Development of the Spanish Version of Sniffin’s Sticks Olfactory Identification Test: Normative Data and Validity of Parallel Measures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures and Testing Procedure
- Free recall score: As in a memory task, free recall implies the odor pen is presented and the participant has to guess the odor descriptor, without alternatives, doing their best to identify the odor descriptor. In a free recall test, information is obtained from what a person is able to remember spontaneously, without the help of clues. This method also requires a major memory component, combined with smell identification. This score is obtained as the total of correct answers from the 16 items, when presented under free recall modality.
- Recognition score: This is the score proposed by the original version [58]. The Odor Identification Test was adapted to the Spanish population by measuring the grade of familiarity with the odor descriptors [84]. The odor pen is presented to the participant and he or she has to recognize the target odor between four odor descriptors. Therefore, this score is obtained by a four-alternative forced-choice method. Correct answers from the 16 items are added in order to calculate this score.
- Subjective intensity score: This score intends to give a subjective measure of odor identification regarding intensity for each pen. This score gives additional value to the test, as it is combined with the other measures of identification performance (free recall and recognition). The subjective intensity score is computed as the arithmetic mean of the intensity given to each item.
2.3. Experiment Design
2.4. Statistical Analyses
3. Results
3.1. Study 1
3.2. Study 2
3.3. Study 3
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Welge-Luessen, A.; Hummel, T.; Stojan, T.; Wolfensberger, M. What is the correlation between ratings and measures of olfactory function in patients with olfactory loss? Am. J. Rhinol. 2005, 19, 567–571. [Google Scholar] [CrossRef] [PubMed]
- Fortin, A.; Lefebvre, M.; Ptito, M. Traumatic brain injury and olfactory deficits: The tale of two smell tests! Brain Injury. 2009, 24, 27–33. [Google Scholar] [CrossRef]
- Drummond, M.; Douglas, J.; Olver, J. If I haven´t got any smell … I’m out of work: Consequences of olfactory impairment following traumatic brain injury. Brain Injury. 2013, 27, 332–345. [Google Scholar] [CrossRef] [PubMed]
- Riva, G.; Sensini, M.; Corvino, A.; Pecorari, G.; Garzaro, M. Smell and Taste Impairment After Total Laryngectomy. Ann. Otol. Rhinol. Laryngol. 2017, 126, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Huba, M.; Muhlfay, G.; Neagos, C.; Neagos, A. Evaluation of smell disorders after radiotherapy in patients with laryngeal neoplasm. Rom. J. Rhinol. 2020, 10, 85–89. [Google Scholar] [CrossRef]
- Doty, R.L.; Philip, S.; Reddy, K.; Kerr, K.L. Influences of antihypertensive and antihyperlipidemic drugs on the senses of taste and smell: A review. J. Hypertens 2003, 21, 1805–1813. [Google Scholar] [CrossRef]
- Dahmer-Heath, M.; Schriever, V.; Kollmann, S.; Schleithoff, C.; Titieni, A.; Cetiner, M.; Patzer, L.; Tönshoff, B.; Hansen, M.; Pennekamp, P. Systematic evaluation of olfaction in patients with hereditary cystic kidney diseases/renal ciliopathies. J. Med. Genet. 2020. [Google Scholar] [CrossRef] [PubMed]
- Zucco, G.M.; Amodio, P.; Gatta, A. Olfactory deficits in patients affected by minimal hepatic encephalopathy: A pilot study. Chem. Senses. 2006, 31, 273–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaghloul, H.; Pallayova, M.; Al-Nuaimi, O.; Hovis, K.R.; Taheri, S. Association between diabetes mellitus and olfactory dysfunction: Current perspectives and future directions. Diabet. Med. 2018, 35, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Windon, M.J.; Lin, S.Y. The association between diabetes and olfactory impairment in adults: A systematic review and meta-analysis. Laryngoscope Investig. Otolaryngol. 2019, 4, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Mullol, J.; Mariño-Sánchez, F.; Valls, M.; Alobid, I.; Marin, C. The sense of smell in chronic rhinosinusitis. J. Allergy Clin. Immunol. 2020, 145, 773–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattos, J.L. Mechanisms and treatment of olfactory dysfunction in chronic rhinosinusitis. Ann. Allergy Asthma Immunol. 2020, 124, 307–308. [Google Scholar] [CrossRef]
- Moscavitch, S.D.; Szyper-Kravitz, M.; Shoenfeld, Y. Autoimmune pathology accounts for common manifestations in a wide range of neuro-psychiatric disorders: The olfactory and immune system interrelationship. J. Clin. Immunol. 2009, 130, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Shin, T.; Kim, J.; Ahn, M.; Moon, C. Olfactory dysfunction in CNS neuroimmunological disorders: A review. Mol. Neurobiol. 2019, 56, 3714–3721. [Google Scholar] [CrossRef]
- Pinto, J.M. Olfaction. Ann. Am. Thorac. Soc. 2011, 8, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Itoh, H.; Nishikawa, Y.; Higuchi, Y.; Nakamura, M.; Sasabayashi, D.; Nishiyama, S.; Mizukami, Y.; Masaoka, Y.; Suzuki, M. Anxiety and olfactory functioning. Psychiatry Clin. Neurosci. 2015, 69, 431–438. [Google Scholar] [CrossRef]
