Fourier Transform Infrared Imaging—A Novel Approach to Monitor Bio Molecular Changes in Subacute Mild Traumatic Brain Injury
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Ethical Statement
2.2. Animal Studies and mTBI Induction
2.3. Tissue Preparation for Immunohistochemistry and FTIR Imaging Study
2.4. Fourier Transform Infrared Imaging (FTIR) Study
Pre-Processing and Analysis of FTIR Data
2.5. Chemometric Data Pre-Processing and Analysis
2.6. Statistical Analysis
3. Results
3.1. Histological Changes Post mTBI-Induction
3.2. Immunohistochemistry Studies on mTBI Brain Tissues
3.3. Bio Molecular Alterations in mTBI in Comparison to Control Group
3.3.1. Qualitative Changes in Cortex (Co) vs. Corpus Callosum (CC)
3.3.2. Quantitative Changes (Changes in Contents of Biomolecules) in Co vs. CC
3.3.3. Protein Secondary Structural Changes in Co vs. CC
3.3.4. Physical Structural (Lipid Order and Lipid Acyl Chain Flexibility) Changes in Co vs. CC
3.4. Principal Component Analysis (PCA)
3.5. Hierarchical Clustering Analysis (HCA)
4. Discussion
4.1. Control—Co vs. mTBI—Co
4.2. Control—CC vs. mTBI—CC
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McAllister, T.W. Neurobiological consequences of traumatic brain injury. Dialogues Clin. Neurosci. 2011, 13, 287–300. [Google Scholar]
- Zaninotto, A.L.C.; Costa, B.T.; Ferreira, I.S.; French, M.; Paiva, W.S.; Fregni, F. Traumatic Brain Injury. Clin. Trials Neurol. 2018, 138, 105–138. [Google Scholar]
- Kaur, P.; Sharma, S. Recent Advances in Pathophysiology of Traumatic Brain Injury. Curr. Neuropharmacol. 2018, 16, 1224–1238. [Google Scholar] [CrossRef]
- Povlishock, J.T.; Christman, C.W. The Pathobiology of Traumatically Induced Axonal Injury in Animals and Humans: A Review of Current Thoughts. J. Neurotrauma 1995, 12, 555–564. [Google Scholar] [CrossRef]
- Johnson, V.E.; Stewart, W.; Smith, D.H. Axonal pathology in traumatic brain injury. Exp. Neurol. 2013, 246, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.H.; Meaney, D. Axonal Damage in Traumatic Brain Injury. Neuroscience 2000, 6, 483–495. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, L.; Mu, J.; Yang, T.; Zheng, N.; Dong, H. Chemical Analysis in the Corpus Callosum Following Traumatic Axonal Injury using Fourier Transform Infrared Microspectroscopy: A Pilot Study. J. Forensic Sci. 2015, 60, 1488–1494. [Google Scholar] [CrossRef]
- Marmarou, A.; Foda, M.A.A.E.; van den Brink, W.; Campbell, J.; Kita, H.; Demetriadou, K. A new model of diffuse brain injury in rats Part I: Pathophysiology and biomechanics. J. Neurosurg. 1994, 80, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Foda, M.A.A.E.; Marmarou, A. A new model of diffuse brain injury in rats Part II: Morphological characterization. J. Neurosurg. 1994, 80, 301–313. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.V.R.; Zada, G.; Salim, A.; Inaba, K.; Kasotakis, G.; Hadjizacharia, P.; Demetriades, D.; Rhee, P. Indications for Routine Repeat Head Computed Tomography (CT) Stratified by Severity of Traumatic Brain Injury. J. Trauma Inj. Infect. Crit. Care 2007, 62, 1339–1345. [Google Scholar] [CrossRef]
- Dijkhuizen, R.M.; van der Marel, K.; Otte, W.M.; Hoff, E.I.; van der Zijden, J.P.; van der Toorn, A.; van Meer, M.P.A. Functional MRI and Diffusion Tensor Imaging of Brain Reorganization After Experimental Stroke. Transl. Stroke Res. 2012, 3, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Wu, O.; Christensen, S.; Hjort, N.; Dijkhuizen, R.M.; Kucinski, T.; Fiehler, J.; Thomalla, G.; Röther, J.; Østergaard, L. Characterizing physiological heterogeneity of infarction risk in acute human ischaemic stroke using MRI. Brain 2006, 129, 2384–2393. [Google Scholar] [CrossRef] [Green Version]
