The Association between the Binding Processes of Working Memory and Vascular Risk Profile in Adults
Abstract
:1. Introduction
1.1. Episodic Buffer and Binding Processes
1.2. Visual Binding, Executive Functions, and Attentional Control
1.3. Vascular Risk Factors, Executive Functions and Attention
1.4. The Purpose and the Hypotheses of the Study
2. Materials and Methods
2.1. Participants
2.2. Tools
2.2.1. Biomarker and Demographic Data Questionnaire
2.2.2. Assessment of Episodic Buffer—Feature Binding Test (FBT)
2.3. Procedure
2.4. Ethics Statement
2.5. Statistical Analysis
3. Results
3.1. Feature Binding Test: Performance Comparison between the Three Conditions
3.2. The Effects of Vascular Risk Profile on FBT Performance
3.3. VBT and Specific Vascular Risk Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ricker, T.J.; AuBuchon, A.M.; Cowan, N. Working memory. Wiley Int. Rev. Cogn. Sci. 2010, 1, 573–585. [Google Scholar] [CrossRef]
- Logie, R.; Camos, V.; Cowan, N. Working Memory: The State of the Science; Oxford University Press: Oxford, UK, 2020. [Google Scholar]
- Baddeley, A.D.; Hitch, G. Working memory. In Psychology of Learning and Motivation; Bower, G.H., Ed.; Academic Press: Cambridge, UK, 1974; Volume 8, pp. 47–89. [Google Scholar]
- Baddeley, A.; Logie, R. Working Memory: The Multiple-Component Model. In Models of Working Memory: Mechanisms of Active Maintenance and Executive Control; Miyake, A., Shah, P., Eds.; Cambridge University Press: Cambridge, UK, 1999; pp. 28–61. [Google Scholar] [CrossRef]
- Baddeley, A. The episodic buffer: A new component of working memory? Trends Cogn. Sci. 2000, 4, 417–423. [Google Scholar] [CrossRef]
- Repovš, G.; Baddeley, A. The multi-component model of working memory: Explorations in experimental cognitive psychology. Neuroscience 2006, 139, 5–21. [Google Scholar] [CrossRef] [PubMed]
- Venkat, P.; Chopp, M.; Chen, J. Models and mechanisms of vascular dementia. Exp. Neurol. 2015, 272, 97–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raz, L.; Knoefel, J.; Bhaskar, K. The neuropathology and cerebrovascular mechanisms of dementia. J. Cereb. Blood Flow Metab. 2016, 36, 172–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, E.E. Clinical presentations and epidemiology of vascular dementia. Clin. Sci. 2017, 131, 1059–1068. [Google Scholar] [CrossRef] [PubMed]
- Kalaria, R.N. The pathology and pathophysiology of vascular dementia. Neuropharmacology 2018, 134 Pt B, 226–239. [Google Scholar] [CrossRef]
- Lambert, C.; Zeestraten, E.; Williams, O.; Benjamin, P.; Lawrence, A.; Morris, R.G.; Mackinnon, A.D.; Barrick, T.; Markus, H.S. Identifying preclinical vascular dementia in symptomatic small vessel disease using MRI. NeuroImage Clin. 2018, 19, 925–938. [Google Scholar] [CrossRef]
- Sweeney, M.D.; Montagne, A.; Sagare, A.P.; Nation, D.A.; Schneider, L.S.; Chui, H.C.; Harrington, M.G.; Pa, J.; Law, M.; Wang, D.J.; et al. Vascular dysfunction—The disregarded partner of Alzheimer’s disease. Alzheimer’s Dement. 2019, 15, 158–167. [Google Scholar] [CrossRef] [Green Version]
- Paszkiel, S. Data Acquisition Methods for Human Brain Activity. In Analysis and Classification of EEG Signals for Brain–Computer Interfaces. Studies in Computational Intelligence; Paszkiel, S., Ed.; Springer: Cham, Switzerland, 2020; Volume 852, pp. 3–9. [Google Scholar] [CrossRef]
- Baddeley, A.; Wilson, B.A. Prose recall and amnesia: Implications for the structure of working memory. Neuropsychologia 2002, 40, 1737–1743. [Google Scholar] [CrossRef]