- Kamath, V.; Paksarian, D.; Cui, L.; Moberg, P.J.; Turetsky, B.I.; Merikangas, K.R. Olfactory processing in bipolar disorder, major depression, and anxiety. Bipolar Disord. 2018, 20, 547–555. [Google Scholar] [CrossRef]
- Kazour, F.; Richa, S.; Abi Char, C.; Surget, A.; Elhage, W.; Atanasova, B. Olfactory markers for depression: Differences between bipolar and unipolar patients. PLoS ONE 2020, 15, e0237565. [Google Scholar] [CrossRef] [PubMed]
- Rochet, M.; El-Hage., W.; Richa, S.; Kazour, F.; Atanasova, B. Depression, olfaction, and quality of life: A mutual relationship. Brain Sci. 2018, 8, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohli, P.; Soler, Z.M.; Nguyen, S.A.; Muus, J.S.; Schlosser, R.J. The association between olfaction and depression: A systematic review. Chem. Senses. 2016, 41, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Croy, I.; Hummel, T. Olfaction as a marker for depression. J. Neurol. 2017, 264, 631–638. [Google Scholar] [CrossRef]
- Kamath, V.; Turetsky, B.I.; Seligman, S.C.; Marchetto, D.M.; Walker, J.B.; Moberg, P.J. The influence of semantic processing on odor identification ability in schizophrenia. Arch Clin. Neuropsychol. 2013, 28, 254–261. [Google Scholar] [CrossRef] [Green Version]
- Sweigert, J.R.; St. John, T.; Begay, K.K.; Davis, G.E.; Munson, J.; Shankland, E.; Estes, A.; Dager, S.R.; Kleinhans, N.M. Characterizing Olfactory Function in Children with Autism Spectrum Disorder and Children with Sensory Processing Dysfunction. Brain Sci. 2020, 10, 362. [Google Scholar] [CrossRef] [PubMed]
- Doty, R.L. Olfactory dysfunction in neurodegenerative diseases: Is there a common pathological substrate? Lancet. Neurol. 2017, 16, 478–488. [Google Scholar] [CrossRef]
- Marin, C.; Vilas, D.; Langdon, C.; Alobid, I.; López-Chacón, M.; Haehner, A.; Hummel, T.; Mullol, J. Olfactory dysfunction in neurodegenerative diseases. Curr. Allergy Asthma Rep. 2018, 18, 42. [Google Scholar] [CrossRef] [PubMed]
- Carnemolla, S.E.; Hsieh, J.W.; Sipione, R.; Landis, B.N.; Kumfor, F.; Piguet, O.; Manuel, A.L. Olfactory dysfunction in frontotemporal dementia and psychiatric disorders: A systematic review. Neurosci. Biobehav. Rev. 2020, 18, 588–611. [Google Scholar] [CrossRef] [PubMed]
- Tonacci, A.; Billeci, L. Olfactory testing in frontotemporal dementia: A literature review. Am. J. Alzheimers Dis. Other Demen. 2018, 33, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Viveiros, C.P.; Kotsifas, N.J.E.; Duarte, A.; Dib, E.; Mercer, P.B.S.; Pessoa, R.R.; Witt, M.C.Z. Olfactory impairment in frontotemporal dementia: A systematic review and meta-analysis. Dement. Neuropsychol. 2019, 13, 154–161. [Google Scholar] [CrossRef]
- Viguera, C.; Wang, J.; Mosmiller, E.; Cerezo, A.; Maragakis, N.J. Olfactory dysfunction in amyotrophic lateral sclerosis. Ann. Clin. Transl. Neurol. 2018, 5, 976–981. [Google Scholar] [CrossRef]
- Cecchini, M.P.; Federico, A.; Zanini, A.; Mantovani, E.; Masala, C.; Tinazzi, M.; Tamburin, S. Olfaction and taste in Parkinson’s disease: The association with mild cognitive impairment and the single cognitive domain dysfunction. J. Neural Transm. 2019, 126, 585–595. [Google Scholar] [CrossRef]
- Chase, B.A.; Markopoulou, K. Olfactory Dysfunction in Familial and Sporadic Parkinson’s Disease. Front. Neurosci. 2020, 11. [Google Scholar] [CrossRef]
- Rodrigues, L.S.; Fagotti, J.; Targa, A.D.; Noseda, A.C.D.; Ilkiw, J.L.; Dorieux, F.W.; Lima, M.M. Olfactory disturbances in Parkinson’s disease. In Genetics, Neurology, Behavior, and Diet in Parkinson’s Disease; Academic Press: Cambridge, MA, USA, 2020; pp. 539–552. [Google Scholar] [CrossRef]
- Doty, R.L. Olfaction in Parkinson’s disease and related disorders. Neurobiol. Dis. 2012, 46, 527–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lafaille-Magnan, M.E.; Poirier, J.; Etienne, P.; Tremblay-Mercier, J.; Frenette, J.; Rosa-Neto, P.; Breitner, J.C.S. PREVENT-AD Research Group. Odor identification as a biomarker of preclinical AD in older adults at risk. Neurology 2017, 89, 327–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotecha, A.M.; Corrêa, A.D.; Fisher, K.M.; Rushworth, J.V. Olfactory dysfunction as a global biomarker for sniffing out Alzheimer’s disease: A meta-analysis. Biosensors 2018, 8, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacDonald, S.W.S.; Keller, C.J.C.; Brewster, P.W.H.; Dixon, R.A. Contrasting olfaction, vision, and audition as predictors of cognitive change and impairment in non-demented older adults. Neuropsychology 2018, 32, 450–460. [Google Scholar] [CrossRef]
- Kondo, K.; Kikuta, S.; Ueha, R.; Suzukawa, K.; Yamasoba, T. Age-Related Olfactory Dysfunction: Epidemiology, Pathophysiology, and Clinical Management. Front. Aging Neurosci. 2020, 12, 208. [Google Scholar] [CrossRef]