- Rincon, S.; Gupta, R.; Ptak, T. Imaging of head trauma. Handb. Clin. Neurol. 2016, 135, 447–477. [Google Scholar] [CrossRef]
- Irimia, A.; Chambers, M.C.; Alger, J.R.; Filippou, M.; Prastawa, M.W.; Wang, B.; Hovda, D.A.; Gerig, G.; Toga, A.W.; Kikinis, R.; et al. Comparison of Acute and Chronic Traumatic Brain Injury Using Semi-Automatic Multimodal Segmentation of MR Volumes. J. Neurotrauma 2011, 28, 2287–2306. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.H.M.; Rakib, F.; Abdelalim, E.M.; Limbeck, A.; Mall, R.; Ullah, E.; Mesaeli, N.; McNaughton, D.; Ahmed, T.; Al-Saad, K. Fourier-Transform Infrared Imaging Spectroscopy and Laser Ablation -ICPMS New Vistas for Biochemical Analyses of Ischemic Stroke in Rat Brain. Front. Neurosci. 2018, 12, 647. [Google Scholar] [CrossRef]
- Ustaoglu, S.G.; Ali, M.H.M.; Rakib, F.; Blezer, E.L.A.; Van Heijningen, C.L.; Dijkhuizen, R.M.; Severcan, F. Biomolecular changes and subsequent time-dependent recovery in hippocampal tissue after experimental mild traumatic brain injury. Sci. Rep. 2021, 11, 12468. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.H.M.; Toor, S.M.; Rakib, F.; Mall, R.; Ullah, E.; Mroue, K.; Kolatkar, P.R.; Al-Saad, K.; Elkord, E. Investigation of the Effect of PD-L1 Blockade on Triple Negative Breast Cancer Cells Using Fourier Transform Infrared Spectroscopy. Vaccines 2019, 7, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Severcan, F.; Gorgulu, G.; Gorgulu, S.T.; Guray, T. Rapid monitoring of diabetes-induced lipid peroxidation by Fourier transform infrared spectroscopy: Evidence from rat liver microsomal membranes. Anal. Biochem. 2005, 339, 36–40. [Google Scholar] [CrossRef]
- Goormaghtigh, E. Infrared imaging in histopathology: Is a unified approach possible? Biomed. Spectrosc. Imaging 2017, 5, 325–346. [Google Scholar] [CrossRef] [Green Version]
- Davies, D.J.; Su, Z.; Clancy, M.T.; Lucas, S.; Dehghani, H.; Logan, A.; Belli, A. Near-Infrared Spectroscopy in the Monitoring of Adult Traumatic Brain Injury: A Review. J. Neurotrauma 2015, 32, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.; Ozek, N.S.; Emri, S.; Koksal, D.; Severcan, M.; Severcan, F. Diagnosis of malignant pleural mesothelioma from pleural fluid by Fourier transform-infrared spectroscopy coupled with chemometrics. J. Biomed. Opt. 2018, 23, 105003–105014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yonar, D.; Ocek, L.; Tiftikcioglu, B.I.; Zorlu, Y.; Severcan, F. Relapsing-Remitting Multiple Sclerosis diagnosis from cerebrospinal fluids via Fourier transform infrared spectroscopy coupled with multivariate analysis. Sci. Rep. 2018, 8, 1025. [Google Scholar] [CrossRef]
- Sevinc, A.; Yonar, D.; Severcan, F. Investigation of neurodegenerative diseases from body fluid samples using Fourier transform infrared spectroscopy. Biomed. Spectrosc. Imaging 2015, 4, 341–357. [Google Scholar] [CrossRef]
- Cakmak, G.; Miller, L.M.; Zorlu, F.; Severcan, F. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: An FTIR microspectroscopic imaging study. Arch. Biochem. Biophys. 2012, 520, 67–73. [Google Scholar] [CrossRef]
- Ali, M.H.M.; Rakib, F.; Nischwitz, V.; Ullah, E.; Mall, R.; Shraim, A.M.; Ahmad, M.I.; Ghouri, Z.K.; McNaughton, D.; Küppers, S.; et al. Application of FTIR and LA-ICPMS Spectroscopies as a Possible Approach for Biochemical Analyses of Different Rat Brain Regions. Appl. Sci. 2018, 8, 2436. [Google Scholar] [CrossRef] [Green Version]
