ADGRL3, FGF1 and DRD4: Linkage and Association with Working Memory and Perceptual Organization Candidate Endophenotypes in ADHD
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Endophenotypes
2.3. DNA Extraction and Genotyping
2.4. Family-Based Association Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Cardo, E.; Servera-Barcelo, M. The prevalence of attention deficit hyperactivity disorder. Rev. Neurol. 2005, 40 (Suppl. 1), S11–S15. [Google Scholar]
- Biederman, J. Attention-deficit/hyperactivity disorder: A selective overview. Biol. Psychiatry 2005, 57, 1215–1220. [Google Scholar] [CrossRef] [PubMed]
- Cornejo Ochoa, J.W.; Osío, O.; Sánchez, Y.; Carrizosa, J.; Sánchez, G.; Grisales, H.; Castillo-Parra, H.; Holguín, J. Prevalencia del trastorno por déficit de atención- hiperactividad en niños y adolescentes Colombianos. Rev. Neurol. 2005, 40, 716–722. [Google Scholar] [CrossRef]
- Van Meerbeke, A.V.; Gutiérrez, C.T.; Reyes, R.G.; Pinilla, M.I. Prevalencia de trastorno por déficit de atención con hiperactividad en estudiantes de escuelas de Bogotá, Colombia. Acta Neurol. Colomb. 2008, 24, 6–12. [Google Scholar]
- DSM-IV. In Masson; Barcelona: 2002. Manual Diagnóstico y Estadístico de los Trastornos Mentales, Texto Revisado; American Psychiatric Association: Washington, DC, USA, 2015.
- Thapar, A.; Holmes, J.; Poulton, K.; Harrington, R. Genetic basis of attention deficit and hyperactivity. Br. J. Psychiatry 1999, 174, 105–111. [Google Scholar] [CrossRef]
- Thapar, A.; O’Donovan, M.; Owen, M.J. The genetics of attention deficit hyperactivity disorder. Hum. Mol. Genet. 2005, 14 (Suppl. 2), R275–R282. [Google Scholar] [CrossRef] [PubMed]
- Castellanos, F.X.; Tannock, R. Neuroscience of attention-deficit/hyperactivity disorder: The search for endophenotypes. Nat. Rev. Neurosci. 2002, 3, 617–628. [Google Scholar] [CrossRef]
- Gottesman, I.I.; Gould, T.D. The endophenotype concept in psychiatry: Etymology and strategic intentions. Am. J. Psychiatry 2003, 160, 636–645. [Google Scholar] [CrossRef]
- Flint, J.; Munafò, M.R. The endophenotype concept in psychiatric genetics. Psychol. Med. 2007, 37, 163–180. [Google Scholar] [CrossRef]
- Walters, J.T.R.; Owen, M.J. Endophenotypes in psychiatric genetics. Mol. Psychiatry 2007, 12, 886–890. [Google Scholar] [CrossRef]
- Cannon, T.D.; Gasperoni, T.L.; van Erp, T.G.; Rosso, I.M. Quantitative neural indicators of liability to schizophrenia: Implications for molecular genetic studies. Am. J. Med. Genet. 2001, 105, 16–19. [Google Scholar] [CrossRef]
- Goos, L.M.; Crosbie, J.; Payne, S.; Schachar, R. Validation and extension of the endophenotype model in ADHD patterns of inheritance in a family study of inhibitory control. Am. J. Psychiatry 2009, 166, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Naj, A.C.; Jun, G.; Reitz, C.; Kunkle, B.W.; Perry, W.; Park, Y.S.; Beecham, G.W.; Rajbhandary, R.A.; Hamilton-Nelson, K.L.; Wang, L.-S.; et al. Effects of multiple genetic loci on age at onset in late-onset Alzheimer disease: A genome-wide association study. JAMA Neurol. 2014, 71, 1394–1404. [Google Scholar] [CrossRef] [PubMed]
- Gregory, M.L.; Burton, V.J.; Shapiro, B.K. Developmental Disabilities and Metabolic Disorders. In Neurobiology of Brain Disorders: Biological Basis of Neurological and Psychiatric Disorders; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Pineda, D.A.; Lopera, F.; Puerta, I.C.; Trujillo-Orrego, N.; Aguirre-Acevedo, D.C.; Hincapie-Henao, L.; Arango, C.P.; Acosta, M.T.; Holzinger, S.I.; Palacio, J.D.; et al. Potential cognitive endophenotypes in multigenerational families: Segregating ADHD from a genetic isolate. Atten. Defic. Hyperact. Disord. 2011, 3, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Mastronardi, C.A.; Pillai, E.; Pineda, D.A.; Martinez, A.F.; Lopera, F.; Velez, J.I.; Palacio, J.D.; Patel, H.; Easteal, S.; Acosta, M.T.; et al. Linkage and association analysis of ADHD endophenotypes in extended and multigenerational pedigrees from a genetic isolate. Mol. Psychiatry 2016, 21, 1434–1440. [Google Scholar] [CrossRef] [PubMed]
- Doyle, A.E.; Faraone, S.V.; Seidman, L.J.; Willcutt, E.G.; Nigg, J.T.; Waldman, I.D.; Pennington, B.F.; Peart, J.; Biederman, J. Are endophenotypes based on measures of executive functions useful for molecular genetic studies of ADHD? J. Child Psychol. Psychiatry 2005, 46, 774–803. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics, 4th ed.; Addison Wesley Longman: Harlow, UK, 1996. [Google Scholar]
- Saito, Y.; Nakao, K.; Sugawara, A.; Nishimura, K.; Sakamoto, M.; Morii, N.; Yamada, T.; Itoh, H.; Shiono, S.; Kuriyama, T.; et al. Atrial natriuretic polypeptide during exercise in healthy man. Acta Endocrinol. Copenh. 1987, 116, 59–65. [Google Scholar] [CrossRef]
- Logan, G.D.; Cowan, W.B.; Davis, K.A. On the ability to inhibit simple and choice reaction time responses: A model and a method. J. Exp. Psychol. Hum. Percept. Perform. 1984, 10, 276–291. [Google Scholar] [CrossRef]
- Nikolas, M.A.; Nigg, J.T. Moderators of neuropsychological mechanism in attention-deficit hyperactivity disorder. J. Abnorm. Child Psychol. 2015, 43, 271–281. [Google Scholar] [CrossRef]
- Suarez, I.; De Los Reyes Aragón, C.; Diaz, E.; Iglesias, T.; Barcelo, E.; Velez, J.I.; Casini, L. How Is Temporal Processing Affected in Children with Attention-deficit/hyperactivity Disorder? Dev. Neuropsychol. 2020, 45, 246–261. [Google Scholar] [CrossRef] [PubMed]