- Cowan, N. Working Memory Capacity; Psychology Press: Hove, UK, 2005. [Google Scholar]
- Baddeley, A. Working memory: Theories, models, and controversies. Annu. Rev. Psychol. 2012, 63, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.J.; Baddeley, A.D.; Hitch, G.J. Is the binding of visual features in working memory resource-demanding? J. Exp. Psych. Gen. 2006, 135, 298–313. [Google Scholar] [CrossRef]
- Baddeley, A.D.; Allen, R.J.; Hitch, G.J. Binding in visual working memory: The role of the episodic buffer. Neuropsychologia 2011, 49, 1393–1400. [Google Scholar] [CrossRef] [PubMed]
- Baddeley, A.; Allen, R.J.; Hitch, G. Investigating the episodic buffer. Psychol. Belg. 2010, 50, 223–243. [Google Scholar] [CrossRef]
- Karlsen, P.J.; Allen, R.J.; Baddeley, A.D.; Hitch, G.J. Binding across space and time in visual working memory. Mem. Cogn. 2010, 38, 292–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, R.J.; Baddeley, A.D.; Hitch, G.J. Evidence for two attentional components in visual working memory. J. Exp. Psychol. Learn. Mem. Cogn. 2014, 40, 1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hitch, G.J.; Allen, R.J.; Baddeley, A.D. Attention and binding in visual working memory: Two forms of attention and two kinds of buffer storage. Atten. Percept. Psychophys. 2020, 82, 280–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, K.J.; Johnson, M.K.; Raye, C.L.; D’Esposito, M. fMRI evidence of age-related hippocampal dysfunction in feature binding in working memory. Cogn. Brain Res. 2000, 10, 197–206. [Google Scholar] [CrossRef]
- Wheeler, M.E.; Treisman, A.M. Binding in short-term visual memory. J. Exp. Psychol. Gen. 2002, 131, 48. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.J.; Hitch, G.J.; Mate, J.; Baddeley, A.D. Feature binding and attention in working memory: A resolution of previous contradictory findings. Q. J. Exp. Psychol. 2012, 65, 2369–2383. [Google Scholar] [CrossRef]
- Hu, Y.; Hitch, G.J.; Baddeley, A.D.; Zhang, M.; Allen, R.J. Executive and perceptual attention play different roles in visual working memory: Evidence from suffix and strategy effects. J. Exp. Psychol. Hum. Percept. Perform. 2014, 40, 1665–1678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, M.E.; Knopman, D.S.; Dickson, D.W. Vascular dementia: Clinical, neuroradiologic and neuropathologic aspects. Panminerva Med. 2007, 49, 197–207. [Google Scholar] [PubMed]
- Jellinger, K.A. The pathology of "vascular dementia": A critical update. J. Alzheimer’s Dis. JAD 2008, 14, 107–123. [Google Scholar] [CrossRef] [PubMed]
- Schneck, M.J. Vascular dementia. Top. Stroke Rehabil. 2008, 15, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Frances, A.; Sandra, O.; Lucy, U. Vascular cognitive impairment, a cardiovascular complication. World J. Psychiatry 2016, 6, 199–207. [Google Scholar] [CrossRef]
- Ghafar, M.; Miptah, H.N.; O’Caoimh, R. Cognitive screening instruments to identify vascular cognitive impairment: A systematic review. Int. J. Geriatr. Psychiatry 2019, 34, 1114–1127. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Cheng, H.M.; Chuang, S.Y.; Chen, C.H. Vascular aging and cognitive dysfunction: Silent midlife crisis in the brain. Pulse 2017, 5, 127–132. [Google Scholar] [CrossRef]
- Iadecola, C.; Gottesman, R.F. Neurovascular and cognitive dysfunction in hypertension: Epidemiology, pathobiology, and treatment. Circ. Res. 2019, 124, 1025–1044. [Google Scholar] [CrossRef]
