The Relationship between Occupationally Exposed Arsenic, Cadmium and Lead and Brain Bioelectrical Activity—A Visual and Brainstem Auditory Evoked Potentials Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Toxicological Parameters
3.2. Neurological Examination and Cognition
3.3. Evoked Potentials
3.4. Correlation Analysis
3.5. Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sińczuk-Walczak, H.; Szymczak, M.; Hałatek, T. Effects of occupational exposure to arsenic on the nervous system: Clinical and neurophysiological studies. Int. J. Occup. Med. Environ. Health 2010, 23, 347–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Kumar, S. Arsenic exposure with reference to neurological impairment: An overview. Rev. Environ. Health 2019, 34, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Gać, P.; Waliszewska, M.; Zawadzki, M.; Poręba, R.; Andrzejak, R. Neurological effects of occupational lead exposure. Bezp. Pr. Nauka Prakt. 2008, 7–8, 14–17. [Google Scholar]
- Labudda, M. Biochemical mechanisms of neurotoxicity caused by cadmium. Rocz. Panstw. Zakl. Hig. 2011, 62, 357–363. [Google Scholar]
- Caito, S.; Aschner, M. Neurotoxicity of metals. Handb. Clin. Neurol. 2015, 131, 169–189. [Google Scholar]
- Bilińska, M.; Brzezowska, D.; Koszewicz, M.; Antonowicz-Juchniewicz, J. Chronic occupational exposure to lead and peripheral nervous system. Adv. Clin. Exp. Med. 2003, 12, 711–716. [Google Scholar]
- Rafiee, A.; Delgado-Saborit, J.M.; Sly, P.D.; Quémerais, B.; Hashemi, F.; Akbari, S.; Hoseini, M. Environmental chronic exposure to metals and effects on attention and executive function in the general population. Sci. Total Environ. 2020, 25, 135911. [Google Scholar] [CrossRef] [PubMed]
- Moon, K.; Oberoi, S.; Barchowsky, A.; Chen, Y.; Guallar, E.; Nachman, K. A dose-response meta-analysis of chronic arsenic exposure and incident cardiovascular disease. Int. J. Epidemiol. 2017, 46, 1924–1939. [Google Scholar] [CrossRef] [Green Version]
- Halatek, T.; Sinczuk-Walczak, H.; Rabieh, S.; Wasowicz, W. Association between occupational exposure to arsenic and neurological, respiratory and renal effects. Toxicol. Appl. Pharmacol. 2009, 239, 193–199. [Google Scholar] [CrossRef]
- Al Olayan, E.; Aloufi, A.; Al Amri, O.; El-Habit, O.; Abdel Moneim, A. Protocatechuic acid mitigates cadmium-induced neurotoxicity in rats: Role of oxidative stress, inflammation and apoptosis. Sci. Total Environ. 2020, 723, 137969. [Google Scholar] [CrossRef] [PubMed]
- Unsal, V.; Dalkıran, T.; Çiçek, M.; Kölükçü, E. The role of natural antioxidants against reactive oxygen species produced by cadmium toxicity: A review. Adv. Pharm. Bull. 2020, 10, 184–202. [Google Scholar] [CrossRef] [Green Version]
- Minami, A.; Takeda, A.; Nishibaba, D.; Takefuta, S.; Oka, N. Cadmium toxicity in synaptic neurotransmission in the brain. Brain Res. 2001, 894, 336–339. [Google Scholar] [CrossRef]
- Moreira, F.R.; Moreira, J.C. Effects of lead exposure on the human body and health implications. Rev. Panam. Salud. Publica. 2004, 15, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Nuwer, M.; Aminoff, M.; Goodin, D. IFCN recommended standards for brain-stem auditory evoked potentials. Report of an IFCN committee. Electroencephalogr Clin. Neurophysiol. 1994, 91, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Celesia, G.G.; Bodis-Wollner, I.; Chatrian, G.E.; Spekreijse, H. Recommended standards for electroretinograms and visual evoked potentials. Report of an IFCN committee. Electroencephalogr. Clin. Neurophysiol. 1993, 87, 421–436. [Google Scholar] [CrossRef]