- Notarstefano, V.; Sabbatini, S.; Conti, C.; Pisani, M.; Astolfi, P.; Pro, C.; Rubini, C.; Vaccari, L.; Giorgini, E. Investigation of human pancreatic cancer tissues by Fourier Transform Infrared Hyperspectral Imaging. J. Biophotonics 2019, 13, e201960071. [Google Scholar] [CrossRef]
- Depciuch, J.; Stanek-Widera, A.; Lange, D.; Biskup-Frużyńska, M.; Stanek-Tarkowska, J.; Czarny, W.; Cebulski, J. Spectroscopic analysis of normal and neoplastic (WI-FTC) thyroid tissue. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 204, 18–24. [Google Scholar] [CrossRef]
- Giorgini, E.; Sabbatini, S.; Conti, C.; Rubini, C.; Rocchetti, R.; Re, M.; Vaccari, L.; Mitri, E.; Librando, V. Vibrational mapping of sinonasal lesions by Fourier transform infrared imaging spectroscopy. J. Biomed. Opt. 2015, 20, 125003. [Google Scholar] [CrossRef] [PubMed]
- Giorgini, E.; Tosi, G.; Conti, C.; Staibano, S.; Ilardi, G.; Sabbatini, S. FTIR microspectroscopic characterization of Spitz nevi. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 141, 99–103. [Google Scholar] [CrossRef]
- Turker, S.; Ilbay, G.; Severcan, M.; Severcan, F. Investigation of Compositional, Structural, and Dynamical Changes of Pentylenetetrazol-Induced Seizures on a Rat Brain by FT-IR Spectroscopy. Anal. Chem. 2014, 86, 1395–1403. [Google Scholar] [CrossRef]
- Ustaoglu, S.G.; Evis, Z.; Ilbay, G.; Boskey, A.L.; Severcan, F. Side-Effects of Convulsive Seizures and Anti-Seizure Therapy on Bone in a Rat Model of Epilepsy. Appl. Spectrosc. 2018, 72, 689–705. [Google Scholar] [CrossRef]
- Aksoy, C.; Severcan, F. Infrared Spectroscopy and Imaging in Stem Cells and Aging Research. Methods Mol. Biol. 2018, 2045, 201–215. [Google Scholar] [CrossRef]
- Aksoy, C.; Guliyev, A.; Kilic, E.; Uckan, D.; Severcan, F. Bone marrow mesenchymal stem cells in patients with beta thalassemia major: Molecular analyses with attenuated total reflection-fourier transform infrared (ATR-FTIR) spectroscopy study as a novel method. Stem Cells Dev. 2012, 21, 2000–2011. [Google Scholar] [CrossRef]
- Notarstefano, V.; Gioacchini, G.; Byrne, H.J.; Zacà, C.; Sereni, E.; Vaccari, L.; Borini, A.; Carnevali, O.; Giorgini, E. Vibrational characterization of granulosa cells from patients affected by unilateral ovarian endometriosis: New insights from infrared and Raman microspectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 212, 206–214. [Google Scholar] [CrossRef]
- Baker, M.J.; Byrne, H.J.; Chalmers, J.M.; Gardner, P.; Goodacre, R.; Henderson, A.; Kazarian, S.G.; Martin, F.L.; Moger, J.; Stone, N.; et al. Clinical applications of infrared and Raman spectroscopy: State of play and future challenges. Analyst 2018, 143, 1735–1757. [Google Scholar] [CrossRef] [PubMed]
- Mignolet, A.; Derenne, A.; Smolina, M.; Wood, B.R.; Goormaghtigh, E. FTIR spectral signature of anticancer drugs. Can drug mode of action be identified? Biochim. Biophys. Acta BBA Proteins Proteom. 2016, 1864, 85–101. [Google Scholar] [CrossRef] [PubMed]
- Giorgini, E.; Sabbatini, S.; Rocchetti, R.; Notarstefano, V.; Rubini, C.; Conti, C.; Orilisi, G.; Mitri, E.; Bedolla, D.E.; Vaccari, L. In vitro FTIR microspectroscopy analysis of primary oral squamous carcinoma cells treated with cisplatin and 5-fluorouracil: A new spectroscopic approach for studying the drug–cell interaction. Analyst 2018, 143, 3317–3326. [Google Scholar] [CrossRef]
- Notarstefano, V.; Sabbatini, S.; Pro, C.; Belloni, A.; Orilisi, G.; Rubini, C.; Byrne, H.J.; Vaccari, L.; Giorgini, E. Exploiting fourier transform infrared and Raman microspectroscopies on cancer stem cells from oral squamous cells carcinoma: New evidence of acquired cisplatin chemoresistance. Analyst 2020, 145, 8038–8049. [Google Scholar] [CrossRef] [PubMed]
