Volumetric Response of Limited Brain Metastatic Disease to Focal Hypofractionated Radiation Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Baseline Characteristics
2.3. HFRT Protocol
2.4. Volumetric Assessment
2.5. Study Endpoints
2.6. Statistical Analysis
3. Results
3.1. Demographic Data
3.2. Patient Treatments and Outcomes
3.3. Individual Lesion Treatments and Outcomes
3.4. Factors Associated with Volumetric Endpoints
3.5. Factors Associated with Overall Survival
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
Total Volume | Individual Volume | |||
---|---|---|---|---|
Factor | Unstandardised B (95% CI) | p Value | Unstandardised B (95% CI) | p Value |
Age at diagnosis | −0.24 (−1.49–1.01) | 0.705 | −0.08 (−1.23–1.07) | 0.892 |
Male sex | −0.70 (−31.3–29.90) | 0.964 | −11.68 (−39.00–15.63) | 0.400 |
GTV0 | 0.07 (−2.05–2.19) | 0.948 | 0.428 (−3.30–4.16) | 0.821 |
Melanoma primary | −17.43 (−76.79–41.93) | 0.561 | −23.46 (−74.56–27.64) | 0.366 |
Colorectal primary | −60.89 (−122.46–0.68) | 0.053 | −28.97 (−82.83–24.90) | 0.290 |
NSCLC primary | −5.31 (−49.84–39.22) | 0.813 | −10.25 (−48.69–28.18) | 0.599 |
SCLC primary | 26.80 (−78.17–131.77) | 0.613 | 44.68 (−33.99–123.35) | 0.264 |
Renal primary | 25.95 (−44.60–96.49) | 0.467 | −6.47 (−67.08–54.15) | 0.834 |
Breast primary | −15.22 (−72.14–41.69) | 0.596 | −19.47 (−70.00–31.07) | 0.448 |
Radiotherapy dose 30 Gy/5 | −4.70 (−60.28–5.87) | 0.948 | −5.40 (−50.18–39.39) | 0.812 |
Immunotherapy | −11.04 (−44.84–22.76) | 0.518 | −12.23 (−42.44–17.98) | 0.426 |
Targeted therapy | −17.41 (−57.94–23.13) | 0.396 | −10.94 (−48.19–26.31) | 0.563 |
Chemotherapy | 10.08 (−29.74–49.90) | 0.616 | 1.29 (−33.04–35.53) | 0.941 |
On Multiple Regression | ||||
R2 | 0.115 | 0.039 | ||
F (p-value) | 0.49 (0.919) | 0.61 (0.848) |
Predictor | Local Failure | Radiation Necrosis | ||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Male sex | 1.51 (0.41–5.51) | 0.530 | 1.25 (0.33–4.78) | 0.744 |
Age at diagnosis | 0.93 (0.89–0.98) | 0.006 | 1.02 (0.96–1.08) | 0.560 |
Initial volume (cm3) | 1.08 (0.94–1.25) | 0.257 | 1.07 (0.92–1.24) | 0.404 |
Melanoma primary | 1.26 (0.26–6.16) | 0.778 | 1.44 (0.29–7.23) | 0.655 |
NSCLC primary | 0.72 (0.18–2.87) | 0.645 | 1.38 (0.36–5.31) | 0.634 |
Breast primary | 1.89 (0.38–9.41) | 0.435 | 0.91 (0.11–7.58) | 0.912 |
HFRT dose 30 Gy/5 | 0.46 (0.09–2.30) | 0.344 | 0.0 (0.0–0.0) | 0.997 |
Systemic therapy with HFRT | 1.04 (0.21–5.06) | 0.962 | 0.0 (0.0–0.0) | 0.997 |
References
- Patchell, R.A. The management of brain metastases. Cancer Treat. Rev. 2003, 29, 533–540. [Google Scholar] [CrossRef]
- Sacks, P.; Rahman, M. Epidemiology of Brain Metastases. Neurosurg. Clin. N. Am. 2020, 31, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; DeAngelis, L.M. Treatment of Brain Metastases. J. Clin. Oncol. 2015, 33, 3475–3484. [Google Scholar] [CrossRef] [PubMed]
- Nayak, L.; Lee, E.Q.; Wen, P.Y. Epidemiology of Brain Metastases. Curr. Oncol. Rep. 2012, 14, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Patchell, R.A.; Tibbs, P.A.; Walsh, J.W.; Dempsey, R.J.; Maruyama, Y.; Kryscio, R.J.; Markesbery, W.R.; Macdonald, J.S.; Young, B. A Randomized Trial of Surgery in the Treatment of Single Metastases to the Brain. N. Engl. J. Med. 1990, 322, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, A.; Ahmed, S.; McAleer, M.F.; Weinberg, J.S.; Li, J.; Brown, P.; Settle, S.; Prabhu, S.S.; Lang, F.F.; Levine, N.; et al. Post-operative stereotactic radiosurgery versus observation for completely resected brain metastases: A single-centre, randomised, controlled, phase 3 trial. Lancet Oncol. 2017, 18, 1040–1048. [Google Scholar] [CrossRef]
- Brown, P.D.; Jaeckle, K.; Ballman, K.V.; Farace, E.; Cerhan, J.H.; Anderson, S.K.; Carrero, X.W.; Barker, F.G.; Deming, R.; Burri, S.H.; et al. Effect of Radiosurgery Alone vs Radiosurgery with Whole Brain Radiation Therapy on Cognitive Function in Patients With 1 to 3 Brain Metastases. JAMA 2016, 316, 401–409. [Google Scholar] [CrossRef]