- Szymańska-Chabowska, A.; Łaczmański, Ł.; Jędrychowska, I.; Chabowski, M.; Gać, P.; Janus, A.; Gosławska, K.; Smyk, B.; Solska, U.; Mazur, G.; et al. The relationship between selected VDR, HFE and ALAD gene polymorphisms and several basic toxicological parameters among persons occupationally exposed to lead. Toxicology 2015, 334, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Waliszewska-Prosół, M.; Bladowska, J.; Ejma, M.; Fleischer-Stępniewska, K.; Rymer, W.; Sąsiadek, M.; Pawłowski, T.; Małyszczak, K.; Inglot, M.; Żelwetro, A.; et al. Visual and brainstem auditory evoked potentials in HCV-infected patients before and after interferon-free therapy—A pilot study. Int. J. Infect. Dis. 2019, 80, 122–128. [Google Scholar]
- Zheng, W.; Aschner, M.; Ghersi-Egea, J.F. Brain barrier systems: A new frontier in metal neurotoxicological research. Toxicol. Appl. Pharmacol. 2003, 192, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Jomova, K.; Jenisova, Z.; Feszterova, M. Arsenic: Toxicity, oxidative stress and human disease. J. Appl. Toxicol. 2011, 31, 95–107. [Google Scholar] [CrossRef]
- Belyaeva, E.; Sokolova, T.; Emelyanova, L. Mitochondrial electron transport chain in heavy metalinducedneurotoxicity: Effects of cadmium, mercury, and copper. Sci. World J. 2012, 136063. [Google Scholar]
- Branca, J.; Maresca, M.; Morucci, G.; Mello, T.; Becatti, M.; Pazzagli, L. Effects of cadmium on ZO-1 tight junction integrity of the blood brain barrier. Int. J. Mol. Sci. 2019, 23, 6010. [Google Scholar] [CrossRef] [Green Version]
- Halder, S.; Kar, R.; Chakraborty, S.; Bhattacharya, S.K.; Mediratta, P.K.; Banerjee, B.D. Cadmium level in brain correlates with memory impairment in F1 and F2 generation mice: Improvement with quercetin. Environ. Sci. Pollut. Res. Int. 2019, 26, 9632–9639. [Google Scholar] [CrossRef]
- Thomason, M.; Hect, J.; Rauh, V.; Trentacosta, C.; Wheelock, M.; Eggebrecht, A. Prenatal lead exposure impacts cross-hemispheric and long-range connectivity in the human fetal brain. Neuroimage 2019, 191, 186–192. [Google Scholar] [CrossRef]
- Brubaker, C.J.; Dietrich, K.N.; Lanphear, B.P.; Cecil, K.M. The influence of age of lead exposure on adult gray matter volume. Neurotoxicology 2010, 31, 259–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niño, S.A.; Martel-Gallegos, G.; Castro-Zavala, A.; Ortega-Berlanga, B.; Delgado, J.; Hernández-Mendoza, H. Chronic arsenic exposure increases Aβ((1-42)) production and receptor for advanced glycation end products expression in rat brain. Chem. Res. Toxicol. 2018, 31, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Chandravanshi, L.; Gupta, R.; Shukla, R. Arsenic-induced neurotoxicity by dysfunctioning cholinergic and dopaminergic system in brain of developing rats. Biol. Trace Elem. Res. 2019, 189, 118–133. [Google Scholar] [CrossRef]
- Zhou, F.; Xie, J.; Zhang, S.; Yin, G.; Gao, Y.; Zhang, Y. Lead, cadmium, arsenic, and mercury combined exposure disrupted synaptic homeostasis through activating the Snk-SPAR pathway. Ecotoxicol. Environ. Saf. 2018, 15, 674–684. [Google Scholar] [CrossRef] [PubMed]
- Otto, D.; Hudnell, K.; Boyes, W.; Janssen, R.; Dyer, R. Electrophysiological measures of visual and auditory function as indices of neurotoxicity. Toxicology 1988, 49, 205–218. [Google Scholar] [CrossRef]