- Iulita, M.F.; Girouard, H. Treating hypertension to prevent cognitive decline and dementia: Re-opening the debate. In Hypertension: From Basic Research to Clinical Practice; Springer: Berlin/Heidleberg, Germany, 2016; pp. 447–473. [Google Scholar]
- Iadecola, C.; Yaffe, K.; Biller, J.; Bratzke, L.C.; Faraci, F.M.; Gorelick, P.B.; Gulati, M.; Kamel, H.; Knopman, D.S.; Launer, L.J.; et al. Impact of Hypertension on Cognitive Function: A Scientific Statement from the American Heart Association. Hypertension 2016, 68, e67–e94. [Google Scholar] [CrossRef]
- Campos, M.W.; Serebrisky, D.; Castaldelli-Maia, J.M. Smoking and Cognition. Curr. Drug Abus. Rev. 2016, 9, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Favieri, F.; Forte, G.; Casagrande, M. The Executive Functions in Overweight and Obesity: A Systematic Review of Neuropsychological Cross-Sectional and Longitudinal Studies. Front. Psychol. 2019, 10, 2126. [Google Scholar] [CrossRef]
- Ludyga, S.; Gerber, M.; Brand, S.; Holsboer-Trachsler, E.; Pühse, U. Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta-analysis. Psychophysiology 2016, 53, 1611–1626. [Google Scholar] [CrossRef]
- Barha, C.K.; Davis, J.C.; Falck, R.S.; Nagamatsu, L.S.; Liu-Ambrose, T. Sex differences in exercise efficacy to improve cognition: A systematic review and meta-analysis of randomized controlled trials in older humans. Front. Neuroendocr. 2017, 46, 71–85. [Google Scholar] [CrossRef]
- Hsu, C.L.; Best, J.R.; Davis, J.C.; Nagamatsu, L.S.; Wang, S.; Boyd, L.A.; Hsiung, G.R.; Voss, M.W.; Eng, J.J.; Liu-Ambrose, T. Aerobic exercise promotes executive functions and impacts functional neural activity among older adults with vascular cognitive impairment. Br. J. Sports Med. 2018, 52, 184–191. [Google Scholar] [CrossRef]
- Northey, J.M.; Cherbuin, N.; Pumpa, K.L.; Smee, D.J.; Rattray, B. Exercise interventions for cognitive function in adults older than 50: A systematic review with meta-analysis. Br. J. Sports Med. 2018, 52, 154–160. [Google Scholar] [CrossRef]
- McKee, A.C.; Daneshvar, D.H.; Alvarez, V.E.; Stein, T.D. The neuropathology of sport. Acta Neuropathol. 2014, 127, 29–51. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [Green Version]
- Karvani, M.; Simos, P.; Stavrakaki, S.; Kapoukranidou, D. Neurocognitive impairment in type 2 diabetes mellitus. Hormones 2019, 18, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.G. Cognitive dysfunctions in individuals with diabetes mellitus. Yeungnam Univ. J. Med. 2019, 36, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Kandimalla, R.; Thirumala, V.; Reddy, P.H. Is Alzheimer’s disease a Type 3 Diabetes? A critical appraisal. Biochim. Biophys. Acta BBA—Mol. Basis Dis. 2017, 1863, 1078–1089. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Ta, Q.; Nguyen, T.; Nguyen, T.; Giau, V.V. Type 3 Diabetes and Its Role Implications in Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 3165. [Google Scholar] [CrossRef] [PubMed]
- Nazaribadie, M.; Amini, M.; Ahmadpanah, M.; Asgari, K.; Jamlipaghale, S.; Nazaribadie, S. Executive functions and information processing in patients with type 2 diabetes in comparison to pre-diabetic patients. J. Diabetes Metab. Disord. 2014, 13, 27. [Google Scholar] [CrossRef] [Green Version]
