Thalamocortical Connectivity in Experimentally-Induced Migraine Attacks: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Clinical Assessment
2.3. MRI Acquisition
2.4. NTG-Induction Paradigm
3. Results
3.1. Cohort Characteristics
3.2. Imaging
4. Discussion
4.1. Brain Regions with Altered FC
4.1.1. SCA Approach
4.1.2. WCA Approach
4.2. Overall Interpretation of Imaging Findings
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goadsby, P.J.; Holland, P.R. An Update: Pathophysiology of Migraine. Neurol. Clin. 2019, 37, 651–671. [Google Scholar] [CrossRef] [PubMed]
- Burstein, R.; Noseda, R.; Borsook, D. Migraine: Multiple Processes, Complex Pathophysiology. J. Neurosci. 2015, 35, 6619–6629. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Park, B.-Y.; Cho, S.; Kim, S.; Park, H.; Chung, C.-S. Increased connectivity of pain matrix in chronic migraine: A resting-state functional MRI study. J. Headache Pain 2019, 20, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Androulakis, M.; Rorden, C.; Peterlin, B.L.; Krebs, K. Modulation of salience network intranetwork resting state functional connectivity in women with chronic migraine. Cephalalgia 2017, 38, 1731–1741. [Google Scholar] [CrossRef] [PubMed]
- Veréb, D.; Szabó, N.; Tuka, B.; Tajti, J.; Király, A.; Faragó, P.; Kocsis, K.; Tóth, E.; Bozsik, B.; Kincses, B.; et al. Temporal instability of salience network activity in migraine with aura. Pain 2020, 161, 856–864. [Google Scholar] [CrossRef] [PubMed]
- Coppola, G.; Di Renzo, A.; Tinelli, E.; Di Lorenzo, C.; Scapeccia, M.; Parisi, V.; Serrao, M.; Evangelista, M.; Ambrosini, A.; Colonnese, C.; et al. Resting state connectivity between default mode network and insula encodes acute migraine headache. Cephalalgia 2018, 38, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Tessitore, A.; Russo, A.; Giordano, A.; Conte, F.; Corbo, D.; De Stefano, M.; Cirillo, S.; Cirillo, M.; Esposito, F.; Tedeschi, G. Disrupted default mode network connectivity in migraine without aura. J. Headache Pain 2013, 14, 89. [Google Scholar] [CrossRef] [Green Version]
- Coppola, G.; Di Renzo, A.; Petolicchio, B.; Tinelli, E.; Di Lorenzo, C.; Parisi, V.; Serrao, M.; Calistri, V.; Tardioli, S.; Cartocci, G.; et al. Aberrant interactions of cortical networks in chronic migraine: A resting-state fMRI study. Neurology 2019, 92, e2550–e2558. [Google Scholar] [CrossRef]
- Skorobogatykh, K.; Van Hoogstraten, W.S.; Degan, D.; Prischepa, A.; Savitskaya, A.; Ileen, B.M.; Bentivegna, E.; Skiba, I.; D’Acunto, L.; Ferri, L.; et al. Functional connectivity studies in migraine: What have we learned? J. Headache Pain 2019, 20, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Younis, S.; Hougaard, A.; Noseda, R.; Ashina, M. Current understanding of thalamic structure and function in migraine. Cephalalgia 2019, 39, 1675–1682. [Google Scholar] [CrossRef]
- Tu, Y.; Fu, Z.; Zeng, F.; Maleki, N.; Lan, L.; Li, Z.; Park, J.; Wilson, G.; Gao, Y.; Liu, M.; et al. Abnormal thalamocortical network dynamics in migraine. Neurology 2019, 92, e2706–e2716. [Google Scholar] [CrossRef] [PubMed]