- Sorokowska, A.; Schriever, V.A.; Gudziol, V.; Hummel, C.; Hähner, A.; Iannilli, E.; Sinding, C.; Aziz, M.; Seo, H.S.; Negoias, S.; et al. Changes of olfactory abilities in relation to age: Odor identification in more than 1400 people aged 4 to 80 years. Eur. Arch. Otorhinolaryngol. 2015, 272, 1937–1944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, C.; Schubert, C.R.; Cruickshanks, K.J.; Klein, B.E.; Klein, R.; Nondahl, D.M. Prevalence of olfactory impairment in older adults. JAMA 2002, 288, 2307–2312. [Google Scholar] [CrossRef]
- Cain, W.S.; Gent, J.F. Olfactory sensitivity: Reliability, generality, and association with aging. J. Exp. Psychol. 1991, 17, 382–391. [Google Scholar] [CrossRef]
- Hummel, T.; Barz, S.; Pauli, E.; Kobal, G. Chemosensory event-related potentials change as a function of age. Electroencephalogr. Clin. Neurophysiol. 1998, 108, 208–217. [Google Scholar] [CrossRef]
- Doty, R.L.; Kamath, V. The influences of age on olfaction: A review. Front. Psychol. 2014, 5, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brai, E.; Hummel, T.; Alberi, L. Smell, an Underrated Early Biomarker for Brain Aging. Front Neurosci. 2020, 14, 792. [Google Scholar] [CrossRef] [PubMed]
- Sorokowski, P.; Karwowski, M.; Misiak, M.; Marczak, M.K.; Dziekan, M.; Hummel, T.; Sorokowska, A. Sex differences in human olfaction: A meta-analysis. Front. Psychol. 2019, 10, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brand, G.; Millot, J.L. Sex Differences in Human Olfaction: Between Evidence and Enigma. Q. J. Exp. Psychol. B 2001, 54, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Hummel, T.; Futschik, T.; Frasnelli, J.; Hüttenbrink, K.B. Effects of olfactory function, age, and gender on trigeminally mediated sensations: A study based on the lateralization of chemosensory stimuli. Toxicol. Lett. 2003, 140, 273–280. [Google Scholar] [CrossRef]
- Corwin, J.; Loury, M.; Gilbert, A.N. Workplace, age, and sex as mediators of olfactory function: Data from the National Geographic Smell Survey. J. Gerontol. B. Psychol. Sci. Soc. Sci. 1995, 50, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Doty, R.L.; Cameron, E.L. Sex differences and reproductive hormone influences on human odor perception. Physiol. Behav. 2009, 97, 213–228. [Google Scholar] [CrossRef] [Green Version]
- Larsson, M.; Lövdén, M.; Nilsson, L.G. Sex differences in recollective experience for olfactory and verbal information. Acta Psychol. 2003, 112, 89–103. [Google Scholar] [CrossRef]
- Öberg, C.; Larsson, M.; Bäckman, L. Differential sex effects in olfactory functioning: The role of verbal processing. JINS 2002, 8, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Orhan, K.S.; Karabulut, B.; Keleş, N.; Değer, K. Evaluation of factors concerning the olfaction using the Sniffin’ Sticks test. Otolaryngol. Head Neck Surg. 2012, 146, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Fornazieri, M.A.; Doty, R.L.; Bezerra, T.F.P.; de Rezende Pinna, F.; Costa, F.O.; Voegels, R.L.; Silveira-Moriyama, L. Relationship of socioeconomic status to olfactory function. Physiol. Behavior. 2019, 198, 84–89. [Google Scholar] [CrossRef]
- Seo, H.S.; Jeon, K.J.; Hummel, T.; Min, B.C. Influences of olfactory impairment on depression, cognitive performance, and quality of life in korean elderly. Eur Arch. Otorhinolaryngol. 2009, 266, 1739–1745. [Google Scholar] [CrossRef]
- Menon, C.; Westervelt, H.J.; Jahn, D.R.; Dressel, J.A.; O’Bryant, S.E. Normative performance on the Brief Smell Identification Test (BSIT) in a multi-ethnic bilingual cohort: A Project Frontier study. Clin. Neuropsychol. 2013, 27, 946–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frye, R.E.; Schwartz, B.S.; Doty, R.L. Dose-Related Effects of Cigarette Smoking on Olfactory Function. JAMA 1990, 263, 1233–1236. [Google Scholar] [CrossRef] [PubMed]
- Vennemann, M.M.; Hummel, T.; Berger, K. The association between smoking and smell and taste impairment in the general population. J. Neurol. 2008, 255, 1121–1126. [Google Scholar] [CrossRef] [PubMed]
- Venstrom, D.; Amoore, J.E. Olfactory threshold in relation to age, sex, or smoking. J. Food Sci. 1968, 33, 264–265. [Google Scholar] [CrossRef]
- Hummel, T.; Kobal, G.; Gudziol, H. Mackay-Sim, A. Normative data for the “Sniffin’ Sticks” including tests of odor identification, odor discrimination, and olfactory thresholds: An upgrade based on a group of more than 3000 subjects. Eur. Arch. Otorhinolaryngol. 2007, 264, 237–243. [Google Scholar] [CrossRef]
- Kobal, G.; Klimek, L.; Wolfensberger, M.; Gudziol, H.; Temmel, A.; Owen, C.M.; Seeber, H.; Pauli, E.; Hummel, T. Multicenter investigation of 1,036 subjects using a standardized method for the assessment of olfactory function combining tests of odor identification, odor discrimination, and olfactory thresholds. Eur. Arch. Otorhinolaryngol. 2000, 257, 205–211. [Google Scholar] [CrossRef]