- Wendell, C.R.; Zonderman, A.B.; Katzel, L.I.; Rosenberger, W.F.; Plamadeala, V.V.; Hosey, M.M.; Waldstein, S.R. Nonlinear associations between plasma cholesterol levels and neuropsychological function. Neuropsychology 2016, 30, 980–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Vittinghoff, E.; Pletcher, M.J.; Allen, N.B.; Zeki Al Hazzouri, A.; Yaffe, K.; Balte, P.P.; Alonso, A.; Newman, A.B.; Ives, D.G.; et al. Associations of blood pressure and cholesterol levels during young adulthood with later cardiovascular events. J. Am. Coll. Cardiol. 2019, 74, 330–341. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®); American Psychiatric Pub.: Washington, DC, USA, 2013. [Google Scholar]
- Prabhakaran, V.; Narayanan, K.; Zhao, Z.; Gabrieli, J.D.E. Integration of diverse information in working memory within the frontal lobe. Nat. Neurosci. 2000, 3, 85–90. [Google Scholar] [CrossRef]
- Masoura, E.; Pope, M.O. Bilingualism and Working Memory: Investigating the Effect of Bilingualism on the Functioning of the Episodic Buffer. Bachelor’s Thesis, Aristotle University of Thessaloniki, Faculty of Philosophy, School of Psychology, Thessaloniki, Greece, 2018. [Google Scholar]
- Quinette, P.; Guillery-Girard, B.; Noël, A.; de la Sayette, V.; Viader, F.; Desgranges, B.; Eustache, F. The relationship between working memory and episodic memory disorders in transient global amnesia. Neuropsychologia 2006, 44, 2508–2519. [Google Scholar] [CrossRef]
- Williams, J.R. The Declaration of Helsinki and public health. Bull. World Health Organ. 2008, 86, 650–652. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows, Version 26.0; IBM Corp.: Armonk, NY, USA, 2019. [Google Scholar]
- Villeneuve, S.; Belleville, S.; Massoud, F.; Bocti, C.; Gauthier, S. Impact of vascular risk factors and diseases on cognition in persons with mild cognitive impairment. Dement. Geriatr. Cogn. Disord. 2009, 27, 375–381. [Google Scholar] [CrossRef]
- Fung, A.W. Effect of physical exercise and medication on enhancing cognitive function in older adults with vascular risk. Geriatr. Gerontol. Int. 2020, 20, 1067–1071. [Google Scholar] [CrossRef]
- Archer, J.A.; Lee, A.; Qiu, A.; Chen, S.A. Working memory, age and education: A lifespan fMRI study. PLoS ONE 2018, 13, e0194878. [Google Scholar] [CrossRef] [Green Version]
- Zarantonello, L.; Schiff, S.; Amodio, P.; Bisiacchi, P. The effect of age, educational level, gender and cognitive reserve on visuospatial working memory performance across adult life span. Aging Neuropsychol. Cogn. 2020, 27, 302–319. [Google Scholar] [CrossRef]
- Forsberg, A.; Johnson, W.; Logie, R.H. Aging and feature-binding in visual working memory: The role of verbal rehearsal. Psychol. Aging 2019, 34, 933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coats, R.O.; Waterman, A.H.; Ryder, F.; Atkinson, A.L.; Allen, R.J. Following Instructions in Working Memory: Do Older Adults Show the Enactment Advantage? J. Gerontol. Ser. B 2021, 76, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.J.; Atkinson, A.L.; Nicholls, L. Strategic prioritisation enhances young and older adults’ visual feature binding in working memory. Q. J. Exp. Psychol. 2021, 74, 363–376. [Google Scholar] [CrossRef]
- Ungvari, Z.; Tarantini, S.; Donato, A.J.; Galvan, V.; Csiszar, A. Mechanisms of vascular aging. Circ. Res. 2018, 123, 849–867. [Google Scholar] [CrossRef]
- O’Brien, J.; Thomas, A. Vascular dementia. Lancet 2015, 386, 1698–1706. [Google Scholar] [CrossRef] [Green Version]