- Solanto, M.V.; Abikoff, H.; Sonuga-Barke, E.; Schachar, R.; Logan, G.D.; Wigal, T.; Hechtman, L.; Hinshaw, S.; Turkel, E. The ecological validity of delay aversion and response inhibition as measures of impulsivity in AD/HD: A supplement to the NIMH multimodal treatment study of AD/HD. J. Abnorm. Child Psychol. 2001, 29, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, P.H.; Gokhale, P.A.; Mehta, H.B.; Shah, C.J. A comparative study of simple auditory reaction time in blind (congenitally) and sighted subjects. Indian J. Psychol. Med. 2013, 35, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Uebel, H.; Albrecht, B.; Asherson, P.; Borger, N.A.; Butler, L.; Chen, W.; Christiansen, H.; Heise, A.; Kuntsi, J.; Schäfer, U.; et al. Performance variability, impulsivity errors and the impact of incentives as gender-independent endophenotypes for ADHD. J. Child Psychol. Psychiatry 2010, 51, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Figueroa, G.; Ardila-Duarte, C.; Pineda, D.A.; Acosta-Lopez, J.E.; Cervantes-Henriquez, M.L.; Pineda-Alhucema, W.; Cervantes-Gutiérrez, J.; Quintero-Ibarra, M.; Sánchez-Rojas, M.; Vélez, J.I.; et al. Prepotent response inhibition and reaction times in children with attention deficit/hyperactivity disorder from a Caribbean community. Atten. Defic. Hyperact. Disord. 2017, 9, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Panagiotidi, M.; Overton, P.G.; Stafford, T. The relationship between ADHD traits and sensory sensitivity in the general population. Compr. Psychiatry 2018, 80, 179–185. [Google Scholar] [CrossRef]
- Liu, Z.-X.; Glizer, D.; Tannock, R.; Woltering, S. EEG alpha power during maintenance of information in working memory in adults with ADHD and its plasticity due to working memory training: A randomized controlled trial. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2016, 127, 1307–1320. [Google Scholar] [CrossRef]
- Cowan, N. What are the differences between long-term, short-term, and working memory? Prog. Brain Res. 2008, 169, 323–338. [Google Scholar]
- Cowan, N. Working Memory Capacity, Classic ed.; Psychology Press: London, UK, 2016. [Google Scholar]
- Baddeley, A. Working memory. Curr. Biol. 2010, 20, 136–140. [Google Scholar] [CrossRef]
- Engle, R. Role of Working Memory Capacity in Cognitive Control. Curr. Anthropol. 2010, 51 (Suppl. 1), S17–S26. [Google Scholar] [CrossRef]
- Engle, R.W.; Kane, M.J. Executive attention, working memory capacity, and a two-factor theory of cognitive control. In The Psychology of Learning and Motivation: Advances in Research and Theory; Elsevier Science: Amsterdam, The Netherlands, 2004; Volume 44, pp. 145–199. [Google Scholar]
- Barbot, A.; Liu, S.; Kimchi, R.; Carrasco, M. Attention enhances apparent perceptual organization. Psychon. Bull. Rev. 2018, 25, 1824–1832. [Google Scholar] [CrossRef]
- Koziol, L.F.; Budding, D. ADHD and sensory processing disorders: Placing the diagnostic issues in context. Appl. Neuropsychol. Child 2012, 1, 137–144. [Google Scholar] [CrossRef]
- Sirois, S.; Brisson, J. Pupillometry. Wiley Interdiscip. Rev. Cogn. Sci. 2014, 5, 679–692. [Google Scholar] [CrossRef] [PubMed]
- Van der Wel, P.; van Steenbergen, H. Pupil dilation as an index of effort in cognitive control tasks: A review. Psychon. Bull. Rev. 2018, 25, 2005–2015. [Google Scholar] [CrossRef] [PubMed]
- Alamia, A.; VanRullen, R.; Pasqualotto, E.; Mouraux, A.; Zenon, A. Pupil-Linked Arousal Responds to Unconscious Surprisal. J. Neurosci. 2019, 39, 5369–5376. [Google Scholar] [CrossRef] [PubMed]
- Papesh, M.H.; Goldinger, S.D. Pupil-BLAH-metry: Cognitive effort in speech planning reflected by pupil dilation. Atten. Percept. Psychophys. 2012, 74, 754–765. [Google Scholar] [CrossRef]
- Redondo, B.; Molina, R.; Cano-Rodríguez, A.; Vera, J.; García, J.A.; Muñoz-Hoyos, A.; Jiménez, R. Visual Perceptual Skills in Attention-deficit/Hyperactivity Disorder Children: The Mediating Role of Comorbidities. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 2019, 96, 655–663. [Google Scholar] [CrossRef]
- Small, D.J.; Eaton, V.; Koh, W.Y.; Langlais, A.; Bergquist, I.; Mokler, D.; Prudovsky, I. Increased Locomotor Activity is Associated with Enhanced Tyrosine Hydroxylase Expression in Mice Expressing an Endothelial Cell-Specific Fibroblast Growth Factor 1 Transgene. FASEB J. 2018, 32 (Suppl. 1), 805–823. [Google Scholar] [CrossRef]
- Bhaduri, N.; Das, M.; Sinha, S.; Chattopadhyay, A.; Gangopadhyay, P.K.; Chaudhuri, K.; Singh, M.; Mukhopadhyay, K. Association of dopamine D4 receptor (DRD4) polymorphisms with attention deficit hyperactivity disorder in Indian population. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. Off. Publ. Int. Soc. Psychiatr. Genet. 2006, 141, 61–66. [Google Scholar] [CrossRef]
- Rayner, K.; Duffy, S.A. Lexical complexity and fixation times in reading: Effects of word frequency, verb complexity, and lexical ambiguity. Mem. Cognit. 1986, 14, 191–201. [Google Scholar] [CrossRef]
- Wainstein, G.; Rojas-Líbano, D.; Crossley, N.A.; Carrasco, X.; Aboitiz, F.; Ossandón, T. Pupil Size Tracks Attentional Performance in Attention-Deficit/Hyperactivity Disorder. Sci. Rep. 2017, 7, 8228. [Google Scholar] [CrossRef] [PubMed]
- Sable, J.J.; Kyle, M.R.; Knopf, K.L.; Schully, L.T.; Brooks, M.M.; Parry, K.H.; Diamond, R.E.; Flink, L.A.; Stowe, R.; Suna, E.; et al. The Sensory Gating Inventory as a potential diagnostic tool for attention-deficit hyperactivity disorder. Atten. Defic. Hyperact. Disord. 2012, 4, 141–144. [Google Scholar] [CrossRef]
- Micoulaud-Franchi, J.-A.; Vaillant, F.; Lopez, R.; Peri, P.; Baillif, A.; Brandejsky, L.; Steffen, M.L.; Boyer, L.; Richieri, R.; Cermolacce, M.; et al. Sensory gating in adult with attention-deficit/hyperactivity disorder: Event-evoked potential and perceptual experience reports comparisons with schizophrenia. Biol. Psychol. 2015, 107, 16–23. [Google Scholar] [CrossRef]
- Micoulaud-Franchi, J.A.; Lopez, R.; Vaillant, F.; Richieri, R.; El-Kaim, A.; Bioulac, S.; Philip, P.; Boyer, L.; Lancon, C. Perceptual abnormalities related to sensory gating deficit are core symptoms in adults with ADHD. Psychiatry Res. 2015, 230, 357–363. [Google Scholar] [CrossRef]
- Cervantes-Henríquez, M.L.; Acosta-López, J.E.; Martínez-Banfi, M.L.; Vélez, J.I.; Mejía-Segura, E.; Lozano-Gutiérrez, S.G.; Sánchez-Rojas, M.; Zurbarán, M.A.; Zurek, E.E.; Arcos-Burgos, M.; et al. ADHD Endophenotypes in Caribbean Families. J. Atten. Disord. 2018, 24, 2100–2114. [Google Scholar] [CrossRef]
- Villalón, J. Colonias Extranjeras En Barranquilla; Ediciones Uninorte: Barranquilla, Colombia, 2008. [Google Scholar]