- Discalzi, G.; Fabbro, D.; Meliga, F.; Mocellini, A.; Capellaro, F. Effects of occupational exposure to mercury and lead on brainstem auditory evoked potentials. Int. J. Psychophysiol. 1993, 14, 21–25. [Google Scholar] [CrossRef]
- Alvarengade, F.; Morata, T.; Lopes, A.; Feniman, M.; Corteletti, L. Brainstem auditory evoked potentials in children with lead exposure. Braz. J. Otorhinolaryngol. 2015, 81, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Langauer-Lewowicka, H.; Kazibutowska, Z. Value of the studies of multimodal evoked potentials for evaluation of neurotoxic effects of combined exposure to lead, copper and zinc. Neurol. Neurochir. Pol. 1991, 25, 715–719. [Google Scholar] [PubMed]
- Ejma, M.; Podemski, R.; Bogdańska, R.; Bilińska, M.; Martynów, R. Sensory conduction and conduction time of centers in toxic polyneuropathy. Med. Pracy 1988, 39, 44–48. [Google Scholar]
- Yargiçoğlu, P.; Ağar, A.; Oğuz, Y.; Izgüt-Uysal, V.N.; Sentürk, U.K.; Oner, G. The effect of developmental exposure to cadmium (Cd) on visual evoked potentials (VEPs) and lipid peroxidation. Neurotoxicol. Teratol. 1997, 19, 213–219. [Google Scholar] [CrossRef]
- Gupta, A.; Gupta, A.; Shukla, G. Development of brain free radical scavenging system and lipid peroxidation under the influence of gestational and lactational cadmium exposure. Hum. Exp. Toxicol. 1995, 14, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.; Shukla, G.; Srimal, R. Cadmium-induced alterations in blood-brain barrier permeability and its possible correlation with decreased microvessel antioxidant potential in rat. Hum. Exp. Toxicol. 1996, 15, 400–405. [Google Scholar] [CrossRef]
- Agar, A.; Yargicoglu, P.; Edremitlioglu, M.; Kara, C.; Oguz, Y. The effect of cadmium (Cd) treatment on somatosensory evoked potentials (SEPs) and conduction velocity in alloxane-induced diabetic rats: Relation to lipid peroxidation. J. Basic Clin. Physiol. Pharmacol. 1999, 10, 41–56. [Google Scholar] [CrossRef]
- Agar, A.; Yargicoglu, P.; Sentürk, U.; Izgüt-Uysal, V. Effect of cadmium-induced lipid peroxidation on EEG spectral components. J. Basic Clin. Physiol. Pharmacol. 1999, 10, 29–40. [Google Scholar] [CrossRef]
- Lilienthal, H.; Winneke, G. Lead effects on the brain stem auditory evoked potential in monkeys during and after the treatment phase. Neurotoxicol. Teratol. 1996, 18, 17–32. [Google Scholar] [CrossRef]
Arsenic-, Cadmium-, and Lead-Exposed Group n = 41 | Control Group n = 36 | p Value | |||||
---|---|---|---|---|---|---|---|
Mean | Median | SD | Mean | Median | SD | ||
Age [years] | 51.27 | 54.00 | 10.44 | 51.08 | 51.50 | 10.41 | 0.94 |
Height [m] | 175.07 | 175.00 | 7.02 | 173.56 | 174.00 | 6.34 | 0.32 |
Weight [kg] | 85.22 | 86.00 | 10.72 | 80.50 | 80.50 | 9.12 | 0.06 |
BMI [kg/m2] | 27.63 | 27.70 | 2.97 | 26.68 | 27.11 | 1.81 | 0.11 |
Number | Percent | Number | Percent | p Value | |||
Gender | |||||||
Male | 40 | 97.6 | 35 | 97.2 | 0.91 | ||
Female | 1 | 2.4 | 1 | 2.8 | 0.91 | ||
Overweight/Obesity | 34 | 82.9 | 29 | 80.6 | 0.79 |
Mean | Median | SD | Minimum | Maximum | |
---|---|---|---|---|---|
As-U [μg/g] | 15.60 | 11.30 | 15.58 | 2.47 | 88.00 |
Cd-B [μg/L] | 1.19 | 0.48 | 1.40 | 0.01 | 7.17 |
Pb-B [μg/L] | 181.85 | 128.00 | 139.88 | 8.56 | 610.00 |
ZnPP [μg/dL] | 18.35 | 11.00 | 22.00 | 1.00 | 106.00 |
Number | Percent | ||||
As-U > MAC (>35 μg/L) | 4 | 5.2 | |||
Cd-B > MAC (>5 μg/L) | 1 | 1.3 | |||
Pb-B > MAC (>500 μg/L) | 1 | 1.3 | |||
ZnPP > MAC (>70 μg/dL) | 2 | 2.6 |
