquiry-Based Learning. J. Adv. Acad. 2019, 30, 74–106. [Google Scholar] [CrossRef]
- Zeng, L.; Chen, D.; Xiong, K.; Pang, A.; Huang, J.; Zeng, L. Medical University Students’ Personality and Learning Performance: Learning Burnout as a Mediator. In Proceedings of the 2015 7th International Conference on Information Technology in Medicine and Education (ITME), Huangshan, China, 13–15 November 2015; pp. 492–495. [Google Scholar]
Learning Motivating Factors | Cronbach Alphas | M | SD | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|---|---|
1. Individual attitude and expectation | 0.815 | 4.71 | 0.86 | - | ||||
2. Challenging goals | 0.870 | 4.33 | 1.08 | 0.407 *** | - | |||
3. Clear direction | 0.697 | 4.97 | 0.78 | 0.648 *** | 0.449 *** | - | ||
4. Reward and recognition | 0.742 | 4.85 | 0.90 | 0.546 *** | 0.118 * | 0.504 *** | - | |
5. Punishment | 0.778 | 3.46 | 1.33 | 0.230 *** | 0.158 ** | 0.257 *** | 0.161 ** | - |
6. Social pressure and competition | 0.825 | 3.46 | 1.21 | 0.295 *** | 0.284 *** | 0.199 *** | 0.230 *** | 0.422 *** |
The BFI-2 Subscales | Cronbach Alphas | M | SD | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|---|---|
1. Extraversion | 0.822 | 3.30 | 0.60 | - | |||
2. Agreeableness | 0.762 | 3.56 | 0.50 | 0.186 *** | - | ||
3. Conscientiousness | 0.845 | 3.37 | 0.60 | 0.402 *** | 0.331 *** | - | |
4. Negative Emotionality | 0.903 | 3.06 | 0.77 | −0.379 *** | −0.272 *** | −0.326 *** | - |
5. Open-Mindedness | 0.683 | 3.65 | 0.46 | 0.375 *** | 0.157 *** | 0.196 *** | −0.037 |
The SRMCA Subscales | Cronbach Alphas | M | SD | 1 | 2 |
---|---|---|---|---|---|
1. Fluid reasoning (Gf) | 0.809 | 5.13 | 0.95 | - | |
2. Comprehension-knowledge (Gc) | 0.776 | 5.12 | 1.00 | 0.685 *** | - |
3. Visual processing (Gv) | 0.783 | 5.46 | 0.85 | 0.630 *** | 0.511 *** |
95% CI for Cohen’s d | ||||||||
---|---|---|---|---|---|---|---|---|
Personality Traits | t | df | p | Mean Difference | SE Difference | Cohen’s d | Lower | Upper |
Extraversion | −2.433 | 478 | 0.015 | −0.135 | 0.055 | −0.227 | −0.411 | −0.044 |
Agreeableness | 0.715 | 478 | 0.475 | 0.034 | 0.047 | 0.067 | −0.117 | 0.250 |
Conscientiousness | 1.132 | 478 | 0.258 | 0.064 | 0.057 | 0.106 | −0.078 | 0.289 |
Negative emotionality | −0.627 | 478 | 0.531 | −0.045 | 0.072 | −0.059 | −0.242 | 0.125 |
Open-mindedness | 0.118 | 478 | 0.906 | 0.005 | 0.043 | 0.011 | −0.172 | 0.194 |
95% CI for Cohen’s d | ||||||||
---|---|---|---|---|---|---|---|---|
Self-Reported Cognitive Abilities | t | df | p | Mean Difference | SE Difference | Cohen’s d | Lower | Upper |
Fluid reasoning | −0.403 | 453 | 0.687 | −0.037 | 0.091 | −0.038 | −0.226 | 0.149 |
Comprehension knowledge | −0.808 | 453 | 0.420 | −0.077 | 0.095 | −0.077 | −0.264 | 0.110 |
Visual processing | 0.962 | 453 | 0.336 | 0.078 | 0.081 | 0.092 | −0.095 | 0.279 |
95% CI for Cohen’s d | ||||||||
---|---|---|---|---|---|---|---|---|
Learning Motivating Factors | t | df | p | Mean Difference | SE Difference | Cohen’s d | Lower | Upper |