- Skeie, B.S.; Øyvind, E.P.; Knisely, J.; Pedersen, P.-H.; Heggdal, J.I.; Eide, G.E.; Skeie, G.O. A simple score to estimate the likelihood of pseudoprogression vs. recurrence following stereotactic radiosurgery for brain metastases: The Bergen Criteria. Neuro-Oncol. Adv. 2020, 2, vdaa026. [Google Scholar] [CrossRef] [Green Version]
- Diao, K.; Bian, S.X.; Routman, D.M.; Yu, C.; Kim, P.E.; Wagle, N.A.; Wong, M.K.; Zada, G.; Chang, E.L. Combination ipilimumab and radiosurgery for brain metastases: Tumor, edema, and adverse radiation effects. J. Neurosurg. 2018, 129, 1397–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, J.D.; Greenspoon, J.; Brown, P.D.; Johnson, D.R.; Roberge, D. Neuro-Oncology Practice Clinical Debate: Stereotactic radiosurgery or fractionated stereotactic radiotherapy following surgical resection for brain metastasis. Neuro-Oncol. Pract. 2019, 7, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Minniti, G.; Scaringi, C.; Paolini, S.; Lanzetta, G.; Romano, A.; Cicone, F.; Osti, M.F.; Enrici, R.M.; Esposito, V. Single-Fraction Versus Multifraction (3 × 9 Gy) Stereotactic Radiosurgery for Large (>2 cm) Brain Metastases: A Comparative Analysis of Local Control and Risk of Radiation-Induced Brain Necrosis. Int. J. Radiat. Oncol. 2016, 95, 1142–1148. [Google Scholar] [CrossRef]
- Yamamoto, M.; Serizawa, T.; Shuto, T.; Akabane, A.; Higuchi, Y.; Kawagishi, J.; Yamanaka, K.; Sato, Y.; Jokura, H.; Yomo, S.; et al. Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): A multi-institutional prospective observational study. Lancet Oncol. 2014, 15, 387–395. [Google Scholar] [CrossRef]
- Iyer, A.; Harrison, G.; Kano, H.; Weiner, G.M.; Luther, N.; Niranjan, A.; Flickinger, J.; Lunsford, L.D.; Kondziolka, D. Volumetric response to radiosurgery for brain metastasis varies by cell of origin. J. Neurosurg. 2014, 121, 564–569. [Google Scholar] [CrossRef] [PubMed]
- Sharpton, S.R.; Oermann, E.K.; Moore, D.T.; Schreiber, E.; Hoffman, R.; Morris, D.E.; Ewend, M.G. The Volumetric Response of Brain Metastases After Stereotactic Radiosurgery and Its Post-treatment Implications. Neurosurgery 2014, 74, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Rick, J.W.; Shahin, M.; Chandra, A.; Ore, C.D.; Yue, J.K.; Nguyen, A.; Yagnik, G.; Sagar, S.; Arfaie, S.; Aghi, M.K. Systemic therapy for brain metastases. Crit. Rev. Oncol. 2019, 142, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Sparacia, G.; Agnello, F.; Banco, A.; Bencivinni, F.; Anastasi, A.; Giordano, G.; Taibbi, A.; Galia, M.; Bartolotta, T.V. Value of serial magnetic resonance imaging in the assessment of brain metastases volume control during stereotactic radiosurgery. World J. Radiol. 2016, 8, 916–921. [Google Scholar] [CrossRef] [Green Version]
- Simard, J.L.; Smith, M.; Chandra, S. Pseudoprogression of Melanoma Brain Metastases. Curr. Oncol. Rep. 2018, 20, 91. [Google Scholar] [CrossRef] [PubMed]
- Thawani, R.; Fakhoury, K.; Becker, K.D. Cause of mortality in patients with lung cancer and brain metastasis. J. Clin. Oncol. 2020, 38, e21743. [Google Scholar] [CrossRef]
- Putz, F.; Weissmann, T.; Oft, D.; Schmidt, M.A.; Roesch, J.; Siavooshhaghighi, H.; Filimonova, I.; Schmitter, C.; Mengling, V.; Bert, C.; et al. FSRT vs. SRS in Brain Metastases—Differences in Local Control and Radiation Necrosis—A Volumetric Study. Front. Oncol. 2020, 10, 559193. [Google Scholar] [CrossRef]
- Evi, Q. Palliative Brain Metastases EBRT Stereotactic Radiosurgery; INSW Cancer Institute: St Leonards, Australia, 2020; Available online: https://www.eviq.org.au/radiation-oncology/palliative/3253-palliative-brain-metastases-ebrt-stereotactic (accessed on 8 October 2021).