- Balbekova, A.; Lohninger, H.; Van Tilborg, G.A.; Dijkhuizen, R.M.; Bonta, M.; Limbeck, A.; Lendl, B.; Al-Saad, K.A.; Ali, M.; Celikic, M.; et al. Fourier Transform Infrared (FT-IR) and Laser Ablation Inductively Coupled Plasma–Mass Spectrometry (LA-ICP-MS) Imaging of Cerebral Ischemia: Combined Analysis of Rat Brain Thin Cuts Toward Improved Tissue Classification. Appl. Spectrosc. 2018, 72, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Caine, S.; Hackett, M.; Hou, H.; Kumar, S.; Maley, J.; Ivanishvili, Z.; Suen, B.; Szmigielski, A.; Jiang, Z.; Sylvain, N.J.; et al. A novel multi-modal platform to image molecular and elemental alterations in ischemic stroke. Neurobiol. Dis. 2016, 91, 132–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakib, F.; Al-Saad, K.; Ahmed, T.; Ullah, E.; Barreto, G.E.; Ashraf, G.M.; Ali, M.H. Biomolecular alterations in acute traumatic brain injury (TBI) using Fourier transform infrared (FTIR) imaging spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 248, 119189. [Google Scholar] [CrossRef] [PubMed]
- Rakib, F.; Ali, C.M.; Yousuf, M.; Afifi, M.; Bhatt, P.R.; Ullah, E.; Al-Saad, K.; Ali, M.H. Investigation of Biochemical Alterations in Ischemic Stroke Using Fourier Transform Infrared Imaging Spectroscopy—A Preliminary Study. Brain Sci. 2019, 9, 293. [Google Scholar] [CrossRef] [Green Version]
- Sinke, M.R.; Otte, W.M.; Meerwaldt, A.E.; Franx, B.A.A.; Ali, M.H.M.; Rakib, F.; van der Toorn, A.; van Heijningen, C.L.; Smeele, C.; Ahmed, T.; et al. Imaging Markers for the Characterization of Gray and White Matter Changes from Acute to Chronic Stages after Experimental Traumatic Brain Injury. J. Neurotrauma 2021, 38, 1642–1653. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Huang, P.; Wang, Z.; Dong, H. Application of FTIR spectroscopy for traumatic axonal injury: A possible tool for estimating injury interval. Biosci. Rep. 2017, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caine, S.; Heraud, P.; Tobin, M.; McNaughton, D.; Bernard, C.C.A. The application of Fourier transform infrared microspectroscopy for the study of diseased central nervous system tissue. NeuroImage 2012, 59, 3624–3640. [Google Scholar] [CrossRef] [PubMed]
- Hicks, R.; Soares, H.; Smith, D.; McIntosh, T. Temporal and spatial characterization of neuronal injury following lateral fluid-percussion brain injury in the rat. Acta Neuropathol. 1996, 91, 236–246. [Google Scholar] [CrossRef]
- Bigler, E.D.; Maxwell, W.L. Neuropathology of mild traumatic brain injury: Relationship to neuroimaging findings. Brain Imaging Behav. 2012, 6, 108–136. [Google Scholar] [CrossRef]
- Walker, K.R.; Tesco, G. Molecular mechanisms of cognitive dysfunction following traumatic brain injury. Front. Aging Neurosci. 2013, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- Jia, F.; Mao, Q.; Liang, Y.-M.; Jiang, J.-Y. Effect of Post-Traumatic Mild Hypothermia on Hippocampal Cell Death after Traumatic Brain Injury in Rats. J. Neurotrauma 2009, 26, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Lumpkins, K.; Bochicchio, G.V.; Keledjian, K.; Simard, J.M.; McCunn, M.; Scalea, T. Glial Fibrillary Acidic Protein is Highly Correlated with Brain Injury. J. Trauma Inj. Infect. Crit. Care 2008, 65, 778–784. [Google Scholar] [CrossRef]