- Burstein, R.; Jakubowski, M.; Garcia-Nicas, E.; Kainz, V.; Bajwa, Z.; Hargreaves, R.; Becerra, L.; Borsook, D. Thalamic sensitization transforms localized pain into widespread allodynia. Ann. Neurol. 2010, 68, 81–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulte, L.H.; May, A. The migraine generator revisited: Continuous scanning of the migraine cycle over 30 days and three spontaneous attacks. Brain 2016, 139, 1987–1993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulte, L.H.; May, A. Of generators, networks and migraine attacks. Curr. Opin. Neurol. 2017, 30, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Valsasina, P.; De La Cruz, M.H.; Filippi, M.; Rocca, M.A. Characterizing Rapid Fluctuations of Resting State Functional Connectivity in Demyelinating, Neurodegenerative, and Psychiatric Conditions: From Static to Time-Varying Analysis. Front. Neurosci. 2019, 13, 618. [Google Scholar] [CrossRef]
- Chang, C.; Glover, G.H. Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage 2010, 50, 81–98. [Google Scholar] [CrossRef] [Green Version]
- Bernas, A.; Aldenkamp, A.P.; Zinger, S. Wavelet coherence-based classifier: A resting-state functional MRI study on neurodynamics in adolescents with high-functioning autism. Comput. Methods Programs Biomed. 2018, 154, 143–151. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Q.; Chen, L.M. Abnormal dynamics of cortical resting state functional connectivity in chronic headache patients. Magn. Reson. Imaging 2017, 36, 56–67. [Google Scholar] [CrossRef]
- DeMartini, C.; Greco, R.; Zanaboni, A.M.; Sances, G.; De Icco, R.; Borsook, D.; Tassorelli, C. Nitroglycerin as a comparative experimental model of migraine pain: From animal to human and back. Prog. Neurobiol. 2019, 177, 15–32. [Google Scholar] [CrossRef]
- Sances, G.; Tassorelli, C.; Pucci, E.; Ghiotto, N.; Sandrini, G.; Nappi, G. Reliability of the Nitroglycerin Provocative Test in the Diagnosis of Neurovascular Headaches. Cephalalgia 2004, 24, 110–119. [Google Scholar] [CrossRef]
- Karsan, N.; Bose, P.R.; O’Daly, O.; Zelaya, F.O.; Goadsby, P.J. Alterations in Functional Connectivity During Different Phases of the Triggered Migraine Attack. Headache J. Head Face Pain 2020. [Google Scholar] [CrossRef] [PubMed]
- Vincent, M.; Wang, S. Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd ed.; Cephalalgia; Sage Publications: Thousand Oaks, CA, USA, 2018; Volume 38, pp. 1–211, Cephalalgia. [Google Scholar]
- Castellazzi, G.; Cuzzoni, M.G.; Ramusino, M.C.; Martinelli, D.; Denaro, F.; Ricciardi, A.; Vitali, P.; Anzalone, N.; Bernini, S.; Palesi, F.; et al. A Machine Learning Approach for the Differential Diagnosis of Alzheimer and Vascular Dementia Fed by MRI Selected Features. Front. Aging Neurosci. 2020, 14, 25. [Google Scholar] [CrossRef] [PubMed]
- Diedrichsen, J.; Balsters, J.H.; Flavell, J.; Cussans, E.; Ramnani, N. A probabilistic MR atlas of the human cerebellum. NeuroImage 2009, 46, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, M.J.; Modat, M.; Wolz, R.; Melbourne, A.; Cash, D.M.; Rueckert, D.; Ourselin, S. Geodesic Information Flows: Spatially-Variant Graphs and Their Application to Segmentation and Fusion. IEEE Trans. Med. Imaging 2015, 34, 1976–1988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amin, F.M.; Hougaard, A.; Magon, S.; Sprenger, T.; Wolfram, F.; Rostrup, E.; Ashina, M. Altered thalamic connectivity during spontaneous attacks of migraine without aura: A resting-state fMRI study. Cephalalgia 2018, 38, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- Kagan, R.; Kainz, V.; Burstein, R.; Noseda, R. Hypothalamic and basal ganglia projections to the posterior thalamus: Possible role in modulation of migraine headache and photophobia. Neuroscience 2013, 248, 359–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noseda, R.; Borsook, D.; Burstein, R. Neuropeptides and Neurotransmitters That Modulate Thalamo-Cortical Pathways Relevant to Migraine Headache. Headache J. Head Face Pain 2017, 57, 97–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mainero, C.; Bs, J.B.; Hadjikhani, N. Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Ann. Neurol. 2011, 70, 838–845. [Google Scholar] [CrossRef] [Green Version]
- Hougaard, A.; Amin, F.M.; Larsson, H.B.; Rostrup, E.; Ashina, M. Increased intrinsic brain connectivity between pons and somatosensory cortex during attacks of migraine with aura. Hum. Brain Mapp. 2017, 38, 2635–2642. [Google Scholar] [CrossRef] [Green Version]
- Schulte, L.H.; May, A. Functional Neuroimaging in Migraine: Chances and Challenges. Headache J. Head Face Pain 2016, 56, 1474–1481. [Google Scholar] [CrossRef]
- Castellazzi, G.; Debernard, L.; Melzer, T.R.; Dalrymple-Alford, J.C.; D’Angelo, E.; Miller, D.H.; Wheeler-Kingshott, C.A.M.G.; Mason, D.F. Functional Connectivity Alterations Reveal Complex Mechanisms Based on Clinical and Radiological Status in Mild Relapsing Remitting Multiple Sclerosis. Front. Neurol. 2018, 9, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, C.F.; DeLuca, M.; Devlin, J.T.; Smith, S.M. Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 1001–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, S.M.; Fox, P.M.; Miller, K.L.; Glahn, D.C.; Mackay, C.E.; Filippini, N.; Watkins, K.E.; Toro, R.; Laird, A.R.; Beckmann, C.F. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. USA 2009, 106, 13040–13045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61. [Google Scholar] [CrossRef] [Green Version]
- Mallat, S. A Wavelet Tour of Signal Processing, 3rd ed.; Academic Press: Cambridge, MA, USA, 2008; pp. 65–67. [Google Scholar]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Borsook, D.; Veggeberg, R.; Erpelding, N.; Borra, R.; Linnman, C.; Burstein, R.; Becerra, L. The Insula: A “Hub of Activity” in Migraine. Neuroscientist 2016, 22, 632–652. [Google Scholar] [CrossRef] [Green Version]
- Afridi, S.K.; Matharu, M.S.; Lee, L.; Kaube, H.; Friston, K.J.; Frackowiak, R.S.J.; Goadsby, P.J. A PET study exploring the laterality of brainstem activation in migraine using glyceryl trinitrate. Brain 2005, 128, 932–939. [Google Scholar] [CrossRef]
- Borsook, D.; Burstein, R. The enigma of the dorsolateral pons as a migraine generator. Cephalalgia 2012, 32, 803–812. [Google Scholar] [CrossRef] [Green Version]
- Kros, L.; Aristizábal, C.A.A.; Khodakhah, K. Cerebellar involvement in migraine. Cephalalgia 2018, 38, 1782–1791. [Google Scholar] [CrossRef]
- Moulton, E.A.; Schmahmann, J.D.; Becerra, L.; Borsook, D. The cerebellum and pain: Passive integrator or active participator? Brain Res. Rev. 2010, 65, 14–27. [Google Scholar] [CrossRef] [Green Version]