- Mathias, R.A.; Taub, M.A.; Gignoux, C.R.; Fu, W.; Musharoff, S.; O’Connor, T.D.; Vergara, C.; Torgerson, D.G.; Pino-Yanes, M.; Shringarpure, S.S.; et al. A continuum of admixture in the Western Hemisphere revealed by the African Diaspora genome. Nat. Commun. 2016, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Puentes-Rozo, P.J.; Acosta-Lopez, J.E.; Cervantes-Henriquez, M.L.; Martinez-Banfi, M.L.; Mejia-Segura, E.; Sanchez-Rojas, M.; Anaya-Romero, M.E.; Acosta-Hoyos, A.; García-Llinás, G.A.; Mastronardi, C.A.; et al. Genetic Variation Underpinning ADHD Risk in a Caribbean Community. Cells 2019, 8, 907. [Google Scholar] [CrossRef] [PubMed]
- Pineda, D.A.; Acosta, L.J.; Cervantes-Henríquez, M.L.; Jimenez-Figueroa, G.; Sánchez-Rojas, M.; Pineda-Alhucema, W.; Mejía-Segura, E.; Puentes-Rozo, J. Conglomerados de clases latentes en 408 miembros de 120 familias nucleares de Barranquilla con un caso índice afectado de trastorno de atención hiperactividad (TDAH). Acta Neurológica. Colomb. 2016, 32, 275–284. [Google Scholar] [CrossRef]
- Cervantes-Henríquez, M.L.; Acosta-López, J.; Aguirre-Acevedo, D.C.; Pineda-Álvarez, D.; Puentes Rozo, P. Fenotipo comportamental evaluado con una escala multidimensional de la conducta en niños y adolescentes de 30 familias con trastorno de atención-hiperactividad. Acta Neurol. Colomb. 2008, 24, 53–62. [Google Scholar]
- Ramírez, K.B.; Menco, A.V.; Torres, A. De Una Universidad Privada De La Ciudad De Barranquilla * Alcohol Use among Students in Third to Fifth Semester of Psychology Program At a Private. Psicogente 2014, 17, 460–476. [Google Scholar]
- Acosta-Lopez, J.; Cervantes-Henriquez, L.M.; Jiménez-Figueroa, G.; Nuñez Barragan, M.; Sanchez Rojas, M.; Puentes Rozo, P. Uso de una escala comportamental Wender Utah para evaluar en retrospectiva trastorno de atención-hiperactividad en adultos de la ciudad de Barranquilla. La Rev. Univ Y Salud. 2013, 15, 45–61. [Google Scholar]
- Reich, W. Diagnostic interview for children and adolescents (DICA). J. Am. Acad. Child Adolesc. Psychiatry 2000, 39, 59–66. [Google Scholar] [CrossRef]
- Arcos-Burgos, M.; Vélez, J.I.; Martinez, A.F.; Ribasés, M.; Ramos-Quiroga, J.A.; Sánchez-Mora, C.; Richarte, V.; Roncero, C.; Cormand, B.; Fernández-Castillo, N.; et al. ADGRL3 (LPHN3) variants predict substance use disorder. Transl. Psychiatry 2019, 9, 1–15. [Google Scholar] [CrossRef]
- Acosta, M.T.; Vélez, J.I.; Bustamante, M.L.; Balog, J.Z.; Arcos-Burgos, M.; Muenke, M. A two-locus genetic interaction between LPHN3 and 11q predicts ADHD severity and long-term outcome. Transl. Psychiatry 2011, 1, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Arcos-Burgos, M.; Jain, M.; Acosta, M.T.; Shively, S.; Stanescu, H.; Wallis, D.; Domené, S.; Vélez, J.I.; Karkera, J.D.; Balog, J.; et al. A common variant of the latrophilin 3 gene, LPHN3, confers susceptibility to ADHD and predicts effectiveness of stimulant medication. Mol. Psychiatry 2010, 15, 1053–1066. [Google Scholar] [CrossRef] [PubMed]
- Wells, E.L.; Kofler, M.J.; Soto, E.F.; Schaefer, H.S.; Sarver, D.E. Assessing working memory in children with ADHD: Minor administration and scoring changes may improve digit span backward’s construct validity. Res. Dev. Disabil. 2018, 72, 166–178. [Google Scholar] [CrossRef]
- Kouvatsou, Z.; Masoura, E.; Kiosseoglou, G.; Kimiskidis, V.K. Working memory profiles of patients with multiple sclerosis: Where does the impairment lie? J. Clin. Exp. Neuropsychol. 2019, 41, 832–844. [Google Scholar] [CrossRef] [PubMed]
- Chrysochoou, E.; Bablekou, Z. Phonological loop and central executive contributions to oral comprehension skills of 5.5 to 9.5 years old children. Appl. Cogn. Psychol. 2011, 25, 576–583. [Google Scholar] [CrossRef]
- Baddeley, A.D.; Hitch, G. Working memory. In Psychology of Learning and Motivation; Elsevier: Amsterdam, The Netherlands, 1974; pp. 47–89. [Google Scholar]
- Baddeley, A.D.; Hitch, G.; Bower, G.H. The Psychology of Learning and Motivation; Academic Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Tirapu-Ustarroz, J.; Luna-Lario, P. Neuropsicología de las funciones ejecutivas. Man. Neuropsicol. 2008, 2, 219–259. [Google Scholar]
- Tirapu-Ustárroz, J.; García-Molina, A.; Luna Lario, P.; Verdejo García, A.; Ríos Lago, M. Funciones ejecutivas y regulación de la conducta. Neuropsicol. La Corteza. Prefrontal. Y Las Funciones. Ejecutivas. 2012, 89–120. [Google Scholar]
- Trujillo, N.; Pineda, D. Función Ejecutiva en la investigación de los trastornos del comportamiento del niño y del adolescente. Rev. Neuropsicol. Neuropsiquiatría. Y Neurociencias. 2008, 8, 77–94. [Google Scholar]
- Spielman, R.S.; McGinnis, R.E.; Ewens, W.J. Transmission test for linkage disequilibrium: The insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 1993, 52, 506–516. [Google Scholar]
- Laird, N.M.; Horvath, S.; Xu, X. Implementing a unified approach to family-based tests of association. Genet. Epidemiol. 2000, 19 (Suppl. 1), S36–S42. [Google Scholar] [CrossRef]
- Xu, X.; Rakovski, C.; Xu, X.; Laird, N. An efficient family-based association test using multiple markers. Genet. Epidemiol. 2006, 30, 620–626. [Google Scholar] [CrossRef]
- Lange, C.; Laird, N.M. On a general class of conditional tests for family-based association studies in genetics: The asymptotic distribution, the conditional power, and optimality considerations. Genet. Epidemiol. 2002, 23, 165–180. [Google Scholar] [CrossRef] [PubMed]
- Lange, C.; Laird, N.M. Power calculations for a general class of family-based association tests: Dichotomous traits. Am. J. Hum. Genet. 2002, 71, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Vélez, J.I.; Correa, J.C.; Arcos-Burgos, M. A New Method for Detecting Significant p-values with Applications to Genetic Data. Rev. Colomb. Estadística. 2014, 37, 69–78. [Google Scholar] [CrossRef]
- Ramos-Quiroga, J.A.; Casas Brugue, M. Do we pay sufficient attention to the lack of care of hyperactivity in adults? Aten. Primaria. 2009, 41, 67–68. [Google Scholar] [CrossRef]