VEP | Arsenic-, Cadmium-, and Lead-Exposed Group n = 41 | Control Group n = 36 | p Value | ||||
---|---|---|---|---|---|---|---|
Mean | Median | SD | Mean | Median | SD | ||
Latency (ms) | |||||||
N75 | 72.28 | 70.25 | 9.53 | 70.43 | 69.88 | 4.81 | 0.29 |
P100 | 107.21 | 105.50 | 7.10 | 100.63 | 100.00 | 4.31 | <0.0001 |
N145 | 155.87 | 156.00 | 13.81 | 140.94 | 141.75 | 10.46 | <0.0001 |
P100 Lo-Po | 3.17 | 2.50 | 2.80 | 1.55 | 1.00 | 1.58 | 0.001 |
Amplitude (µV) | |||||||
P100/N145 | 10.04 | 11.45 | 4.57 | 9.67 | 9.68 | 3.13 | 0.68 |
BAEP | Arsenic-, Cadmium-, and Lead- Exposed Group n = 41 | Control Group n = 36 | p Value | ||||
---|---|---|---|---|---|---|---|
Mean | Median | SD | Mean | Median | SD | ||
Latency (ms) | |||||||
I | 1.70 | 1.67 | 0.14 | 1.65 | 1.63 | 0.13 | 0.16 |
III | 3.89 | 3.86 | 0.17 | 3.79 | 3.79 | 0.13 | 0.001 |
V | 5.95 | 5.93 | 0.25 | 5.66 | 5.68 | 0.17 | <0.001 |
I-III | 2.22 | 2.18 | 0.23 | 2.14 | 2.17 | 0.09 | 0.05 |
III-V | 2.06 | 2.03 | 0.16 | 1.85 | 1.82 | 0.15 | <0.001 |
I-V | 4.23 | 4.28 | 0.26 | 4.00 | 3.99 | 0.15 | <0.001 |
Amplitude (µV) | |||||||
I | 0.21 | 0.19 | 0.12 | 0.30 | 0.30 | 0.11 | <0.001 |
V | 0.38 | 0.37 | 0.13 | 0.46 | 0.46 | 0.17 | <0.001 |
As, Cd i Pb | As-U | Cd-B | Pb-B | ZnPP | ||
---|---|---|---|---|---|---|
VEP | N75 | ns | ns | ns | ns | ns |
P100 | Rc = 6.581 p = 0.002 | ns | ns | ns | ns | |
N145 | Rc = 14.934 p < 0.001 | ns | ns | ns | ns | |
P100/N145 amplitude | ns | ns | ns | ns | ns | |
BAEP | I | ns | ns | ns | ns | ns |
III | Rc = 0.100 p = 0.006 | ns | ns | ns | ns | |
V | Rc = 0.293 p < 0.001 | ns | ns | ns | ns | |
I–III | ns | ns | ns | ns | ns | |
III–V | Rc = 0.205 p < 0.001 | ns | ns | ns | ns | |
I–V | Rc = 0.232 p = 0.003 | ns | ns | ns | ns | |
I amplitude | Rc = −0.140 p < 0.001 | ns | ns | ns | ns | |
V amplitude | Rc = −0.170 p < 0.001 | ns | ns | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waliszewska-Prosół, M.; Ejma, M.; Gać, P.; Szymańska-Chabowska, A.; Koszewicz, M.; Budrewicz, S.; Mazur, G.; Bilińska, M.; Poręba, R. The Relationship between Occupationally Exposed Arsenic, Cadmium and Lead and Brain Bioelectrical Activity—A Visual and Brainstem Auditory Evoked Potentials Study. Brain Sci. 2021, 11, 350. https://doi.org/10.3390/brainsci11030350
Waliszewska-Prosół M, Ejma M, Gać P, Szymańska-Chabowska A, Koszewicz M, Budrewicz S, Mazur G, Bilińska M, Poręba R. The Relationship between Occupationally Exposed Arsenic, Cadmium and Lead and Brain Bioelectrical Activity—A Visual and Brainstem Auditory Evoked Potentials Study. Brain Sciences. 2021; 11(3):350. https://doi.org/10.3390/brainsci11030350
Chicago/Turabian StyleWaliszewska-Prosół, Marta, Maria Ejma, Paweł Gać, Anna Szymańska-Chabowska, Magdalena Koszewicz, Sławomir Budrewicz, Grzegorz Mazur, Małgorzata Bilińska, and Rafał Poręba. 2021. "The Relationship between Occupationally Exposed Arsenic, Cadmium and Lead and Brain Bioelectrical Activity—A Visual and Brainstem Auditory Evoked Potentials Study" Brain Sciences 11, no. 3: 350. https://doi.org/10.3390/brainsci11030350
APA StyleWaliszewska-Prosół, M., Ejma, M., Gać, P., Szymańska-Chabowska, A., Koszewicz, M., Budrewicz, S., Mazur, G., Bilińska, M., & Poręba, R. (2021). The Relationship between Occupationally Exposed Arsenic, Cadmium and Lead and Brain Bioelectrical Activity—A Visual and Brainstem Auditory Evoked Potentials Study. Brain Sciences, 11(3), 350. https://doi.org/10.3390/brainsci11030350