Individual attitude and expectation | −2.875 | 403 | 0.004 | −0.245 | 0.085 | −0.287 | −0.484 | −0.090 |
Challenging goals | 0.569 | 403 | 0.570 | 0.062 | 0.108 | 0.057 | −0.139 | 0.253 |
Clear direction | −1.929 | 403 | 0.054 | −0.150 | 0.078 | −0.193 | −0.389 | 0.004 |
Reward and recognition | −3.092 | 403 | 0.002 | −0.276 | 0.089 | −0.309 | −0.505 | −0.112 |
Punishment | −3.095 | 403 | 0.002 | −0.407 | 0.131 | −0.309 | −0.506 | −0.112 |
Social pressure and competition | −1.647 | 403 | 0.100 | −0.198 | 0.120 | −0.164 | −0.360 | 0.032 |
Dependent Variables | Predictors/ Models | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | R | R2 | F | Sig. | |
---|---|---|---|---|---|---|---|---|---|---|
B | Std. Error | Beta | ||||||||
Individual attitude and expectation | 1 (Constant) | 3.039 | 0.341 | 8.917 | 0.000 | 0.326 | 0.106 | 21.373 | 0.000 | |
Extraversion | 0.482 | 0.104 | 0.326 | 4.623 | 0.000 | |||||
Challenging goals | 1 (Constant) | 1.610 | 0.394 | 4.086 | 0.000 | 0.469 | 0.220 | 50.661 | 0.000 | |
Conscientiousness | 0.810 | 0.114 | 0.469 | 7.118 | 0.000 | |||||
2 (Constant) | 1.026 | 0.435 | 2.356 | 0.020 | 0.505 | 0.255 | 30.600 | 0.004 | ||
Conscientiousness, | 0.645 | 0.125 | 0.373 | 5.156 | 0.000 | |||||
Extraversion | 0.357 | 0.123 | 0.210 | 2.906 | 0.004 | |||||
Clear direction | 1 (Constant) | 3.527 | 0.295 | 11.968 | 0.000 | 0.331 | 0.110 | 22.173 | 0.000 | |
Extraversion | 0.424 | 0.090 | 0.331 | 4.709 | 0.000 | |||||
2 (Constant) | 2.452 | 0.459 | 5.337 | 0.000 | 0.390 | 0.152 | 16.101 | 0.003 | ||
Extraversion, | 0.391 | 0.089 | 0.305 | 4.398 | 0.000 | |||||
Agreeableness | 0.330 | 0.110 | 0.209 | 3.007 | 0.003 | |||||
Punishment | 1 (Constant) | 4.838 | 0.767 | 6.306 | 0.000 | 0.155 | 0.024 | 4.440 | 0.037 | |
Open-mindedness | −0.439 | 0.209 | −0.155 | −2.107 | 0.037 | |||||
Social pressure and competition | 1 (Constant) | 4.048 | 0.326 | 12.419 | 0.000 | 0.161 | 0.026 | 4.810 | 0.030 | |
Negative emotionality | −0.227 | 0.104 | −0.161 | −2.193 | 0.030 |
Dependent Variables | Predictors/ Models | Unstandardized coefficients | Standardized Coefficients | t | Sig. | R | R2 | F | Sig. | |
---|---|---|---|---|---|---|---|---|---|---|
B | Std. Error | Beta | ||||||||
Individual attitude and expectation | 1 (Constant) | 3.898 | 0.300 | 13.007 | 0.000 | 0.207 | 0.043 | 9.866 | 0.002 | |
Conscientiousness | 0.276 | 0.088 | 0.207 | 3.141 | 0.002 | |||||
Challenging goals | 1 (Constant) | 2.687 | 0.411 | 6.537 | 0.000 | 0.261 | 0.068 | 160.021 | 0.000 | |
Conscientiousness | 0.483 | 0.121 | 0.261 | 4.003 | 0.000 | |||||
2 (Constant) | 3.837 | 0.589 | 6.515 | 0.000 | 0.313 | 0.098 | 11.861 | 0.000 | ||
Conscientiousness, | 0.400 | 0.123 | 0.216 | 3.255 | 0.001 | |||||
Negative emotionality | −0.283 | 0.105 | −0.178 | −2.692 | 0.008 | |||||
Clear direction | 1 (Constant) | 3.694 | 0.312 | 11.848 | 0.000 | 0.283 | 0.080 | 19.116 | 0.000 | |
Extraversion | 0.395 | 0.090 | 0.283 | 4.372 | 0.000 | |||||
2 (Constant) | 3.286 | 0.351 | 9.361 | 0.000 | 0.323 | 0.104 | 12.714 | 0.000 | ||