- Nikolaidis, A.; Gray, J.R. ADHD and the DRD4 exon III 7-repeat polymorphism: An international meta-analysis. Soc. Cogn. Affect. Neurosci. 2010, 5, 188–193. [Google Scholar] [CrossRef]
- Ramírez, L.E. La poblacion Afro en el departamento de Bolivar. Rev. Cult. Unilibre. 2012, 1, 53–58. [Google Scholar]
- Arcos-Burgos, M.; Castellanos, F.X.; Pineda, D.; Lopera, F.; Palacio, J.D.; Palacio, L.G.; Rapoport, J.L.; Berg, K.; Bailey-Wilson, J.E.; Muenke, M. Attention-deficit/hyperactivity disorder in a population isolate: Linkage to loci at 4q13.2, 5q33.3, 11q22, and 17p11. Am. J. Hum. Genet. 2004, 75, 998–1014. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Sham, P.C.; Owen, M.J.; He, L. Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum. Mol. Genet. 2006, 15, 2276–2284. [Google Scholar] [CrossRef]
- Banaschewski, T.; Becker, K.; Scherag, S.; Franke, B.; Coghill, D. Molecular genetics of attention-deficit/hyperactivity disorder: An overview. Eur. Child Adolesc. Psychiatry 2010, 19, 237–257. [Google Scholar] [CrossRef] [PubMed]
- Bolat, H.; Ercan, E.S.; Ünsel-Bolat, G.; Tahillioğlu, A.; Yazici, K.U.; Bacanli, A.; Pariltay, E.; Jafari, D.A.; Kosova, B.; Özgül, S.; et al. DRD4 genotyping may differentiate symptoms of attention-deficit/hyperactivity disorder and sluggish cognitive tempo. Braz. J. Psychiatry 2020, 42, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bruxel, E.M.; Salatino-Oliveira, A.; Akutagava-Martins, G.C.; Tovo-Rodrigues, L.; Genro, J.P.; Zeni, C.P.; Muenke, M. LPHN3 and attention-deficit/hyperactivity disorder: A susceptibility and pharmacogenetic study. Genes Brain Behav. 2015, 14, 419–427. [Google Scholar] [CrossRef]
- Swanson, J.M.; Flodman, P.; Kennedy, J.; Spence, M.A.; Moyzis, R.; Schuck, S.; Murias, M.; Moriarity, J.; Barr, C.; Smith, M.; et al. Dopamine genes and ADHD. Neurosci. Biobehav. Rev. 2000, 24, 21–25. [Google Scholar] [CrossRef]
- Swanson, J.M.; Sunohara, G.A.; Kennedy, J.L.; Regino, R.; Fineberg, E.; Wigal, T.; Lerner, M.; Williams, L.; LaHoste, G.J.; Wigal, S. Association of the dopamine receptor D4 (DRD4) gene with a refined phenotype of attention deficit hyperactivity disorder (ADHD): A family-based approach. Mol. Psychiatry 1998, 3, 38–41. [Google Scholar] [CrossRef]
- Jain, M.; Velez, J.I.; Acosta, M.T.; Palacio, L.G.; Balog, J.; Roessler, E.; Pineda, D.; Londoño, A.C.; Palacio, J.D.; Arbelaez, A. A cooperative interaction between LPHN3 and 11q doubles the risk for ADHD. Mol. Psychiatry 2012, 17, 741–747. [Google Scholar] [CrossRef]
- Arcos-Burgos, M.; Vélez, J.I.; Solomon, B.D.; Muenke, M. A common genetic network underlies substance use disorders and disruptive or externalizing disorders. Hum. Genet. 2012, 131, 917–929. [Google Scholar] [CrossRef]
- Blomquist, H.K. The role of the Child Health Services in the identification of children with possible attention deficit hyperactivity disorder/deficits in attention, motor control and perception (ADHD/DAMP). Acta Paediatr. Suppl. 2000, 89, 24–32. [Google Scholar] [CrossRef]
- Bruxel, E.M.; Moreira-Maia, C.R.; Akutagava-Martins, G.C.; Quinn, T.P.; Klein, M.; Franke, B.; Ribasés, M.; Rovira, P.; Sánchez-Mora, C.; Kappel, D.B.; et al. Meta-analysis and systematic review of ADGRL3 (LPHN3) polymorphisms in ADHD susceptibility. Mol. Psychiatry 2020, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhang, Q.; Gu, X.; Hou, Y.; Wang, M.; Chen, X.; Wu, J. LPHN3 gene variations and susceptibility to ADHD in Chinese Han population: A two-stage case-control association study and gene-environment interactions. Eur. Child Adolesc. Psychiatry 2019, 28, 861–873. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.F.; Abe, Y.; Hong, S.; Molyneux, K.; Yarnell, D.; Lohr, H.; Driever, W.; Acosta, M.T.; Arcos-Burgos, M.; Muenke, M. An Ultraconserved Brain-Specific Enhancer within ADGRL3 (LPHN3) Underpins Attention-Deficit/Hyperactivity Disorder Susceptibility. Biol. Psychiatry 2016, 80, 943–954. [Google Scholar] [CrossRef] [PubMed]
- Domene, S.; Stanescu, H.; Wallis, D.; Tinloy, B.; Pineda, D.E.; Kleta, R.; Arcos-Burgos, M.; Roessler, E.; Muenke, M. Screening of human LPHN3 for variants with a potential impact on ADHD susceptibility. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2011, 156, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Ribases, M.; Ramos-Quiroga, J.A.; Sanchez-Mora, C.; Bosch, R.; Richarte, V.; Palomar, G.; Gastaminza, X.; Bielsa, A.; Arcos-Burgos, M.; Muenke, M.; et al. Contribution of LPHN3 to the genetic susceptibility to ADHD in adulthood: A replication study. Genes Brain Behav. 2011, 10, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Archer, T.; Oscar-Berman, M.; Blum, K. Epigenetics in Developmental Disorder: ADHD and Endophenotypes. J. Genet. Syndr. Gene Ther. 2011, 2, 1000104. [Google Scholar] [CrossRef] [PubMed]
- Rommelse, N.N.J. Endophenotypes in the genetic research of ADHD over the last decade: Have they lived up to their expectations? Expert Rev. Neurother. 2008, 8, 1425–1429. [Google Scholar] [CrossRef] [PubMed]
- Kane, M.J.; Engle, R.W. The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychon. Bull. Rev. 2002, 9, 637–671. [Google Scholar] [CrossRef]
- Rajendran, K.; Rindskopf, D.; O’Neill, S.; Marks, D.J.; Nomura, Y.; Halperin, J.M. Neuropsychological functioning and severity of ADHD in early childhood: A four-year cross-lagged study. J. Abnorm. Psychol. 2013, 122, 1179–1188. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, P.T. Visual Feature Integration Theory: Past, Present, and Future. Psychol. Bull. 2003, 129, 643–673. [Google Scholar] [CrossRef]
- Loose, R.; Lutz, K.; Specht, K.; Shah, N.J.; Jancke, L. Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. Cogn. Brain Res. 2000, 10, 51–66. [Google Scholar]
- Toplak, M.E.; Tannock, R. Time perception: Modality and duration effects in attention-deficit/hyperactivity disorder (ADHD). J. Abnorm. Child Psychol. 2005, 33, 639–654. [Google Scholar] [CrossRef] [PubMed]