- Nabors, L.B.; Portnow, J.; Ahluwalia, M.; Baehring, J.; Brem, H.; Brem, S.; Butowski, N.; Campian, J.L.; Clark, S.W.; Fabiano, A.J.; et al. Central Nervous System Cancers, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2020, 18, 1537–1570. [Google Scholar] [CrossRef]
- Coutard, H. Roentgen therapy of epitheliomas of the tonsillar region, hypopharynx and larynx from 1920 to 1926. Am. J. Roentgenol. 1932, 28, 313–331. [Google Scholar]
- Regaud, C. The influence of the duration of irradiation on the changes produced in the testicle by radium. Int. J. Radiat. Oncol. 1977, 2, 565–567. [Google Scholar] [CrossRef]
- Kallman, R.F. The phenomenon of reoxygenation and its implications for fractionated radiotherapy. Radiology 1972, 105, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.J.; Brenner, D.J. The radiobiology of radiosurgery: Rationale for different treatment regimes for AVMs and malignancies. Int. J. Radiat. Oncol. 1993, 25, 381–385. [Google Scholar] [CrossRef]
- Jagannathan, J.; Sherman, J.H.; Mehta, G.; Chin, L.S. Radiobiology of brain metastasis: Applications in stereotactic radiosurgery. Neurosurg. Focus 2007, 22, 1–5. [Google Scholar] [CrossRef]
- Ang, K.; Price, R.; Stephens, L.; Jiang, G.; Feng, Y.; Schultheiss, T.; Peters, L. The tolerance of primate spinal cord to re-irradiation. Int. J. Radiat. Oncol. 1993, 25, 459–464. [Google Scholar] [CrossRef]
- Fahrig, A.; Ganslandt, O.; Lambrecht, U.; Grabenbauer, G.; Kleinert, G.; Sauer, R.; Hamm, K. Hypofractionated Stereotactic Radiotherapy for Brain Metastases. Strahlenther. Onkol. 2007, 183, 625–630. [Google Scholar] [CrossRef]
- Mengue, L.; Bertaut, A.; Mbus, L.N.; Doré, M.; Ayadi, M.; Clement-Colmou, K.; Claude, L.; Carrie, C.; Tanguy, R.; Blanc, J.; et al. Brain metastases treated with hypofractionated stereotactic radiotherapy: 8 years experience after Cyberknife installation. Radiat. Oncol. 2020, 15, 1–11. [Google Scholar] [CrossRef]
- Dohm, A.; Mctyre, E.R.; Okoukoni, C.; Henson, A.; Cramer, C.K.; Lecompte, M.C.; Ruiz, J.; Munley, M.T.; Qasem, S.; Lo, H.-W.; et al. Staged Stereotactic Radiosurgery for Large Brain Metastases: Local Control and Clinical Outcomes of a One-Two Punch Technique. Neurosurgery 2017, 83, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Minniti, G.; Clarke, E.; Lanzetta, G.; Osti, M.F.; Trasimeni, G.; Bozzao, A.; Romano, A.; Enrici, R.M. Stereotactic radiosurgery for brain metastases: Analysis of outcome and risk of brain radionecrosis. Radiat. Oncol. 2011, 6, 48. [Google Scholar] [CrossRef] [Green Version]
- Lehrer, E.J.; Peterson, J.L.; Zaorsky, N.G.; Brown, P.D.; Sahgal, A.; Chiang, V.L.; Chao, S.T.; Sheehan, J.P.; Trifiletti, D.M. Single versus Multifraction Stereotactic Radiosurgery for Large Brain Metastases: An International Meta-analysis of 24 Trials. Int. J. Radiat. Oncol. 2019, 103, 618–630. [Google Scholar] [CrossRef]