- Guell, X.; Schmahmann, J. Cerebellar Functional Anatomy: A Didactic Summary Based on Human fMRI Evidence. Cerebellum 2020, 19, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Angelo, E.; Casali, S. Seeking a unified framework for cerebellar function and dysfunction: From circuit operations to cognition. Front. Neural Circuits 2013, 6, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bostan, A.C.; Dum, R.P.; Strick, P.L. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn. Sci. 2013, 17, 241–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kros, L.; Eelkman Rooda, O.H.; Spanke, J.K.; Alva, P.; van Dongen, M.N.; Karapatis, A.; Tolner, E.A.; Strydis, C.; Davey, N.; Winkelman, B.H.; et al. Cerebellar output controls generalized spike-and-wave discharge occurrence. Ann. Neurol. 2015, 77, 1027–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehnert, J.; May, A. Functional and structural alterations in the migraine cerebellum. J. Cereb. Blood Flow Metab. 2019, 39, 730–739. [Google Scholar] [CrossRef]
- Coppola, G.; Di Renzo, A.; Tinelli, E.; Di Lorenzo, C.; Di Lorenzo, G.; Parisi, V.; Serrao, M.; Schoenen, J.; Pierelli, F. Thalamo-cortical network activity during spontaneous migraine attacks. Neurology 2016, 87, 2154–2160. [Google Scholar] [CrossRef]
- Garcia-Larrea, L.; Bastuji, H. Pain and consciousness. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 87 Pt B, 193–199. [Google Scholar] [CrossRef]
- Legrain, V.; Iannetti, G.D.; Plaghki, L.; Mouraux, A. The pain matrix reloaded: A salience detection system for the body. Prog. Neurobiol. 2011, 93, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Sotgiu, M.L. The Thalamus and Pain. In Neuroscience: Focus on Acute and Chronic Pain; Tiengo, M.A., Ed.; Springer: Milan, Italy, 2001; pp. 37–42. [Google Scholar]
- Di Pietro, F.; Macey, P.M.; Rae, C.D.; Alshelh, Z.; Macefield, V.G.; Vickers, E.R.; Henderson, L.A. The relationship between thalamic GABA content and resting cortical rhythm in neuropathic pain. Hum. Brain Mapp. 2018, 39, 1945–1956. [Google Scholar] [CrossRef]
- Llinás, R.; Urbano, F.J.; Leznik, E.; Ramírez, R.R.; Van Marle, H.J. Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci. 2005, 28, 325–333. [Google Scholar] [CrossRef]
- Llinás, R.R.; Ribary, U.; Jeanmonod, D.; Kronberg, E.; Mitra, P.P. Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc. Natl. Acad. Sci. USA 1999, 96, 15222–15227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppola, G.; Ambrosini, A.; Di Clemente, L.; Magis, D.; Fumal, A.; Gerard, P.; Pierelli, F.; Schoenen, J. Interictal Abnormalities of Gamma Band Activity in Visual Evoked Responses in Migraine: An Indication of Thalamocortical Dysrhythmia? Cephalalgia 2007, 27, 1360–1367. [Google Scholar] [CrossRef] [PubMed]
- Vanneste, S.; Song, J.-J.; De Ridder, D. Thalamocortical dysrhythmia detected by machine learning. Nat. Commun. 2018, 9, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, J.; Xiang, J.; Chen, Y.; Li, F.; Wu, T.; Shi, J. Abnormal functional connectivity under somatosensory stimulation in migraine: A multi-frequency magnetoencephalography study. J. Headache Pain 2019, 20, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Arslan, S.; Ktena, S.I.; Makropoulos, A.; Robinson, E.C.; Rueckert, D.; Parisot, S. Human brain mapping: A systematic comparison of parcellation methods for the human cerebral cortex. NeuroImage 2018, 170, 5–30. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Kerndt, C.; Schaller, D. Nitroglycerin; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Greco, R.; Meazza, C.; Mangione, A.S.; Allena, M.; Bolla, M.; Amantea, D.; Mizoguchi, H.; Sandrini, G.; Nappi, G.; Tassorelli, C. Temporal profile of vascular changes induced by systemic nitroglycerin in the meningeal and cortical districts. Cephalalgia 2011, 31, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Greco, R.; DeMartini, C.; De Icco, R.; Martinelli, D.; Putortì, A.; Tassorelli, C. Migraine neuroscience: From experimental models to target therapy. Neurol. Sci. 2020, 41, 351–361. [Google Scholar] [CrossRef]