- Marshall, T.R.; O’Shea, J.; Jensen, O.; Bergmann, T.O. Frontal eye fields control attentional modulation of alpha and gamma oscillations in contralateral occipitoparietal cortex. J. Neurosci. 2015, 35, 1638–1647. [Google Scholar] [CrossRef] [PubMed]
- Marshall, T.R.; Bergmann, T.O.; Jensen, O. Frontoparietal Structural Connectivity Mediates the Top-Down Control of Neuronal Synchronization Associated with Selective Attention. PLoS Biol. 2015, 13, e1002272. [Google Scholar] [CrossRef]
- Shang, C.Y.; Lin, H.Y.; Tseng, W.Y.; Gau, S.S. A haplotype of the dopamine transporter gene modulates regional homogeneity, gray matter volume, and visual memory in children with attention-deficit/hyperactivity disorder. Psychol. Med. 2018, 48, 2530–2540. [Google Scholar] [CrossRef]
- Sowell, E.R.; Thompson, P.M.; Welcome, S.E.; Henkenius, A.L.; Toga, A.W.; Peterson, B.S. Cortical abnormalities in children and adolescents with attention-deficit hyperactivity disorder. Lancet 2003, 362, 1699–1707. [Google Scholar] [CrossRef]
- Perchet, C.; Revol, O.; Fourneret, P.; Mauguière, F.; Garcia-Larrea, L. Attention shifts and anticipatory mechanisms in hyperactive children: An ERP study using the Posner paradigm. Biol. Psychiatry 2001, 50, 44–57. [Google Scholar] [CrossRef]
- Van der Stelt, O.; van der Molen, M.; Boudewijn, G.W.; Kok, A. Neuroelectrical signs of selective attention to color in boys with attention-deficit hyperactivity disorder. Brain Res. Cogn. Brain Res. 2001, 12, 245–264. [Google Scholar] [CrossRef]
- Johnson, K.A.; Dáibhis, A.; Tobin, C.T.; Acheson, R.; Watchorn, A.; Mulligan, A.; Barry, E.; Bradshaw, J.L.; Gill, M.; Robertson, I.H. Right-sided spatial difficulties in ADHD demonstrated in continuous movement control. Neuropsychologia 2010, 48, 1255–1264. [Google Scholar] [CrossRef]
- Rubia, K.; Smith, A.B.; Brammer, M.J.; Taylor, E. Temporal lobe dysfunction in medication-naïve boys with attention-deficit/hyperactivity disorder during attention allocation and its relation to response variability. Biol. Psychiatry 2007, 62, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Vance, A.; Silk, T.J.; Casey, M.; Rinehart, N.J.; Bradshaw, J.L.; Bellgrove, M.A.; Cunnington, R. Right parietal dysfunction in children with attention deficit hyperactivity disorder, combined type: A functional MRI study. Mol. Psychiatry 2007, 12, 826–832. [Google Scholar] [CrossRef]
- Mihali, A.; Young, A.G.; Adler, L.A.; Halassa, M.M.; Ma, W.J. A Low-Level Perceptual Correlate of Behavioral and Clinical Deficits in ADHD. Comput. Psychiatry 2018, 2, 141–163. [Google Scholar] [CrossRef]
- Solé, P.M.; Pérez, Z.L.; Puigcerver, L.; Esperalba, I.N.; Sanchez, G.C.; Romeo, A.; Crespillo, J.C.; Supèr, H. Attention-Related Eye Vergence Measured in Children with Attention Deficit Hyperactivity Disorder. PLoS ONE 2015, 10, e0145281. [Google Scholar]
- Guo, J.; Luo, X.; Wang, E.; Li, B.; Chang, Q.; Sun, L.; Song, Y. Abnormal alpha modulation in response to human eye gaze predicts inattention severity in children with ADHD. Dev. Cogn. Neurosci. 2019, 38, 100671. [Google Scholar] [CrossRef]
- Poltavski, D.V.; Biberdorf, D.; Petros, T.V. Accommodative response and cortical activity during sustained attention. Vision Res. 2012, 63, 1–8. [Google Scholar] [CrossRef]
- Crawford, S.G.; Kaplan, B.J.; Dewey, D. Effects of coexisting disorders on cognition and behavior in children with ADHD. J. Atten. Disord. 2006, 10, 192–199. [Google Scholar] [CrossRef]
- Caspersen, I.D.; Petersen, A.; Vangkilde, S.; Plessen, K.J.; Habekost, T. Perceptual and response-dependent profiles of attention in children with ADHD. Neuropsychology 2017, 31, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Fuermaier, A.B.M.; Hupen, P.; De Vries, S.M.; Muller, M.; Kok, F.M.; Koerts, J.; Heutink, J.; Tucha, L.; Gerlach, M.; Tucha, O. Perception in attention deficit hyperactivity disorder. Atten. Defic. Hyperact. Disord. 2018, 10, 21–47. [Google Scholar] [CrossRef] [PubMed]
- Peskin, V.A.; Ordonez, A.; Mackin, R.S.; Delucchi, K.; Monge, S.; McGough, J.J.; Chavira, D.A.; Berrocal, M.; Cheung, E.; Fournier, E. Neuropsychological and dimensional behavioral trait profiles in Costa Rican ADHD sib pairs: Potential intermediate phenotypes for genetic studies. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2015, 168, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Bijlenga, D.; Tjon-Ka-Jie, J.Y.M.; Schuijers, F.; Kooij, J.J.S. Atypical sensory profiles as core features of adult ADHD, irrespective of autistic symptoms. Eur. Psychiatry 2017, 43, 51–57. [Google Scholar] [CrossRef]
- Burgess, N.; Maguire, E.A.; O’Keefe, J. The human hippocampus and spatial and episodic memory. Neuron 2002, 35, 625–641. [Google Scholar] [CrossRef]
- Crawford, S.G.; Dewey, D. Co-occurring disorders: A possible key to visual perceptual deficits in children with developmental coordination disorder? Hum. Mov. Sci. 2008, 27, 154–169. [Google Scholar] [CrossRef] [PubMed]
- Baddeley, A. Working memory: Theories, models, and controversies. Annu. Rev. Psychol. 2012, 63, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Fair, D.A.; Bathula, D.; Nikolas, M.A.; Nigg, J.T. Distinct neuropsychological subgroups in typically developing youth inform heterogeneity in children with ADHD. Proc. Natl. Acad. Sci. USA 2012, 109, 6769–6774. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Weibman, D.; Halperin, J.M.; Li, X. A review of heterogeneity in attention deficit/hyperactivity disorder (ADHD). Front. Hum. Neurosci. 2019, 13, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Acosta, M.T.; Arcos-Burgos, M.; Muenke, M. Attention deficit/hyperactivity disorder (ADHD): Complex phenotype, simple genotype? Genet. Med. 2004, 6, 1–15. [Google Scholar] [CrossRef]
- Pironti, V.A.; Lai, M.C.; Muller, U.; Dodds, C.M.; Suckling, J.; Bullmore, E.T.; Sahakian, B.J. Neuroanatomical abnormalities and cognitive impairments are shared by adults with attention-deficit/hyperactivity disorder and their unaffected first-degree relatives. Biol. Psychiatry 2014, 76, 639–647. [Google Scholar] [CrossRef]