- Oleszkiewicz, A.; Schriever, V.A.; Croy, I.; Hähner, A.; Hummel, T. Updated Sniffin’ Sticks normative data based on an extended sample of 9139 subjects. Eur. Arch. Otorhinolaryngol. 2019, 276, 719–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hummel, T.; Sekinger, B.; Wolf, S.R.; Pauli, E.; Kobal, G. “Sniffin’ Sticks”: Olfactory performance assessed by the combined testing of odor identification, odor discrimination, and olfactory thresholds. Chem. Senses. 1997, 22, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, J.W.; Keller, A.; Wong, M.; Jiang, R.S.; Vosshall, L.B. SMELL-S and SMELL-R: Olfactory tests not influenced by odor-specific insensitivity or prior olfactory experience. Proc. Natl. Acad. Sci. USA 2017, 114, 11275–11284. [Google Scholar] [CrossRef] [Green Version]
- Oleszkiewicz, A.; Pellegrino, R.; Pusch, K.; Margot, C.; Hummel, T. Chemical complexity of odors increases reliability of olfactory threshold testing. Sci. Rep. 2007, 7, 39977. [Google Scholar] [CrossRef] [Green Version]
- Oleszkiewicz, A.; Würfel, H.; Han, P.; Hummel, T. Molecularly diverse odors advance olfactory threshold testing. J. Sens. Stud. 2018, e12440. [Google Scholar] [CrossRef]
- Freiherr, J.; Gordon, A.R.; Alden, E.C.; Ponting, A.L.; Hernandez, M.F.; Boesveldt, S.; Lundström, J.N. The 40-item Monell Extended Sniffin’ Sticks Identification Test (MONEX-40). J. Neurosci. Methods. 2012, 205, 10–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorokowska, A.; Albrecht, E.; Haehner, A.; Hummel, T. Extended version of the “Sniffin’ Sticks” identification test: Test–retest reliability and validity. J. Neurosci. Methods. 2015, 243, 111–114. [Google Scholar] [CrossRef]
- Gellrich, J.; Stetzler, C.; Oleszkiewicz, A.; Hummel, T.; Schriever, V.A. Olfactory threshold and odor discrimination ability in children-evaluation of a modified “Sniffin’ Sticks” test. Sci. Rep. 2017, 7, 1928. [Google Scholar] [CrossRef] [Green Version]
- Hummel, T.; Rosenheim, K.; Konnerth, C.G.; Kobal, G. Screening of olfactory function with a four-minute odor identification test: Reliability, normative data, and investigations in patients with olfactory loss. Ann. Otol. Rhinol. Laryngol. 2001, 110, 976–981. [Google Scholar] [CrossRef]
- Schriever, V.A.; Mori, E.; Petters, W.; Boerner, C.; Smitka, M.; Hummel, T. The “Sniffin’ Kids” test—a 14-Item odor identification test for children. PLoS ONE 2014, 9, e101086. [Google Scholar] [CrossRef] [PubMed]
- Mueller, C.; Renner, B. A new procedure for the short screening of olfactory function using five items from the “Sniffin’ Sticks” Identification Test Kit. Am. J. Rhinol. 2006, 20, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Shu, C.H.; Yuan, B.C. Assessment of odor identification function in Asia using a modified “Sniffin’ Stick” odor identification test. Eur. Arch. Otorhinolaryngol. 2008, 265, 787–790. [Google Scholar] [CrossRef]
- Yuan, B.C.; Lee, P.L.; Lee, Y.L.; Lin, S.H.; Shu, C.H. Investigation of the Sniffin’ Sticks olfactory test in Taiwan and comparison with different continents. J. Chin. Med. Assoc. 2010, 73, 483–486. [Google Scholar] [CrossRef]
- Oleszkiewicz, A.; Taut, M.; Sorokowska, A.; Radwan, A.; Kamel, R.; Hummel, T. Development of the Arabic version of the “Sniffin’ Sticks” odor identification test. Eur. Arch. Oto. Rhino. Laryngol. 2016, 273, 1179–1184. [Google Scholar] [CrossRef]
- Mackay-Sim, A.; Grant, L.; Owen, C.; Chant, D.; Silburn, P. Australian norms for a quantitative olfactory function test. J. Clin. Neurosci. 2004, 11, 874–879. [Google Scholar] [CrossRef] [PubMed]
- Catana, I.V.; Negoiaș, S.; Maniu, A.; Cosgarea, M. The assessment of sense of smell in a Romanian northern population: Normative values using “sniffin´s sticks” olfaction test. Clujul. Medical. 2012, 85, 218–223. [Google Scholar]
- Eibenstein, A.; Fioretti, A.; Lena, C.; Rosati, N.; Ottaviano, I.; Fusetti, M. Olfactory screening test: Experience in 102 Italian subjects. Acta Otorhinolaryngol. Ital. 2005, 25, 18–22. [Google Scholar] [PubMed]
- Konstantinidis, I.; Printza, A.; Genetzaki, S.; Mamali, K.; Kekes, G.; Constantinidis, J. Cultural adaptation of an olfactory identification test: The Greek version of Sniffin´ Sticks. Rhinology 2008, 46, 292–296. [Google Scholar] [PubMed]
- Ribeiro, J.C.; Simões, J.; Silva, F.; Silva, E.D.; Hummel, C.; Hummel, T.; Paiva, A. Cultural Adaptation of the Portuguese Version of the “Sniffin’ Sticks” Smell Test: Reliability, Validity, and Normative Data. PLoS ONE 2016, 11, e0148937. [Google Scholar] [CrossRef] [Green Version]
- Boesveldt, S.; Verbaan, D.; Knol, D.; Van Hilten, J.; Berendse, H. Odour identification and discrimination in Dutch adults over 45 years. Rhinology 2008, 46, 131–136. [Google Scholar] [PubMed]
- Neumann, C.; Tsioulos, K.; Merkonidis, C.; Salam, M.; Clark, A.; Philpott, C. Validation study of the “Sniffin’ Sticks” olfactory test in a British population: A preliminary communication. Clin. Otolaryngol. 2012, 37, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Tekeli, H.; Altundag, A.; Salihoglu, M.; Cayonu, M.; Kendirli, M.T. The applicability of the “Sniffin’ Sticks” olfactory test in a Turkish population. Med. Sci. Monit. 2013, 19, 1221–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fjaeldstad, A.; Kjaergaard, T.; Van Hartevelt, T.J.; Moeller, A.; Kringelbach, M.L.; Ovesen, T. Olfactory screening: Validation of Sniffin’ Sticks in Denmark. Clin. Otolaryngol. 2015, 40, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Niklassen, A.S.; Ovesen, T.; Fernandes, H.; Fjaeldstad, A.W. Danish validation of sniffin’ sticks olfactory test for threshold, discrimination, and identification. Laryngoscope 2018, 128, 1759–1766. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Losada, M.L.; Delgado-Lima, A.H.; Bouhaben, J. Spanish Spanish Validation for Olfactory Function Testing Using the Sniffin’ Sticks Olfactory Test: Threshold, Discrimination, and Identification. Brain Sci. 2020, 10, 943. [Google Scholar] [CrossRef] [PubMed]