- Murai, T.; Ogino, H.; Manabe, Y.; Iwabuchi, M.; Okumura, T.; Matsushita, Y.; Tsuji, Y.; Suzuki, H.; Shibamoto, Y. Fractionated Stereotactic Radiotherapy using CyberKnife for the Treatment of Large Brain Metastases: A Dose Escalation Study. Clin. Oncol. 2014, 26, 151–158. [Google Scholar] [CrossRef]
- Wijetunga, A.; Jayamanne, D.; Cook, R.; Parkinson, J.; Little, N.; Curtis, J.; Brown, C.; Back, M. Hypofractionated adjuvant surgical cavity radiotherapy following resection of limited brain metastasis. J. Clin. Neurosci. 2020, 82, 155–161. [Google Scholar] [CrossRef]
- Chon, H.; Yoon, K.; Lee, D.; Kwon, D.H.; Cho, Y.H. Single-fraction versus hypofractionated stereotactic radiosurgery for medium-sized brain metastases of 2.5 to 3 cm. J. Neurooncol. 2019, 145, 49–56. [Google Scholar] [CrossRef]
- de la Pinta, C.; Fernández-Lizarbe, E.; Sevillano, D. Brain metastases: Single-dose radiosurgery versus hypofractionated stereotactic radiotherapy: A retrospective study. J. Clin. Transl. Res. 2020, 6, 1. [Google Scholar]
- Kim, Y.-J.; Cho, K.H.; Kim, J.-Y.; Lim, Y.K.; Min, H.S.; Lee, S.H.; Kim, H.J.; Gwak, H.S.; Yoo, H.; Lee, S.H. Single-Dose Versus Fractionated Stereotactic Radiotherapy for Brain Metastases. Int. J. Radiat. Oncol. 2011, 81, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Bois, A.Z.-D.; Milker-Zabel, S.; Henžel, M.; Popp, W.; Debus, J.; Sack, H.; Engenhart-Cabillic, R. Evaluation of time, attendance of medical staff, and resources during stereotactic radiotherapy/radiosurgery. Strahlenther. Onkol. 2012, 188, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Ernst-Stecken, A.; Ganslandt, O.; Lambrecht, U.; Sauer, R.; Grabenbauer, G. Phase II trial of hypofractionated stereotactic radiotherapy for brain metastases: Results and toxicity. Radiother. Oncol. 2006, 81, 18–24. [Google Scholar] [CrossRef] [PubMed]
Demographic Data | N = 124 |
---|---|
Age (years) | |
Median (range) | 69.3 (35.1–93.9) |
Gender (%) | |
Male | 64 (51.6) |
Female | 60 (48.4) |
Primary tumour location—Number (%) | |
Lung–Non-Small Cell | 50 (40.3) |
Lung–Small Cell | 4 (3.2) |
Melanoma | 21 (16.9) |
Breast | 15 (12.1) |
Colorectal | 8 (6.5) |
Oesophageal | 2 (1.6) |
Renal | 8 (6.5) |
Others/Unknown Primary | 16 (12.9) |
Time from CNS metastasis to radiotherapy (months) | |
Median (range) | 1.0 (0.0–54.2) |
Extracranial disease | |
Nil | 6 (4.8) |
Asymptomatic | 51 (41.1) |
Symptomatic | 67 (54.1) |
ECOG performance status—Number (%) | |
0 | 9 (7.3) |
1 | 47 (37.9) |
2 | 46 (37.1) |
3 | 21 (16.9) |
4 | 1 (0.8) |
Treatment and Outcomes | N = 124 |
---|---|
Number of metastases per patient at diagnosis | |
Median (range) | 1 (1–7) |
HFRT dose—Number (%) | |
30 Gy/5 | 106 (85.5) |
25 Gy/5 | 9 (7.3) |
21 Gy/3 | 7 (5.6) |
Other | 2 (1.6) |