- O’Malley, K.L.; Harmon, S.; Tang, L.; Todd, R.D. The rat dopamine D4 receptor: Sequence, gene structure, and demonstration of expression in the cardiovascular system. New Biol. 1992, 4, 137–146. [Google Scholar]
- Meador-Woodruff, J.H.; Grandy, D.K.; Van Tol, H.H.; Damask, S.P.; Little, K.Y.; Civelli, O.; Watson, S.J. Dopamine receptor gene expression in the human medial temporal lobe. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 1994, 10, 239–248. [Google Scholar] [CrossRef]
- Oak, J.N.; Oldenhof, J.; Van Tol, H.H. The dopamine D(4) receptor: One decade of research. Eur. J. Pharmacol. 2000, 405, 303–327. [Google Scholar] [CrossRef]
- Gehricke, J.-G.; Swanson, J.M.; Duong, S.; Nguyen, J.; Wigal, T.L.; Fallon, J.; Caburian, C.; Muftuler, L.T.; Moyzis, R.K. Increased brain activity to unpleasant stimuli in individuals with the 7R allele of the DRD4 gene. Psychiatry Res. 2015, 231, 58–63. [Google Scholar] [CrossRef]
- Faraone, S.V.; Biederman, J. Neurobiology of attention-deficit hyperactivity disorder. Biol. Psychiatry 1998, 44, 951–958. [Google Scholar] [CrossRef]
- Qian, A.; Tao, J.; Wang, X.; Liu, H.; Ji, L.; Yang, C.; Ye, Q.; Chen, C.; Li, J.; Cheng, C.; et al. Effects of the 2-repeat allele of the DRD4 gene on neural networks associated with the prefrontal cortex in children with ADHD. Front. Hum. Neurosci. 2018, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, M.Y.N.; Pola, A.L.; Juvier, R.T.; Cabal, R.R.; Soto, L.A.; Pérez García, E. Manifestaciones neuroftalmológicas en la enfermedad de Parkinson TT–Neurophthalmologic manifestations of Parkinson’s disease. Rev. Cuba Oftalmol. 2013, 26, 170–179. [Google Scholar]
- Müller, J.; Dreisbach, G.; Brocke, B.; Lesch, K.-P.; Strobel, A.; Goschke, T. Dopamine and cognitive control: The influence of spontaneous eyeblink rate, DRD4 exon III polymorphism and gender on flexibility in set-shifting. Brain Res. 2007, 1131, 155–162. [Google Scholar] [CrossRef]
- Beyer, C.; Banas, C.; Gonzalez-Flores, O.; Komisaruk, B.R. Blockage of substance P-induced scratching behavior in rats by the intrathecal administration of inhibitory amino acid agonists. Pharmacol. Biochem. Behav. 1989, 34, 491–495. [Google Scholar] [CrossRef]
- Saucedo, L.; Buffa, G.N.; Rosso, M.; Guillardoy, T.; Góngora, A.; Munuce, M.J.; Vazquez-Levin, M.H.; Marín-Briggiler, C. Fibroblast Growth Factor Receptors (FGFRs) in Human Sperm: Expression, Functionality and Involvement in Motility Regulation. PLoS ONE. 2015, 10, e0127297. [Google Scholar] [CrossRef] [PubMed]
- Ford-Perriss, M.; Abud, H.; Murphy, M. Fibroblast growth factors in the developing central nervous system. Clin. Exp. Pharmacol. Physiol. 2001, 28, 493–503. [Google Scholar] [CrossRef]
- Itoh, N.; Ornitz, D.M. Fibroblast growth factors: From molecular evolution to roles in development, metabolism and disease. J. Biochem. 2011, 149, 121–130. [Google Scholar] [CrossRef]
- Dono, R. Fibroblast growth factors as regulators of central nervous system development and function. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, R867–R881. [Google Scholar] [CrossRef]
- Evans, S.J.; Choudary, P.V.; Neal, C.R.; Li, J.Z.; Vawter, M.P.; Tomita, H.; Lopez, J.F.; Thompson, R.C.; Meng, F.; Stead, J.D.; et al. Dysregulation of the fibroblast growth factor system in major depression. Proc. Natl. Acad. Sci. USA 2004, 101, 15506–15511. [Google Scholar] [CrossRef]
- Tekin, M.; Hişmi, B.O.; Fitoz, S.; Ozdağ, H.; Cengiz, F.B.; Sirmaci, A.; Aslan, İ.; İnceoğlu, B.; Yüksel-Konuk, E.B.; Yılmaz, S.T.; et al. Homozygous mutations in fibroblast growth factor 3 are associated with a new form of syndromic deafness characterized by inner ear agenesis, microtia, and microdontia. Am. J. Hum. Genet. 2007, 80, 338–344. [Google Scholar] [CrossRef]
- Picker, A.; Brand, M. Fgf signals from a novel signaling center determine axial patterning of the prospective neural retina. Development 2005, 132, 4951–4962. [Google Scholar] [CrossRef]
- Yang, X.-J. Roles of cell-extrinsic growth factors in vertebrate eye pattern formation and retinogenesis. Semin. Cell. Dev. Biol. 2004, 15, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Hyer, J.; Mima, T.; Mikawa, T. FGF1 patterns the optic vesicle by directing the placement of the neural retina domain. Development 1998, 125, 869–877. [Google Scholar] [CrossRef] [PubMed]
- Gabay, S.; Pertzov, Y.; Henik, A. Orienting of attention, pupil size, and the norepinephrine system. Atten. Percept. Psychophys. 2011, 73, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.W.; Lim, M.H.; Kwon, H.J.; Jin, H.J. Association of LPHN3 rs6551665 A/G polymorphism with attention deficit and hyperactivity disorder in Korean children. Gene 2015, 566, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Pronin, A.; Levay, K.; Velmeshev, D.; Faghihi, M.; Shestopalov, V.I.; Slepak, V.Z. Expression of olfactory signaling genes in the eye. PLoS ONE 2014, 9, e96435. [Google Scholar] [CrossRef] [PubMed]
- Fallgatter, A.J.; Ehlis, A.C.; Dresler, T.; Reif, A.; Jacob, C.P.; Arcos-Burgos, M.; Muenke, M.; Lesch, K.-P. Influence of a latrophilin 3 (LPHN3) risk haplotype on event-related potential measures of cognitive response control in attention-deficit hyperactivity disorder (ADHD). Eur. Neuropsychopharmacol. 2013, 23, 458–468. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.F.; Muenke, M.; Arcos-Burgos, M. From the black widow spider to human behavior: Latrophilins, a relatively unknown class of G protein-coupled receptors, are implicated in psychiatric disorders. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2011, 156, 1–10. [Google Scholar] [CrossRef]
- Mathiasen, S.; Palmisano, T.; Perry, N.A.; Stoveken, H.M.; Vizurraga, A.; McEwen, D.P.; Okashah, N.; Langenhan, T.; Inoue, A.; Lambert, N.A.; et al. G12/13 is activated by acute tethered agonist exposure in the adhesion GPCR ADGRL3. Nat. Chem. Biol. 2020, 16, 1343–1350. [Google Scholar] [CrossRef] [PubMed]