- Tsai, H.J.; Chang, F.K. Associations of exercise, nutritional status, and smoking with cognitive decline among older adults in Taiwan: Results of a longitudinal population-based study. Arch. Gerontol. Geriatr. 2019, 82, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Blom, K.; Emmelot-Vonk, M.H.; Koek, H.L. The influence of vascular risk factors on cognitive decline in patients with dementia: A systematic review. Maturitas 2013, 76, 113–117. [Google Scholar] [CrossRef]
- Dani, J.A. Neuronal nicotinic acetylcholine receptor structure and function and response to nicotine. Int. Rev. Neurobiol. 2015, 124, 3–19. [Google Scholar]
- Zeid, D.; Kutlu, M.G.; Gould, T.J. Differential effects of nicotine exposure on the hippocampus across lifespan. Curr. Neuropharmacol. 2018, 16, 388–402. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, Y.; Galvin, V.C.; Yang, S.; Arnsten, A.F.; Wang, M. Nicotinic α4β2 cholinergic receptor influences on dorsolateral prefrontal cortical neuronal firing during a working memory task. J. Neurosci. 2017, 37, 5366–5377. [Google Scholar] [CrossRef] [Green Version]
- Deal, J.A.; Power, M.C.; Palta, P.; Alonso, A.; Schneider, A.L.; Perryman, K.; Bandeen-Roche, K.; Sharrett, A.R. Relationship of cigarette smoking and time of quitting with incident dementia and cognitive decline. J. Am. Geriatr. Soc. 2020, 68, 337–345. [Google Scholar] [CrossRef]
- Bullen, C. Impact of tobacco smoking and smoking cessation on cardiovascular risk and disease. Expert Rev. Cardiovasc. Ther. 2008, 6, 883–895. [Google Scholar] [CrossRef]
- Rempher, K.J. Cardiovascular sequelae of tobacco smoking. Crit. Care Nurs. Clin. North Am. 2006, 18, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Gordon, P.; Flanagan, P. Smoking: A risk factor for vascular disease. J. Vasc. Nurs. 2016, 34, 79–86. [Google Scholar] [CrossRef]
- Cyarto, E.V.; Lautenschlager, N.T.; Desmond, P.M.; Ames, D.; Szoeke, C.; Salvado, O.; Sharman, M.J.; Ellis, K.A.; Phal, P.M.; Masters, C.L.; et al. Protocol for a randomized controlled trial evaluating the effect of physical activity on delaying the progression of white matter changes on MRI in older adults with memory complaints and mild cognitive impairment: The AIBL Active trial. BMC Psychiatry 2012, 12, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Öhman, H.; Savikko, N.; Strandberg, T.E.; Pitkälä, K.H. Effect of physical exercise on cognitive performance in older adults with mild cognitive impairment or dementia: A systematic review. Dement. Geriatr. Cogn. Disord. 2014, 38, 347–365. [Google Scholar] [CrossRef] [PubMed]
- Klimova, B.; Valis, M.; Kuca, K. Cognitive decline in normal aging and its prevention: A review on non-pharmacological lifestyle strategies. Clin. Interv. Aging 2017, 12, 903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brasure, M.; Desai, P.; Davila, H.; Nelson, V.A.; Calvert, C.; Jutkowitz, E.; Butler, M.; Fink, H.A.; Ratner, E.; Hemmy, L.S.; et al. Physical Activity Interventions in Preventing Cognitive Decline and Alzheimer-Type Dementia: A Systematic Review. Ann. Intern. Med. 2018, 168, 30–38. [Google Scholar] [CrossRef]
- Cui, M.Y.; Lin, Y.; Sheng, J.Y.; Zhang, X.; Cui, R.J. Exercise Intervention Associated with Cognitive Improvement in Alzheimer’s Disease. Neural Plast. 2018, 2018, 9234105. [Google Scholar] [CrossRef]
- Da Silva, F.C.; Iop, R.; de Oliveira, L.C.; Boll, A.M.; de Alvarenga, J.; Gutierres Filho, P.; de Melo, L.; Xavier, A.J.; da Silva, R. Effects of physical exercise programs on cognitive function in Parkinson’s disease patients: A systematic review of randomized controlled trials of the last 10 years. PLoS ONE 2018, 13, e0193113. [Google Scholar] [CrossRef] [Green Version]