- Abdelalim, E.M.; Masuda, C.; Bellier, J.P.; Saito, A.; Yamamoto, S.; Mori, N.; Tooyama, I. Distribution of natriuretic peptide receptor-C immunoreactivity in the rat brainstem and its relationship to cholinergic and catecholaminergic neurons. Neuroscience 2008, 155, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Abdelalim, E.M.; Bellier, J.-P.; Tooyamam, I. Localization of brain natriuretic peptide immunoreactivity in rat spinal cord. Front. Neuroanat. 2016, 10, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baloglu, F.K.; Garip, S.; Heise, S.; Brockmann, G.; Severcan, F. FTIR imaging of structural changes in visceral and subcutaneous adiposity and brown to white adipocyte transdifferentiation. Analyst 2015, 140, 2205–2214. [Google Scholar] [CrossRef]
- Bolouri, H.; Zetterberg, H. Animal Models for Concussion: Molecular and Cognitive Assessments-Relevance to Sport and Military Concussions; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Garip, S.; Severcan, F. Determination of simvastatin-induced changes in bone composition and structure by Fourier transform infrared spectroscopy in rat animal model. J. Pharm. Biomed. Anal. 2010, 52, 580–588. [Google Scholar] [CrossRef]
- Severcan, F. Vitamin E decreases the order of the phospholipid model membranes in the gel phase: An FTIR study. Biosci. Rep. 1997, 17, 231–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szczerbowska-Boruchowska, M.; Dumas, P.; Kastyak, M.Z.; Chwiej, J.; Lankosz, M.; Adamek, D.; Krygowska-Wajs, A. Biomolecular investigation of human substantia nigra in Parkinson’s disease by synchrotron radiation Fourier transform infrared microspectroscopy. Arch. Biochem. Biophys. 2007, 459, 241–248. [Google Scholar] [CrossRef]
- Ergun, S.; Demir, P.; Uzbay, T.; Severcan, F. Agomelatine strongly interacts with zwitterionic DPPC and charged DPPG membranes. Biochim. Biophys. Acta BBA Biomembr. 2014, 1838, 2798–2806. [Google Scholar] [CrossRef] [Green Version]
- Severcan, F.; Sahin, I.; Kazancı, N. Melatonin strongly interacts with zwitterionic model membranes—evidence from Fourier transform infrared spectroscopy and differential scanning calorimetry. Biochim. Biophys. Acta BBA Biomembr. 2005, 1668, 215–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A. Lipid–protein interactions in biological membranes: A structural perspective. Biochim. Biophys. Acta BBA Biomembr. 2003, 1612, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Uryu, K.; Laurer, H.; McIntosh, T.; Praticò, D.; Martinez, D.; Leight, S.; Lee, V.M.-Y.; Trojanowski, J.Q. Repetitive Mild Brain Trauma Accelerates Aβ Deposition, Lipid Peroxidation, and Cognitive Impairment in a Transgenic Mouse Model of Alzheimer Amyloidosis. J. Neurosci. 2002, 22, 446–454. [Google Scholar] [CrossRef] [Green Version]
- Khatri, N.; Thakur, M.; Pareek, V.; Kumar, S.; Sharma, S.; Datusalia, A.K. Oxidative Stress: Major Threat in Traumatic Brain Injury. CNS Neurol. Disord. Drug Targets 2018, 17, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Rosenberg, A.; Bennett, E.R.; Laskowitz, D.T.; Acheson, S.K. A blood-based biomarker panel to risk-stratify mild traumatic brain injury. PLoS ONE 2017, 12, e0173798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, M.L.; Chatlos, T.; Gorse, K.M.; Lafrenaye, A.D.; Hernandez, M.L.; Chatlos, T.; Gorse, K.M.; Lafrenaye, A.D. Neuronal Membrane Disruption Occurs Late Following Diffuse Brain Trauma in Rats and Involves a Subpopulation of NeuN Negative Cortical Neurons. Front. Neurol. 2019, 10, 1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, L.F.A.; Hoffmann, M.S.; Rambo, L.; Ribeiro, L.R.; Lima, F.D.; Furian, A.F.; Oliveira, M.S.; Fighera, M.R.; Royes, L.F.F. The involvement of Na+, K+-ATPase activity and free radical generation in the susceptibility to pentylenetetrazol-induced seizures after experimental traumatic brain injury. J. Neurol. Sci. 2011, 308, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.; Roberts, K.N.; Markesbery, W.R.; Scheff, S.W.; Lovell, M.A. Oxidative stress in head trauma in aging. Free. Radic. Biol. Med. 2006, 41, 77–85. [Google Scholar] [CrossRef]