Extraversion, | 0.300 | 0.097 | 0.215 | 3.082 | 0.002 | |||||
Conscientiousness | 0.217 | 0.090 | 0.169 | 2.426 | 0.016 | |||||
Reward and recognition | 1 (Constant) | 4.019 | 0.323 | 12.457 | 0.000 | 0.198 | 0.039 | 9.011 | 0.000 | |
Conscientiousness | 0.284 | 0.095 | 0.198 | 3.002 | 0.003 |
Dependent Variables | Predictors/ Models | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | R | R2 | F | Sig. | |
---|---|---|---|---|---|---|---|---|---|---|
B | Std. Error | Beta | ||||||||
Individual attitude and expectation | 1 (Constant) | 3.577 | 0.359 | 9.963 | 0.000 | 0.206 | 0.043 | 8.060 | 0.005 | |
Comprehension-knowledge | 0.197 | 0.070 | 0.206 | 2.839 | 0.005 | |||||
Challenging goals | 1 (Constant) | 1.941 | 0.384 | 5.061 | 0.000 | 0.431 | 0.186 | 41.361 | 0.000 | |
Fluid reasoning | 0.477 | 0.074 | 0.431 | 6.431 | 0.000 | |||||
2 (Constant) | 1.428 | 0.412 | 3.467 | 0.001 | 0.475 | 0.225 | 26.194 | 0.000 | ||
Fluid reasoning, | 0.299 | 0.093 | 0.270 | 3.204 | 0.002 | |||||
Comprehension-knowledge | 0.279 | 0.092 | 0.256 | 3.027 | 0.003 | |||||
Clear direction | 1 (Constant) | 3.673 | 0.302 | 12.144 | 0.000 | 0.291 | 0.085 | 16.734 | 0.000 | |
Comprehension-knowledge | 0.240 | 0.059 | 0.291 | 4.091 | 0.000 | |||||
Social pressure and competition | 1 (Constant) | 1.951 | 0.569 | 3.428 | 0.001 | 0.182 | 0.033 | 6.212 | 0.014 | |
Visual processing | 0.256 | 0.103 | 0.182 | 2.492 | 0.014 |
Dependent Variable | Predictors/ Models | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | R | R2 | F | Sig. | |
---|---|---|---|---|---|---|---|---|---|---|
B | Std. Error | Beta | ||||||||
Individual attitude and expectation | (Constant) | 3.961 | 0.297 | 13.347 | 0.000 | 0.195 | 0.038 | 8.739 | 0.003 | |
Fluid reasoning | 0.168 | 0.057 | 0.195 | 2.956 | 0.003 | |||||
Challenging goals | (Constant) | 2.899 | 0.409 | 7.081 | 0.000 | 0.229 | 0.053 | 12.212 | 0.001 | |
Fluid reasoning | 0.273 | 0.078 | 0.229 | 3.495 | 0.001 | |||||
Clear direction | (Constant) | 4.243 | 0.343 | 12.356 | 0.000 | 0.156 | 0.024 | 5.491 | 0.020 | |
Visual processing | 0.146 | 0.062 | 0.156 | 2.343 | 0.020 | |||||
Reward and recognition | (Constant) | 3.750 | 0.379 | 9.901 | 0.000 | 0.215 | 0.046 | 10.644 | 0.001 | |
Visual processing | 0.225 | 0.069 | 0.215 | 3.263 | 0.001 |
Regression | B | S.E. | Z | p | LL | UL | β | Group * | ||
---|---|---|---|---|---|---|---|---|---|---|
Personality traits | → | Learning motivating factors | 0.660 | 0.235 | 2.810 | 0.005 | 0.200 | 1.121 | 0.460 | 1 |
Self-reported cognitive abilities | → | Learning motivating factors | −0.015 | 0.101 | −0.152 | 0.879 | −0.213 | 0.182 | −0.021 | 1 |
Personality traits | → | Learning motivating factors | 0.599 | 0.189 | 3.164 | 0.002 | 0.228 | 0.971 | 0.427 | 2 |
Self-reported cognitive abilities | → | Learning motivating factors | 0.033 | 0.061 | 0.549 | 0.583 | −0.086 | 0.153 | 0.048 | 2 |
Measurement model | ||||||||||