- Lam, F.M.; Huang, M.Z.; Liao, L.R.; Chung, R.C.; Kwok, T.C.; Pang, M.Y. Physical exercise improves strength, balance, mobility, and endurance in people with cognitive impairment and dementia: A systematic review. J. Physiother. 2018, 64, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Yoon, D.H.; Lee, J.Y.; Song, W. Effects of Resistance Exercise Training on Cognitive Function and Physical Performance in Cognitive Frailty: A Randomized Controlled Trial. J. Nutr. Health Ag. 2018, 22, 944–951. [Google Scholar] [CrossRef]
- Law, C.K.; Lam, F.M.; Chung, R.C.; Pang, M.Y. Physical exercise attenuates cognitive decline and reduces behavioural problems in people with mild cognitive impairment and dementia: A systematic review. J. Physiother. 2020, 66, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Erickson, K.I.; Leckie, R.L.; Weinstein, A.M. Physical activity, fitness, and gray matter volume. Neurobiol. Aging 2014, 35 (Suppl. 2), S20–S28. [Google Scholar] [CrossRef] [Green Version]
- Koščak Tivadar, B. Physical activity improves cognition: Possible explanations. Biogerontology 2017, 18, 477–483. [Google Scholar] [CrossRef] [PubMed]
Gender | Age Group | Educational Level (in Years) | ||||||
---|---|---|---|---|---|---|---|---|
N = 229 | Subgroups | Male | Female | Young Adults | Adults | Low (≤6 Years) | Medium (7–12 Years) | High (≥13 Years) |
Vascular risk factors | Healthy | 21 | 31 | 34 | 18 | 6 | 11 | 35 |
1 factor | 15 | 59 | 31 | 43 | 7 | 26 | 41 | |
2 factors | 20 | 43 | 19 | 44 | 9 | 10 | 44 | |
≥3 factors | 11 | 29 | 9 | 31 | 7 | 9 | 24 | |
Hypercholesterolemia | Yes | 19 | 43 | 8 | 54 | 9 | 11 | 42 |
No | 48 | 119 | 85 | 82 | 20 | 45 | 102 | |
Hypertension | Yes | 21 | 33 | 5 | 49 | 11 | 9 | 34 |
No | 46 | 129 | 88 | 87 | 18 | 47 | 110 | |
Diabetes | Yes | 4 | 9 | 3 | 10 | 0 | 4 | 9 |
No | 63 | 153 | 90 | 126 | 29 | 52 | 135 | |
Overweight | Yes | 19 | 48 | 22 | 45 | 6 | 18 | 43 |
No | 48 | 114 | 71 | 91 | 23 | 38 | 101 | |
Smoking | Yes | 12 | 40 | 19 | 33 | 8 | 12 | 32 |
No | 55 | 122 | 74 | 103 | 21 | 44 | 112 | |
Exercise | Yes | 51 | 88 | 51 | 88 | 14 | 33 | 92 |
No | 16 | 74 | 42 | 48 | 15 | 23 | 52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bika, E.; Moraitou, D.; Masoura, E.; Kolios, G.; Papantoniou, G.; Sofologi, M.; Papaliagkas, V.; Ntritsos, G. The Association between the Binding Processes of Working Memory and Vascular Risk Profile in Adults. Brain Sci. 2021, 11, 1140. https://doi.org/10.3390/brainsci11091140
Bika E, Moraitou D, Masoura E, Kolios G, Papantoniou G, Sofologi M, Papaliagkas V, Ntritsos G. The Association between the Binding Processes of Working Memory and Vascular Risk Profile in Adults. Brain Sciences. 2021; 11(9):1140. https://doi.org/10.3390/brainsci11091140
Chicago/Turabian StyleBika, Eirini, Despina Moraitou, Elvira Masoura, George Kolios, Georgia Papantoniou, Maria Sofologi, Vasileios Papaliagkas, and Georgios Ntritsos. 2021. "The Association between the Binding Processes of Working Memory and Vascular Risk Profile in Adults" Brain Sciences 11, no. 9: 1140. https://doi.org/10.3390/brainsci11091140
APA StyleBika, E., Moraitou, D., Masoura, E., Kolios, G., Papantoniou, G., Sofologi, M., Papaliagkas, V., & Ntritsos, G. (2021). The Association between the Binding Processes of Working Memory and Vascular Risk Profile in Adults. Brain Sciences, 11(9), 1140. https://doi.org/10.3390/brainsci11091140