Prior management—Number (%) | |
Nil Prior Management | 75 (60.5) |
Surgery | 26 (21.0) |
Systemic Therapy | 11 (8.9) |
Distant Site SRS | 3 (2.4) |
Combination | 9 (7.3) |
Concurrent systemic therapy—Number (%) | |
Nil | 23 (18.5) |
Chemotherapy Alone | 39 (31.5) |
Targeted Therapy Alone | 12 (9.7) |
Immunotherapy Alone | 16 (12.9) |
Immunotherapy + Chemotherapy | 19 (15.3) |
Immunotherapy + Targeted Therapy | 10 (8.1) |
Chemotherapy + Targeted Therapy | 5 (4.0) |
Volume at time of diagnosis | |
Median volume (range) (cm3) | 3.4 (0.1, 48.2) |
Volume one month post-HFRT | |
Number of patients alive—Number (%) | 105 (84.6) |
Median volume (range) (cm3) | 1.6 (0.0, 45.8) |
Percent reduction—Median (range) (%) * | 48.5 (−304.4, 100.0) |
Volume seven months post-HFRT | |
Number of patients alive—Number (%) | 67 (54.0) |
Median volume (range) (cm3) | 0.7 (0.0, 24.6) |
Percent reduction—Median (range) (%) * | 80.6 (−328.6, 100.0) |
Subsequent management—Number (%) | |
Best Supportive Care | 74 (59.7) |
Surgery | 5 (4.0) |
SRS/VMAT | 13 (10.5) |
WBRT | 10 (8.1) |
Systemic Therapy | 22 (17.7) |
Outcome of treatment—Number (%) | |
Radiation necrosis | 7 (5.6) |
Local failure | 8 (6.5) |
Unconfirmed | 16 (12.9) |
Cause of death—Number (%) | |
Alive | 32 (25.8) |
Intracranial | 21 (16.9) |
Extracranial | 55 (44.4) |
Both | 7 (5.6) |
Other | 9 (7.3) |
Individual Lesions Treatments and Outcomes | N = 233 |
---|---|
Location—Number (%) | |
Frontal | 60 (25.8) |
Parietal | 42 (18.0) |
Temporal | 39 (16.7) |
Occipital | 19 (8.2) |
Brainstem | 7 (3.0) |
Cerebellum | 48 (20.6) |
Other | 18 (7.7) |
Radiation dose—Number (%) | |
30 Gy/5 | 208 (89.3) |
25 Gy/5 | 10 (4.3) |
21 Gy/3 | 12 (5.2) |
Other | 3 (1.3) |
At time of diagnosis | |
Number of metastases—Number (%) | 233 (100.0) |
Median volume (range) (cm3) | 1.6 (0.1, 19.1) |
One month post-HFRT | |
Number of metastases—Number (%) | 206 (88.4) |
Median volume (range) (cm3) | 0.7 (0.0, 35.1) |
Percent reduction—Median (range) (%) * | 54.9 (−700.0, 100.0) |
Volume increase–Number (%) | 34 (14.6) |
Seven months post-HFRT | |
Number of metastases—Number (%) | 118 (50.6) |
Median volume (range) (cm3) | 0.3 (0.0, 23.8) |
Median volume (range) (cm3) * | 83.3 (−328.6, 100.0) |
Volume increase at one month sustained—Number (%) | 9 (3.9) |
Volume increase at one month transient—Number (%) ** | 10 (4.3) |
Volume increase at one month died—Number (%) | 15 (6.4) |
Outcome of treatment—Number (%) | |
Radiation necrosis | 9 (3.9) |
Local failure | 10 (4.3) |
Unconfirmed | 24 (10.3) |
Factors Associated with Overall Survival | n = 124 | ||||
---|---|---|---|---|---|
Median OS (Months) | UV HR (95% CI) | UV p-Value | MV HR (95% CI) | MV p-Value | |
Sex (M/F) | 6.3/11.1 | 1.44 (0.95–2.18) | 0.083 | - | - |
Age at diagnosis (<75/>75) | 8.6/3.6 | 1.71 (1.09–2.69) | 0.017 | 0.69 (0.33–1.46) | 0.336 |