- Shu, C.H.; Yuan, B.C.; Lin, S.H.; Lin, C.Z. Cross-cultural application of the “Sniffin’ Sticks” odor identification test. Am. J. Rhinol. 2007, 21, 570–573. [Google Scholar] [CrossRef]
- Doty, R.L.; Shaman, P.; Kimmelman, C.P.; Dann, M.S. University of Pennsylvania Smell Identification Test: A rapid quantitative olfactory function test for the clinic. Laryngoscope 1984, 94, 176–178. [Google Scholar] [CrossRef]
- Čičelienė, J.; Vaičys, Ž.; Rastenytė, D. Development of the Lithuanian Version of Sniffin’ Sticks 12 Odor Identification Test. Medicina 2018, 54, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackman, A.H.; Doty, R.L. Utility of a three-item smell identification test in detecting olfactory dysfunction. Laryngoscope 2005, 115, 2209–2212. [Google Scholar] [CrossRef]
- Negoias, S.; Troeger, C.; Rombaux, P.; Halewyck, S.; Hummel, T. Number of descriptors in cued odor identification tests. Arch Otolaryngol Head Neck Surg. 2010, 136, 296–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller, C.A.; Grassinger, E.; Naka, A.; Temmel, A.F.; Hummel, T.; Kobal, G. A self-administered odor identification test procedure using the “Sniffin’ Sticks”. Chemi. Senses. 2006, 31, 595–598. [Google Scholar] [CrossRef] [PubMed]
- Eluecque, H.; Nguyen, D.T.; Jankowski, R. Influence of random answers on interpretation of the Sniffin’ Stick identification test in nasal polyposis. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2015, 132, 13–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorokowska, A.; Albrecht, E.; Hummel, T. Reading first or smelling first? Effects of presentation order on odor identification. Atten Percept Psychophys. 2015, 77, 731–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walliczek-Dworschak, U.; Pellegrino, R.; Shangwa, L.; Hummel, C.; Antje, H.; Hummel, T. Olfactory performance can be influenced by the presentation order, background noise, and positive concurrent feedback. Chem. Senses. 2016, 41, 697–701. [Google Scholar] [CrossRef] [Green Version]
- Markovic, K.; Reulbach, U.; Vassiliadu, A.; Lunkenheimer, J.; Lunkenheimer, B.; Spannenberger, R.; Thuerauf, N. Good News for Elderly Persons: Olfactory Pleasure Increases at Later Stages of the Life Span. J. Gerontol. Ser. A Biol. Sci. Med Sci. 2007, 62, 1287–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, M.; Zopf, Y.; Elm, C.; Pechmann, G.; Hahn, E.G.; Schwab, D.; Kornhuber, J.; Thuerauf, N.J. Subjective and Objective Olfactory Abnormalities in Crohn’s disease. Chem. Senses. 2014, 39, 529–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sollai, G.; Barbarossa, T.; Usai, P.; Hummel, T.; Crnjar, R. Association between human olfactory performance and ability to detect single compounds in complex chemical mixtures. Physiol. Behavior. 2020, 217, 112820. [Google Scholar] [CrossRef] [PubMed]
- Sucker, K.; Both, R.; Bischoff, M.; Guski, R.; Winneke, G. Odor frequency and odor annoyance. Part I: Assessment of frequency, intensity and hedonic tone of environmental odors in the field. Int. Arch. Occup. Environ. Health. 2008, 81, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Haehner, A.; Mayer, A.-M.; Landis, B.N.; Pournaras, I.; Lill, K.; Gudziol, V.; Hummel, T. High Test-Retest Reliability of the Extended Version of the “Sniffin’ Sticks” Test. Chem. Senses. 2009, 34, 705–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinbach, H.C.; Allesen-Holm, B.; Kristoffersson, L.; Bredie, W.L. Development of a sensory test method for odor measurement in a package headspace. J. Sens. Stud. 2011, 26, 118–127. [Google Scholar] [CrossRef]
- Hedner, M.; Larsson, M.; Arnold, N.; Zucco, G.M.; Hummel, T. Cognitive factors in odor detection, odor discrimination, and odor identification tasks. J. Clin. Exp. Neuropsychol. 2010, 32, 1062–1067. [Google Scholar] [CrossRef]
- Wehling, E.I.; Nordin, S.; Espeseth, T.; Reinvang, I.; Lundervold, A.J. Familiarity, cued and free odor identification and their association with cognitive functioning in middle aged and older adults. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 2010, 17, 205–219. [Google Scholar] [CrossRef]
- Danthiir, V.; Roberts, R.D.; Pallier, G.; Stankov, L. What the nose knows: Olfaction and cognitive abilities. Intelligence 2001, 29, 337–361. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler Memory Scale, 4th ed.; NCS Pearson Inc.: San Antonio, TX, USA, 2008. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria. 2018. Available online: https://www.R-project.org/ (accessed on 15 December 2020).