- Lange, M.; Norton, W.; Coolen, M.; Chaminade, M.; Merker, S.; Proft, F.; Schmitt, A.; Vernier, P.; Lesch, K.-P.; Bally-Cuif, L. The ADHD-susceptibility gene lphn3.1 modulates dopaminergic neuron formation and locomotor activity during zebrafish development. Mol. Psychiatry 2012, 17, 946–954. [Google Scholar] [CrossRef] [PubMed]
- Kesler, S.R.; Sheau, K.; Koovakkattu, D.; Reiss, A.L. Changes in frontal-parietal activation and math skills performance following adaptive number sense training: Preliminary results from a pilot study. Neuropsychol. Rehabil. 2011, 21, 433–454. [Google Scholar] [CrossRef] [PubMed]
- Arsalidou, M.; Pawliw-Levac, M.; Sadeghi, M.; Pascual-Leone, J. Brain areas associated with numbers and calculations in children: Meta-analyses of fMRI studies. Dev. Cogn. Neurosci. 2018, 30, 239–250. [Google Scholar] [CrossRef]
- Ansari, D.; Dhital, B. Age-related changes in the activation of the intraparietal sulcus during nonsymbolic magnitude processing: An event-related functional magnetic resonance imaging study. J. Cogn. Neurosci. 2006, 18, 1820–1828. [Google Scholar] [CrossRef]
- Serra-Grabulosa, J.M.; Adan, A.; Pérez-Pàmies, M.; Lachica, J.; Membrives, S. Neural bases of numerical processing and calculation. Rev. Neurol. 2010, 50, 39–46. [Google Scholar] [PubMed]
- Gruber, O.; Indefrey, P.; Steinmetz, H.; Kleinschmidt, A. Dissociating neural correlates of cognitive components in mental calculation. Cereb. Cortex. 2001, 11, 350–359. [Google Scholar] [CrossRef]
- Rickard, T.C.; Romero, S.G.; Basso, G.; Wharton, C.; Flitman, S.; Grafman, J. The calculating brain: An fMRI study. Neuropsychologia 2000, 38, 325–335. [Google Scholar] [CrossRef]
- Klein, E.; Moeller, K.; Glauche, V.; Weiller, C.; Willmes, K. Processing Pathways in Mental Arithmetic-Evidence from Probabilistic Fiber Tracking. PLoS ONE 2013, 8, e55455. [Google Scholar] [CrossRef]
- Sokolowski, H.M.; Fias, W.; Mousa, A.; Ansari, D. Common and distinct brain regions in both parietal and frontal cortex support symbolic and nonsymbolic number processing in humans: A functional neuroimaging meta-analysis. Neuroimage 2017, 146, 376–394. [Google Scholar] [CrossRef] [PubMed]
- Nieder, A.; Dehaene, S. Representation of number in the brain. Annu. Rev. Neurosci. 2009, 32, 185–208. [Google Scholar] [CrossRef]
- Cowan, N. The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behav. Brain Sci. 2001, 24, 85–87. [Google Scholar] [CrossRef] [PubMed]
- Geary, D.C.; Hoard, M.K.; Byrd-Craven, J.; DeSoto, M.C. Strategy choices in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disability. J. Exp. Child Psychol. 2004, 88, 121–151. [Google Scholar] [CrossRef] [PubMed]
- Stanford, C.; Tannock, R. Behavioral Neuroscience of Attention Deficit Hyperactivity Disorder and Its Treatment; Springer: Berlin, Germany, 2012; Volume 2, pp. 1–554. [Google Scholar]
- Sebastián, M.V.; Mediavilla, R. Amplitud verbal de dígitos en orden directo en población española. Psicothema 2015, 27, 93–98. [Google Scholar]
- Lang, R.A. Pathways regulating lens induction in the mouse. Int. J. Dev. Biol. 2004, 48, 783–791. [Google Scholar] [CrossRef]
- Webber, C.A.; Hyakutake, M.T.; McFarlane, S. Fibroblast growth factors redirect retinal axons in vitro and in vivo. Dev. Biol. 2003, 263, 24–34. [Google Scholar] [CrossRef][Green Version]
- Kinkl, N.; Ruiz, J.; Vecino, E.; Frasson, M.; Sahel, J.; Hicks, D. Possible involvement of a fibroblast growth factor 9 (FGF9)-FGF receptor-3-mediated pathway in adult pig retinal ganglion cell survival in vitro. Mol. Cell Neurosci. 2003, 23, 39–53. [Google Scholar] [CrossRef]
- Blanco, R.E.; López-Roca, A.; Soto, J.; Blagburn, J.M. Basic fibroblast growth factor applied to the optic nerve after injury increases long-term cell survival in the frog retina. J. Comp. Neurol. 2000, 423, 646–658. [Google Scholar] [CrossRef]
- Castellanos, F.X.; Proal, E. Large-scale brain systems in ADHD: Beyond the prefrontal-striatal model. Trends. Cogn. Sci. 2012, 16, 17–26. [Google Scholar] [CrossRef]
- Kravitz, D.J.; Saleem, K.S.; Baker, C.I.; Ungerleider, L.G.; Mishkin, M. The ventral visual pathway: An expanded neural framework for the processing of object quality. Trends. Cogn. Sci. 2013, 17, 26–49. [Google Scholar] [CrossRef]
- Ahrendts, J.; Rüsch, N.; Wilke, M.; Philipsen, A.; Eickhoff, S.B.; Glauche, V.; Perlov, E.; Ebert, D.; Hennig, J.; van Elst, L.T. Visual cortex abnormalities in adults with ADHD: A structural MRI study. World J. Biol. Psychiatry Off. J. World Fed. Soc. Biol. Psychiatry 2011, 12, 260–270. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, C.; He, Y.; Zang, Y.; Cao, Q.; Zhang, H.; Zhong, Q.; Wang, Y. Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder. Hum. Brain Mapp. 2009, 30, 638–649. [Google Scholar] [CrossRef] [PubMed]
- Silk, T.J.; Vance, A.; Rinehart, N.; Bradshaw, J.L.; Cunnington, R. Dysfunction in the Fronto-Parietal Network in Attention Deficit Hyperactivity Disorder (ADHD): An fMRI Study. Brain Imaging Behav. 2008, 2, 123–131. [Google Scholar] [CrossRef]
- Wechsler, D. WISC-V: Technical and Interpretive Manual, 5th ed.; Pearson Clinical Assessment, PsychCorp: London, UK, 2012; Volume 2. [Google Scholar]
- Fang, F.; Kersten, D.; Murray, S.O. Perceptual grouping and inverse fMRI activity patterns in human visual cortex. J. Vis. 2008, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Aboitz, F.; Castellanos, F. Attention deficit hyperactivity disorder, catecholamines, and the default mode of brain function: A reassessment of the dopaminergic hypothesis of ADHD. In Treating Attention Deficit Hyperactivity Disorder; Civic Research Institute Kingston: Princeton, NJ, USA, 2011; pp. 1–2. [Google Scholar]
- Hupé, J.-M.; Pressnitzer, D. The initial phase of auditory and visual scene analysis. Philos. Trans. R. Soc. London Ser. B Biol. Sci. 2012, 367, 942–953. [Google Scholar] [CrossRef]