ROI Location | MNI Coordinates (x,y,z) | r (mm) |
---|---|---|
Left Dorsal Pons [26] | −8 −24 −32 | 5 |
Right Dorsal Pons [26] | 8 −24 −32 | 5 |
Left PAG [29] | −2 −28 −6 | 3 |
Right PAG [29] | 4 −28 −6 | 3 |
Hypothalamus [30] | 0 2 −6 | 3 |
Left Spinal Trigeminal Nucleus, Pars Caudalis [13] | 4 −40 −55 | 3 |
Right Spinal Trigeminal Nucleus, Pars Caudalis [13] | −4 −40 −55 | 3 |
Dorsal Raphe Nucleus [31] | 0 −28 −12 | 3 |
Female, n (total) | 2 (5) |
Age, years | 33.4 ± 7.1 |
Migraine frequency, n. of days per month | 4.4 ± 2.7 |
Disease onset, age in years | 13.2 ± 4.5 |
Disease duration, years | 20.2 ± 7.9 |
Comorbid tension type headache, n (%) | 2 (40%) |
Tension type frequency, n. of days per month | 1.2 ± 1.0 |
Comorbid anxiety, n (%) | 1 (20%) |
Subject ID | Anamnestic Migraine Features ˄ | Presence of Not Specific Headache after NTG Administration∫ | MRI Scan 1, Minutes Post NTG | Premonitory Features at Prodromal Scan † | MRI Scan 2, Minutes Post Induction | NRS */ Pain Side at Full Blown « | Migraine Features during Full Blown Scan ˄ | Self Reported Resemblance with Typical Migraine Attack ~ | MRI Scan 3, Minutes at Recovery after NSAID | NRS * Recovery |
---|---|---|---|---|---|---|---|---|---|---|
EM1 | 0/0/1/1/1/1 | 1 | 80 | 0/0/0/1/0/0/0/0/0/1/0 | 200 | 7/R | 0/0/1/1/1/1 | 1 | 85 | 1 |
EM2 | 0/0/1/0/1/1 | 1 | 31 | 1/0/0/1/1/0/0/0/0/0/0 | 140 | 5/R | 0/0/1/0/1/1 | 1 | 50 | 0 |
EM3 | 1/1/1/1/0/1 | 1 | 110 | 0/0/0/0/1/0/0/0/1/1/0/0 | 155 | 6/L | 1/0/1/1/0/1 | 1 | 70 | 1 |
EM4 | 1/0/1/0/1/1 | 0 | 38 | 1/1/0/0/0/0/0/1/0/0/0/0 | 70 | 8/B | 1/0/1/0/1/1 | 1 | 95 | 0 |
EM5 | 0/0/1/1/1/1 | 0 | 65 | 0/0/0/0/1/0/0/1/1/0/0 | 105 | 6/B | 1/0/1/1/1/1 | 0 | 106 | 1 |
Median | 65 | 140 | 6 * | 85 | 1 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinelli, D.; Castellazzi, G.; De Icco, R.; Bacila, A.; Allena, M.; Faggioli, A.; Sances, G.; Pichiecchio, A.; Borsook, D.; Gandini Wheeler-Kingshott, C.A.M.; et al. Thalamocortical Connectivity in Experimentally-Induced Migraine Attacks: A Pilot Study. Brain Sci. 2021, 11, 165. https://doi.org/10.3390/brainsci11020165
Martinelli D, Castellazzi G, De Icco R, Bacila A, Allena M, Faggioli A, Sances G, Pichiecchio A, Borsook D, Gandini Wheeler-Kingshott CAM, et al. Thalamocortical Connectivity in Experimentally-Induced Migraine Attacks: A Pilot Study. Brain Sciences. 2021; 11(2):165. https://doi.org/10.3390/brainsci11020165
Chicago/Turabian StyleMartinelli, Daniele, Gloria Castellazzi, Roberto De Icco, Ana Bacila, Marta Allena, Arianna Faggioli, Grazia Sances, Anna Pichiecchio, David Borsook, Claudia A. M. Gandini Wheeler-Kingshott, and et al. 2021. "Thalamocortical Connectivity in Experimentally-Induced Migraine Attacks: A Pilot Study" Brain Sciences 11, no. 2: 165. https://doi.org/10.3390/brainsci11020165
APA StyleMartinelli, D., Castellazzi, G., De Icco, R., Bacila, A., Allena, M., Faggioli, A., Sances, G., Pichiecchio, A., Borsook, D., Gandini Wheeler-Kingshott, C. A. M., & Tassorelli, C. (2021). Thalamocortical Connectivity in Experimentally-Induced Migraine Attacks: A Pilot Study. Brain Sciences, 11(2), 165. https://doi.org/10.3390/brainsci11020165