- Schmeiser, C.B.; Welch, C.J. Test development. In Educational Measurement, 4th ed.; Brennan, R.L., Ed.; Praeger Publishers: Westport, CT, USA, 2006. [Google Scholar]
- Abad, F.; Olea, J.; Ponsoda, V.; García, C. Medición en Ciencias Sociales y de la Salud; Síntesis: Madrid, Spain, 2011. [Google Scholar]
- Flora, D.B.; Curran, P.J. An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychol. Methods 2004, 9, 466. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Zhou, X.; Jenkins, R. Dunning-Kruger effects in face perception. Cognition 2020, 203, 104345. [Google Scholar] [CrossRef]
- McIntosh, R.D.; Fowler, E.A.; Lyu, T.; Della Sala, S. Wise up: Clarifying the role of metacognition in the Dunning-Kruger effect. J. Exp. Psychol. Gen. 2019, 148, 1882–1897. [Google Scholar] [CrossRef] [PubMed]
- Muller, A.; Sirianni, L.A.; Addante, R.J. Neural correlates of the Dunning–Kruger effect. Eur. J. Neurosci. 2021, 53, 460–484. [Google Scholar] [CrossRef]
- Muller, A.; Sirianni, L.A.; Addante, R.J. Neurophysiological correlates of the Dunning-Kruger effect. Eur. J. Neurosci. 2019. [Google Scholar] [CrossRef] [Green Version]
- Razani, J.; Chan, A.; Nordin, S.; Murphy, C. Semantic networks for odors and colors in Alzheimer’s disease. Neuropsychology 2010, 24, 291–299. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.M.E.; Mercer, P.B.S.; Witt, M.C.Z.; Pessoa, R.R. Olfactory dysfunction in Alzheimer’s disease Systematic review and meta-analysis. Dement Neuropsychol. 2018, 12, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Tahmasebi, R.; Zehetmayer, S.; Pusswald, G.; Kovacs, G.; Stögmann, E.; Lehrner, J. Identification of odors, faces, cities and naming of objects in patients with subjective cognitive decline, mild cognitive impairment and Alzheimer’s disease: A longitudinal study. Int. Psychogeriatr. 2019, 31, 537–549. [Google Scholar] [CrossRef]
- Conti, M.Z.; Vicini-Chilovi, B.; Riva, M.; Zanetti, M.; Liberini, P.; Padovani, A.M.; Rozzini, L. Odor identification déficit predicts clinical conversión from mild cognitive impairment to dementia due to Alzheimer´s disease. Arch Clin. Neuropsychol. 2013, 28, 391–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velayudhan, L.; Pritchard, M.; Powell, F.; Proitsi, P.; Lovestone, S. Smell identification function as a severity and progression marker in Alzheimer’s disease. Int. Psychogeriatr. 2013, 25, 1157–1166. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Arias, M.R.; Hernández Lloreda, M.V.; Hernández Lloreda, M.J. Teoría Clásica de los Tests (TCT) I: El modelo y la fiabilidad de las puntuaciones. In En. Psicometría; Alianza Editorial: Madrid, Spain, 2014; pp. 37–67. [Google Scholar]
- McCaffrey, R.J.; Ortega, A.; Orsill, S.M.; Nelles, W.B.; Haase, R.F. Practice effects in repeated neuropsychological assessments. Clin. Neuropsychol. 1992, 6, 32–42. [Google Scholar] [CrossRef]
- McCaffrey, R.J.; Westervelt, H.J. Issues associated with repeated neuropsychological assessments. Neuropsychol. Rev. 1995, 5, 203–221. [Google Scholar] [CrossRef] [PubMed]
Free Recall | Recognition | Intensity | ||
---|---|---|---|---|
Overall Sample | ||||
n | 417 | 417 | 417 | |
Mean | 3 | 12.86 | 6.9 | |
SD | 2.33 | 2.18 | 1.31 | |
Mean CI 95% | [2.78, 3.22] | [12.65, 13.07] | [6.78, 7.03] | |
Min | 0 | 4 | 3.06 | |
Max | 11 | 16 | 10 | |
Percentiles | 5 | 0 | 9 | 4.55 |
10 | 0 | 10 | 5.01 | |
25 | 1 | 12 | 6 | |
50 | 3 | 13 | 7 | |
75 | 5 | 14 | 7.87 | |
90 | 6 | 15 | 8.56 | |
95 | 7 | 16 | 8.87 | |