- Ariyannur, P.S.; Xing, G.; Barry, E.S.; Benford, B.; Grunberg, N.E.; Sharma, P. Effects of Pyruvate Administration on Mitochondrial Enzymes, Neurological Behaviors, and Neurodegeneration after Traumatic Brain Injury. Aging Dis. 2021. [Google Scholar] [CrossRef]
Infrared Band Assignment | Spectral Range (cm−1) | Comments | |
---|---|---|---|
Protein components | Amide I | 1700–1600 | Proteins (80% C=O stretching, 10% N–H bending, 10% C–N stretching) [50]. Specifically sensitive to protein secondary structure |
Amide II | 1555–1535 | Proteins (60% N–H bending, 40% C–N stretching) [50] | |
β-sheet | ~1630 | Amide I—β-sheet protein secondary structure | |
α-helix | 1655–1645 | Amide I—α-helix protein secondary structure | |
Random coil | 1645–1630 | Amide I—protein secondary structure | |
Lipid components | CH2 symmetric stretching | 2852–2800 | Mainly associated with lipids |
CH2 asymmetric stretching | 2915–2930 | Mainly associated with lipids | |
CH3 asymmetric stretching | 2950–2960 | Mainly associated with lipids and protein side chains | |
C–H stretching | 2994–2800 | Total lipid region | |
Olefinic=CH | 3000–3027 | Unsaturated lipids |
Control Co | mTBI 24 h Co | Control CC | mTBI 24 h CC | |
---|---|---|---|---|
Total protein | 5.8 ± 0.047 | 4.42 ± 0.221 ** | 4.2 ± 0.211 | 3.92 ± 0.019 ** |
Total lipid | 19.72 ± 0.098 | 15.07 ± 0.075 ** | 25.43 ± 0.171 | 23.77 ± 0.119 ** |
Olefinic/Lipid | 0.0043 ± 0.004 | 0.4204 ± 0.028 ** | 0.0027 ± 0.002 | 0.0048 ± 0.003 ** |
CH2/CH3 | 0.227 ± 0.019 | 0.205 ± 0.015 ** | 0.321 ± 0.028 | 0.226 ± 0.066 ** |
Lipid/Protein | 3.397 ± 0.170 | 3.408 ± 0.017 * | 6.017 ± 0.302 | 6.062 ± 0.036 * |
Control Co | mTBI 24 h Co | Control CC | mTBI 24 h CC | |
---|---|---|---|---|
α helix | 0.49 ± 0.038 | 0.24 ± 0.011 ** | 0.46 ± 0.022 | 0.30 ± 0.031 ** |
β sheet | 0.32 ± 0.041 | 0.73 ± 0.014 ** | 0.40 ± 0.041 | 0.62 ± 0.024 ** |
Random coil | 0.19 ± 0.013 | 0.03 ± 0.022 * | 0.14 ± 0.0071 | 0.08 ± 0.032 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rakib, F.; Al-Saad, K.; Ustaoglu, S.G.; Ullah, E.; Mall, R.; Thompson, R.; Abdelalim, E.M.; Ahmed, T.; Severcan, F.; Ali, M.H.M. Fourier Transform Infrared Imaging—A Novel Approach to Monitor Bio Molecular Changes in Subacute Mild Traumatic Brain Injury. Brain Sci. 2021, 11, 918. https://doi.org/10.3390/brainsci11070918
Rakib F, Al-Saad K, Ustaoglu SG, Ullah E, Mall R, Thompson R, Abdelalim EM, Ahmed T, Severcan F, Ali MHM. Fourier Transform Infrared Imaging—A Novel Approach to Monitor Bio Molecular Changes in Subacute Mild Traumatic Brain Injury. Brain Sciences. 2021; 11(7):918. https://doi.org/10.3390/brainsci11070918
Chicago/Turabian StyleRakib, Fazle, Khalid Al-Saad, Sebnem Garip Ustaoglu, Ehsan Ullah, Raghvendra Mall, Richard Thompson, Essam M. Abdelalim, Tariq Ahmed, Feride Severcan, and Mohamed H. M. Ali. 2021. "Fourier Transform Infrared Imaging—A Novel Approach to Monitor Bio Molecular Changes in Subacute Mild Traumatic Brain Injury" Brain Sciences 11, no. 7: 918. https://doi.org/10.3390/brainsci11070918
APA StyleRakib, F., Al-Saad, K., Ustaoglu, S. G., Ullah, E., Mall, R., Thompson, R., Abdelalim, E. M., Ahmed, T., Severcan, F., & Ali, M. H. M. (2021). Fourier Transform Infrared Imaging—A Novel Approach to Monitor Bio Molecular Changes in Subacute Mild Traumatic Brain Injury. Brain Sciences, 11(7), 918. https://doi.org/10.3390/brainsci11070918