Self-reported cognitive abilities | → | Fluid reasoning | 1.000 | 0.000 | 1.000 | 1.000 | 0.899 | 1 | ||
Self-reported cognitive abilities | → | Visual processing | 0.595 | 0.077 | 7.685 | <0.001 | 0.443 | 0.747 | 0.600 | 1 |
Self-reported cognitive abilities | → | Comprehension-knowledge | 0.797 | 0.092 | 8.661 | <0.001 | 0.617 | 0.978 | 0.713 | 1 |
Personality traits | → | Extraversion | 1.000 | 0.000 | 1.000 | 1.000 | 0.705 | 1 | ||
Personality traits | → | Negative emotionality | −1.204 | 0.188 | −6.405 | <0.001 | −1.573 | −0.836 | −0.621 | 1 |
Personality traits | → | Conscientiousness | 0.920 | 0.129 | 7.105 | <0.001 | 0.666 | 1.174 | 0.660 | 1 |
Learning motivating factors | → | Individual attitude and expectation | 1.000 | 0.000 | 1.000 | 1.000 | 0.683 | 1 | ||
Learning motivating factors | → | Clear direction | 1.247 | 0.257 | 4.845 | <0.001 | 0.742 | 1.751 | 0.983 | 1 |
Self-reported cognitive abilities | → | Fluid reasoning | 1.000 | 0.000 | 1.000 | 1.000 | 0.883 | 2 | ||
Self-reported cognitive abilities | → | Visual processing | 0.754 | 0.062 | 12.128 | <0.001 | 0.632 | 0.875 | 0.756 | 2 |
Self-reported cognitive abilities | → | Comprehension-knowledge | 1.007 | 0.071 | 14.201 | <0.001 | 0.868 | 1.145 | 0.813 | 2 |
Personality traits | → | Extraversion | 1.000 | 0.000 | 1.000 | 1.000 | 0.744 | 2 | ||
Personality traits | → | Negative emotionality | −0.789 | 0.150 | −5.266 | <0.001 | −1.082 | −0.495 | −0.462 | 2 |
Personality traits | → | Conscientiousness | 0.787 | 0.155 | 5.077 | <0.001 | 0.483 | 1.091 | 0.539 | 2 |
Learning motivating factors | → | Individual attitude and expectation | 1.000 | 0.000 | 1.000 | 1.000 | 0.721 | 2 | ||
Learning motivating factors | → | Clear direction | 1.154 | 0.264 | 4.371 | <0.001 | 0.637 | 1.672 | 0.864 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dirzyte, A.; Vijaikis, A.; Perminas, A.; Rimasiute-Knabikiene, R.; Kaminskis, L.; Zebrauskas, G. Computer Programming E-Learners’ Personality Traits, Self-Reported Cognitive Abilities, and Learning Motivating Factors. Brain Sci. 2021, 11, 1205. https://doi.org/10.3390/brainsci11091205
Dirzyte A, Vijaikis A, Perminas A, Rimasiute-Knabikiene R, Kaminskis L, Zebrauskas G. Computer Programming E-Learners’ Personality Traits, Self-Reported Cognitive Abilities, and Learning Motivating Factors. Brain Sciences. 2021; 11(9):1205. https://doi.org/10.3390/brainsci11091205
Chicago/Turabian StyleDirzyte, Aiste, Aivaras Vijaikis, Aidas Perminas, Romualda Rimasiute-Knabikiene, Lukas Kaminskis, and Giedrius Zebrauskas. 2021. "Computer Programming E-Learners’ Personality Traits, Self-Reported Cognitive Abilities, and Learning Motivating Factors" Brain Sciences 11, no. 9: 1205. https://doi.org/10.3390/brainsci11091205
APA StyleDirzyte, A., Vijaikis, A., Perminas, A., Rimasiute-Knabikiene, R., Kaminskis, L., & Zebrauskas, G. (2021). Computer Programming E-Learners’ Personality Traits, Self-Reported Cognitive Abilities, and Learning Motivating Factors. Brain Sciences, 11(9), 1205. https://doi.org/10.3390/brainsci11091205