Age Group [20–30) | ||||
n | 21 | 21 | 21 | |
Mean | 2.76 | 12.52 | 7.83 | |
SD | 2.30 | 2.01 | 1.23 | |
Mean CI 95% | [1.78, 3.74] | [11.66, 13.38] | [7.3, 8.36] | |
Min | 0 | 8 | 4.81 | |
Max | 7 | 16 | 10 | |
Percentiles | 5 | 0 | 10 | 5.87 |
10 | 0 | 10 | 6.5 | |
25 | 1 | 11 | 7.25 | |
50 | 3 | 13 | 8.31 | |
75 | 4 | 13 | 8.5 | |
90 | 6 | 15 | 8.75 | |
95 | 6 | 16 | 9.75 | |
Age Group [30–40) | ||||
n | 23 | 23 | 23 | |
Mean | 4.26 | 13.74 | 7.21 | |
SD | 2.53 | 1.54 | 1.09 | |
Mean CI 95% | [3.23, 5.29] | [13.11, 14.37] | [6.77, 7.66] | |
Min | 0 | 11 | 4.56 | |
Max | 11 | 16 | 8.75 | |
Percentiles | 5 | 1 | 11.1 | 5.31 |
10 | 1.2 | 12 | 5.95 | |
25 | 2.5 | 13 | 6.5 | |
50 | 4 | 14 | 7.25 | |
75 | 5 | 15 | 8.03 | |
90 | 7 | 15.8 | 8.42 | |
95 | 7.9 | 16 | 8.55 | |
Age Group [40–50) | ||||
n | 40 | 40 | 40 | |
Mean | 3.52 | 13.52 | 7.33 | |
SD | 2.58 | 1.6 | 1.10 | |
Mean CI 95% | [2.72, 4.32] | [13.03, 14.02] | [6.99, 7.67] | |
Min | 0 | 10 | 4.93 | |
Max | 10 | 16 | 9.5 | |
Percentiles | 5 | 0 | 10.95 | 5.41 |
10 | 1 | 12 | 5.74 | |
25 | 2 | 12 | 6.56 | |
50 | 3 | 14 | 7.4 | |
75 | 5 | 15 | 8.25 | |
90 | 7.1 | 16 | 8.58 | |
95 | 8.05 | 16 | 8.81 | |
Age Group [50–60) | ||||
n | 139 | 139 | 139 | |
Mean | 3.47 | 13.45 | 6.97 | |
SD | 2.30 | 1.58 | 1.34 | |
Mean CI 95% | [3.09, 3.85] | [13.19, 13.71] | [6.75, 7.19] | |
Min | 0 | 6 | 3.45 | |
Max | 10 | 16 | 10 | |
Percentiles | 5 | 0 | 11 | 4.5 |
10 | 0 | 11 | 5.11 | |
25 | 2 | 13 | 6.22 | |
50 | 3 | 14 | 7.06 | |
75 | 5 | 14 | 7.87 | |
90 | 6 | 15 | 8.62 | |
95 | 7 | 16 | 9 | |
Age Group [60, 70) | ||||
n | 99 | 99 | 99 | |
Mean | 2.69 | 12.87 | 6.78 | |
SD | 2.26 | 1.88 | 1.32 | |
Mean CI 95% | [2.24, 3.13] | [12.5, 13.24] | [6.52, 7.04] | |
Min | 0 | 5 | 3.94 | |
Max | 9 | 16 | 9.81 | |
Percentiles | 5 | 0 | 9.9 | 4.84 |
10 | 0 | 11 | 5.26 | |
25 | 1 | 12 | 5.78 | |
50 | 2 | 13 | 6.81 | |
75 | 4 | 14 | 7.72 | |
90 | 6 | 15 | 8.59 | |
95 | 7 | 15 | 8.89 | |
Age Group [>70) | ||||
n | 95 | 95 | 95 | |
Mean | 2.16 | 11.58 | 6.47 | |
SD | 1.97 | 2.94 | 1.23 | |
Mean CI 95% | [1.76, 2.55] | [11.99, 12.17] | [6.22, 6.71] | |
Min | 0 | 4 | 3.06 | |
Max | 8 | 16 | 9.06 | |
Percentiles | 5 | 0 | 5 | 4.05 |
10 | 0 | 7 | 4.94 | |
25 | 0 | 10 | 5.81 | |
50 | 2 | 12 | 6.62 | |
75 | 3 | 14 | 7.37 | |
90 | 5 | 15 | 7.94 | |
95 | 6 | 15 | 8.19 |
Free Recall | Recognition | Subjective Intensity | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Odor Target | Difficulty | Bis | pBis | Difficulty | Bis | pBis | Item Mean | Bis | pBis | |
Item 1 | Orange | 0.247 | 0.281 | 0.214 | 0.952 | 0.32 | 0.213 | 6.863 | 0.638 | 0.62 |
Item 2 | Leather | 0.05 | 0.179 | 0.086 | 0.815 | 0.226 | 0.178 | 5.89 | 0.584 | 0.57 |
Item 3 | Cinnamon | 0.271 | 0.389 | 0.305 | 0.765 | 0.2 | 0.16 | 6.6 | 0.583 | 0.562 |
Item 4 | Mint | 0.415 | 0.365 | 0.299 | 0.906 | 0.45 | 0.353 | 7.758 | 0.665 | 0.642 |
Item 5 | Banana | 0.264 | 0.375 | 0.199 | 0.923 | 0.353 | 0.267 | 7.297 | 0.664 | 0.624 |
Item 6 | Lemon | 0.072 | 0.313 | 0.177 | 0.575 | 0.161 | 0.129 | 5.642 | 0.63 | 0.616 |
Item 7 | Liquorice | 0.122 | 0.295 | 0.196 | 0.818 | 0.354 | 0.285 | 6.65 | 0.65 | 0.335 |
Item 8 | Solvent | 0.014 | 0.37 | 0.123 | 0.592 | 0.029 | 0.023 | 6.68 | 0.648 | 0.626 |
Item 9 | Garlic | 0.35 | 0.448 | 0.367 | 0.858 | 0.352 | 0.286 | 8.024 | 0.702 | 0.684 |
Item 10 | Coffee | 0.367 | 0.429 | 0.348 | 0.868 | 0.328 | 0.256 | 7.218 | 0.685 | 0.673 |
Item 11 | Apple | 0.029 | 0.299 | 0.127 | 0.52 | 0.33 | 0.249 | 6.369 | 0.625 | 0.612 |