- Knapen, T.; Brascamp, J.; Adams, W.J.; Graf, E.W. The spatial scale of perceptual memory in ambiguous figure perception. J. Vis. 2009, 9, 16. [Google Scholar] [CrossRef][Green Version]
- Roelfsema, P.R.; Tolboom, M.; Khayat, P.S. Different processing phases for features, figures, and selective attention in the primary visual cortex. Neuron 2007, 56, 785–792. [Google Scholar] [CrossRef]
- Nigg, J.T.; Casey, B.J. An integrative theory of attention-deficit/hyperactivity disorder based on the cognitive and affective neurosciences. Dev. Psychopathol. 2005, 17, 785–806. [Google Scholar] [CrossRef]
- Sarkar, I.N. Biomedical informatics and translational medicine. J. Transl. Med. 2010, 8, 22. [Google Scholar] [CrossRef] [PubMed]
- Kalow, W. Pharmacogenetics and pharmacogenomics: Origin, status, and the hope for personalized medicine. Pharm. J. 2006, 6, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Tenev, A.; Markovska-Simoska, S.; Kocarev, L.; Pop-Jordanov, J.; Müller, A.; Candrian, G. Machine learning approach for classification of ADHD adults. Int. J. Psychophysiol. 2014, 93, 162–166. [Google Scholar] [CrossRef]
- Kautzky, A.; Vanicek, T.; Philippe, C.; Kranz, G.S.; Wadsak, W.; Mitterhauser, M.; Hartmann, A.; Hahn, A.; Hacker, M.; Rujescu, D.; et al. Machine learning classification of ADHD and HC by multimodal serotonergic data. Transl. Psychiatry 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Vélez, J.I. Machine Learning based Psychology: Advocating for A Data-Driven Approach. Int. J. Psychol. Res. 2021, 14, 6–11. [Google Scholar] [CrossRef]
- Owens, J.; Jackson, H. Attention-deficit/hyperactivity disorder severity, diagnosis, & later academic achievement in a national sample. Soc. Sci. Res. 2017, 61, 251–265. [Google Scholar] [PubMed]
Coding a | Task | Affected (n = 236) | Unaffected (n = 172) | d | P | Heritability | |
---|---|---|---|---|---|---|---|
h2 (SE) | p | ||||||
Mental Control | Mean (SD) | Mean (SD) | |||||
T4 | Numbers from 20 to 1 (Score) | 2.13 (0.99) | 2.55 (0.7) | −0.483 | 0.034 | 0.351 (0.138) | 0.006 |
Semantic Verbal Fluency | |||||||
T32 | Token Test 36/36 | 31.36 (3.8) | 33.51 (2.68) | −0.637 | 0.001 | 0.355 (0.124) | 0.002 |
WISC-III and WAIS-III subtests | |||||||
T42 | Digit span total—Forward | 6.84 (1.73) | 7.8 (1.92) | −0.526 | 3.7 × 10−4 | 0.492 (0.107) | 1.0 × 10−5 |
T43 | Digit span total—Backward | 4.53 (1.88) | 5.24 (1.87) | −0.375 | 0.001 | 0.171 (0.102) | 0.048 |
T44 | Total punctuation (forward and backward) | 11.32 (3.06) | 13.12 (3.33) | −0.564 | 1.6 × 10−5 | 0.416 (0.109) | 6.8 × 10−5 |
T45 | Vocabulary | 28.28 (10.63) | 35.51 (10.99) | −0.670 | 0.005 | 0.452 (0.126) | 1.7 × 10−4 |
T46 | Comprehension | 17.75 (6.27) | 21.01 (5.88) | −0.533 | 0.019 | 0.210 (0.107) | 0.025 |
T47 | Arithmetic | 12.94 (4.52) | 12.87 (3.87) | 0.016 | 0.007 | 0.365 (0.116) | 0.001 |
T48 | Similarities (analogies) | 16.16 (6.98) | 20.55 (5.89) | −0.671 | 0.002 | 0.366 (0.130) | 0.003 |
T49 | Figure completion | 18.81 (4.86) | 20.58 (3.45) | −0.410 | 0.036 | 0.235 (0.133) | 0.039 |
T52 | Object assembly | 25.56 (8.8) | 29.92 (9.13) | −0.488 | 0.012 | 0.323 (0.132) | 0.007 |
Coding a | Chr | Marker | Gene | Position b | FBAT Results | |||||
---|---|---|---|---|---|---|---|---|---|---|
Allele | Cohort | PFBAT (NIF) | ||||||||
Frequency | Additive | Dominant | Recessive | HA | ||||||
T44 | 11 | rs916457 | DRD4 | 637,014 | T | 0.050 | 0.026 (27) | 0.025 (27) | ||
C | 0.950 | 0.025 (27) | ||||||||
T46 | 4 | rs10001410 | ADGRL3 | 62,474,229 | A | 0.327 | 0.047 (54) | |||
C | 0.673 | 0.047 (54) | ||||||||
T47 | 4 | rs1565902 | ADGRL3 | 62,408,620 | C | 0.495 | 0.014 (65) | |||
T | 0.505 | 0.014 (65) | ||||||||
5 | rs2282794 | FGF1 | 141,981,709 | G | 0.542 | 0.041 (32) | ||||
A | 0.458 | 0.041 (32) | ||||||||
T48 | 5 | rs2282794 | FGF1 | 141,981,709 | G | 0.542 | 0.004 (64) | 1.9 × 10−4 (32) | ||
A | 0.458 | 0.004 (64) | 1.9 × 10−4 (32) | |||||||
T49 | 11 | rs916457 | DRD4 | 637,014 | C | 0.950 | 0.005 (27) | 0.005 (27) | ||
T | 0.050 | 0.005 (27) | 0.005 (27) | |||||||
5 | rs2282794 | FGF1 | 141,981,709 | G | 0.542 | 0.006 (32) | ||||
A | 0.458 | 0.006 (32) | ||||||||
T52 | 5 | rs2282794 | FGF1 | 141,981,709 | G | 0.542 | 0.005 (64) | |||
A | 0.458 | 0.005 (64) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cervantes-Henriquez, M.L.; Acosta-López, J.E.; Ahmad, M.; Sánchez-Rojas, M.; Jiménez-Figueroa, G.; Pineda-Alhucema, W.; Martinez-Banfi, M.L.; Noguera-Machacón, L.M.; Mejía-Segura, E.; De La Hoz, M.; et al. ADGRL3, FGF1 and DRD4: Linkage and Association with Working Memory and Perceptual Organization Candidate Endophenotypes in ADHD. Brain Sci. 2021, 11, 854. https://doi.org/10.3390/brainsci11070854
Cervantes-Henriquez ML, Acosta-López JE, Ahmad M, Sánchez-Rojas M, Jiménez-Figueroa G, Pineda-Alhucema W, Martinez-Banfi ML, Noguera-Machacón LM, Mejía-Segura E, De La Hoz M, et al. ADGRL3, FGF1 and DRD4: Linkage and Association with Working Memory and Perceptual Organization Candidate Endophenotypes in ADHD. Brain Sciences. 2021; 11(7):854. https://doi.org/10.3390/brainsci11070854
Chicago/Turabian StyleCervantes-Henriquez, Martha L., Johan E. Acosta-López, Mostapha Ahmad, Manuel Sánchez-Rojas, Giomar Jiménez-Figueroa, Wilmar Pineda-Alhucema, Martha L. Martinez-Banfi, Luz M. Noguera-Machacón, Elsy Mejía-Segura, Moisés De La Hoz, and et al. 2021. "ADGRL3, FGF1 and DRD4: Linkage and Association with Working Memory and Perceptual Organization Candidate Endophenotypes in ADHD" Brain Sciences 11, no. 7: 854. https://doi.org/10.3390/brainsci11070854
APA StyleCervantes-Henriquez, M. L., Acosta-López, J. E., Ahmad, M., Sánchez-Rojas, M., Jiménez-Figueroa, G., Pineda-Alhucema, W., Martinez-Banfi, M. L., Noguera-Machacón, L. M., Mejía-Segura, E., De La Hoz, M., Arcos-Holzinger, M., Pineda, D. A., Puentes-Rozo, P. J., Arcos-Burgos, M., & Vélez, J. I. (2021). ADGRL3, FGF1 and DRD4: Linkage and Association with Working Memory and Perceptual Organization Candidate Endophenotypes in ADHD. Brain Sciences, 11(7), 854. https://doi.org/10.3390/brainsci11070854