Item 12 | Clove | 0.053 | 0.354 | 0.194 | 0.729 | 0.176 | 0.141 | 6.774 | 0.641 | 0.626 |
Item 13 | Pineapple | 0.019 | 0.356 | 0.138 | 0.791 | 0.215 | 0.169 | 6.376 | 0.68 | 0.663 |
Item 14 | Rose | 0.129 | 0.402 | 0.271 | 0.892 | 0.376 | 0.29 | 7.141 | 0.695 | 0.677 |
Item 15 | Anise | 0.216 | 0.373 | 0.282 | 0.9 | 0.41 | 0.323 | 6.914 | 0.642 | 0.624 |
Item 16 | Fish | 0.381 | 0.41 | 0.335 | 0.966 | 0.34 | 0.222 | 8.247 | 0.639 | 0.62 |
Absolute Fit Indexes | Blue | Purple |
---|---|---|
, df (p value) | 116.277, 104 (0.193) | 114.114, 104 (0.234) |
/df | 1.12 | 1.10 |
RMSEA [CI 95%] | 0.023 [0, 0.042] | 0.021 [0, 0.041] |
SRMR | 0.062 | 0.061 |
CFI | 0.831 | 0.756 |
TLI | 0.805 | 0.719 |
Internal Consistency Statistics | ||
MacDonald’s omega | 0.57 | 0.43 |
Cronbach’s alpha | 0.6 | 0.45 |
Original Odor Descriptor | Proposed Spanish Translation | % Familiarity | Original Odor Descriptor | Proposed Spanish Translation | % Familiarity |
---|---|---|---|---|---|
Coffee | Cafe | 96.80 | Caramel | Caramelo | 74.40 |
Orange | Naranja | 95.73 | Parsley | Perejil | 74.13 |
Garlic | Ajo | 93.33 | Paprika | Pimenton dulce | 73.87 |
Chocolate | Chocolate | 92.27 | Salami | Salami | 73.07 |
Lemon | Limon | 91.47 | Carrot | Zanahoria | 71.20 |
Ham | Jamon | 90.67 | Peanut | Cacahuete | 70.93 |
Onion | Cebolla | 90.67 | Mustard | Mostaza | 70.13 |
Cinnamon | Canela | 89.07 | Gummy | Gominola | 69.87 |
Grass | Cesped | 88.80 | Coke | CocaCola | 69.60 |
Rose | Rosa | 87.73 | Smoked meat | Carne ahumada | 68.27 |
Eucalyptus | Eucalipto | 86.93 | Sauerkraut | Coles | 68.00 |
Strawberry | Fresa | 85.60 | Mushroom | Champiñon | 68.00 |
Cigarette | Tabaco | 85.60 | Grape | Uva | 67.47 |
Melon | Melon | 84.80 | Lilac | Lila | 67.20 |
Apple | Manzana | 84.00 | Nutmeg | Nuez moscada | 65.33 |
Lavender | Lavanda | 83.73 | Raspberry | Frambuesa | 65.07 |
Peach | Melocoton | 81.60 | Cherry | Cereza | 63.20 |
Wood | Madera | 81.33 | Ginger | Jengibre | 62.40 |
Coconut | Coco | 80.53 | Fir | Abeto | 61.87 |
Liquorice | Regaliz | 78.67 | Plum | Ciruela | 61.07 |
Vanilla | Vainilla | 78.13 | Chive | Cebollino | 58.67 |
Leather | Cuero | 77.07 | Grapefruit | Pomelo | 55.20 |
Cookies | Galletas | 76.27 | Sauerkraut | Chucrut | 50.67 |
Pepper | Pimienta | 75.73 | Paprika | Paprica | 46.13 |
Pear | Pera | 74.4 | Gooseberry | Grosella | 40.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado-Losada, M.L.; Bouhaben, J.; Delgado-Lima, A.H. Development of the Spanish Version of Sniffin’s Sticks Olfactory Identification Test: Normative Data and Validity of Parallel Measures. Brain Sci. 2021, 11, 216. https://doi.org/10.3390/brainsci11020216
Delgado-Losada ML, Bouhaben J, Delgado-Lima AH. Development of the Spanish Version of Sniffin’s Sticks Olfactory Identification Test: Normative Data and Validity of Parallel Measures. Brain Sciences. 2021; 11(2):216. https://doi.org/10.3390/brainsci11020216
Chicago/Turabian StyleDelgado-Losada, María Luisa, Jaime Bouhaben, and Alice Helena Delgado-Lima. 2021. "Development of the Spanish Version of Sniffin’s Sticks Olfactory Identification Test: Normative Data and Validity of Parallel Measures" Brain Sciences 11, no. 2: 216. https://doi.org/10.3390/brainsci11020216
APA StyleDelgado-Losada, M. L., Bouhaben, J., & Delgado-Lima, A. H. (2021). Development of the Spanish Version of Sniffin’s Sticks Olfactory Identification Test: Normative Data and Validity of Parallel Measures. Brain Sciences, 11(2), 216. https://doi.org/10.3390/brainsci11020216