GTV0 (<3.4 cm3/>3.4 cm3) | 11.1/6.9 | 1.56 (1.02–2.38) | 0.038 | 2.59 (1.38–4.86) | 0.003 |
GTV1 (<3.0 cm3/>3.0 cm3) | 13.9/6.9 | 2.22 (1.44–3.69) | 0.002 | 0.88 (0.34–2.28) | 0.787 |
GTV7 (<0.7 cm3/>0.7 cm3) | 20.4/13.7 | 2.34 (1.35–4.78) | 0.003 | 1.65 (0.51–5.36) | 0.405 |
GTV1 reduction (<50%/>50%) | 6.9/14.7 | 0.61 (0.38–0.97) | 0.034 | 3.33 (1.44–7.68) | 0.005 |
GTV7 reduction (<80%/>80%) | 11.3/23.4 | 0.33 (0.17–0.62) | <0.001 | 0.32 (0.17–0.61) | <0.001 |
ECOG (0–1/2–4) | 17.0/5.0 | 2.59 (1.68–4.00) | <0.001 | 1.27 (0.65–2.49) | 0.488 |
Melanoma primary (Y/N) | 5.57.8 | 1.49 (0.88–2.49) | 0.123 | - | - |
Colorectal primary (Y/N) | 5.1/8.6 | 1.60 (0.82–3.09) | 0.161 | - | - |
NSCLC primary (Y/N) | 7.3/7.1 | 0.87 (0.57–1.32) | 0.505 | - | - |
SCLC primary (Y/N) | 6.4/7.8 | 1.11 (0.35–3.52) | 0.863 | - | - |
Renal primary (Y/N) | 8.6/7.0 | 0.63 (0.23–1.72) | 0.362 | - | - |
Breast primary (Y/N) | 13.5/7.0 | 0.70 (0.35–1.40) | 0.316 | - | - |
Symptomatic extracranial disease (Y/N) | 5.3/13.2 | 2.01 (1.32–3.06) | 0.001 | 1.2 (0.58–2.56) | 0.597 |
Neurosurgery prior to HFRT (Y/N) | 13.2/6.7 | 0.55 (0.32–0.95) | 0.030 | 0.66 (0.31–1.41) | 0.287 |
Systemic therapy prior to HFRT (Y/N) | 41.0/7.0 | 0.43 (0.18–0.99) | 0.040 | 1.01 (0.25–4.10) | 0.987 |
Number of BMs (<1/>1) | 8.6/6.0 | 1.42 (0.87–2.31) | 0.158 | - | - |
Radiation dose 30 Gy/5 (Y/N) | 8.6/6.0 | 0.74 (0.34–1.60) | 0.438 | - | - |
Systemic therapy concurrent with HFRT (Y/N) | 8.6/3.5 | 0.49 (0.30–0.80) | 0.003 | 1.73 (0.62–4.78) | 0.293 |
Concurrent immunotherapy (Y/N) | 8.6/6.9 | 0.74 (0.48–1.16) | 0.191 | - | - |
Concurrent targeted therapy (Y/N) | 17.2/6.7 | 0.50 (0.28–0.87) | 0.012 | 0.65 (0.27–1.58) | 0.339 |
Concurrent chemotherapy (Y/N) | 9.0/5.5 | 0.80 (0.53–1.21) | 0.281 | - | - |
Concurrent combination systemic therapy (Y/N) | 14.1/6.4 | 0.50 (0.30–0.83) | 0.006 | 0.43 (0.20–0.94) | 0.035 |
Salvage neurosurgery (Y/N) | NR/6.9 | 0.13 (0.02–0.96) | 0.019 | 0.37 (0.05–2.88) | 0.341 |
Salvage systemic therapy (Y/N) | 13.9/6.3 | 0.60 (0.35–1.05) | 0.072 | - | - |
Salvage radiotherapy (Y/N) | 9.0/7,.1 | 1.04 (0.62–1.76) | 0.871 | - | - |
Local failure (Y/N) | 2.5/8.6 | 2.15 (1.32–3.49) | 0.001 | 1.19 (0.44–3.21) | 0.729 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijetunga, A.R.; Jayamanne, D.T.; Adams, J.; Back, M.F. Volumetric Response of Limited Brain Metastatic Disease to Focal Hypofractionated Radiation Therapy. Brain Sci. 2021, 11, 1457. https://doi.org/10.3390/brainsci11111457
Wijetunga AR, Jayamanne DT, Adams J, Back MF. Volumetric Response of Limited Brain Metastatic Disease to Focal Hypofractionated Radiation Therapy. Brain Sciences. 2021; 11(11):1457. https://doi.org/10.3390/brainsci11111457
Chicago/Turabian StyleWijetunga, Asanka R., Dasantha T. Jayamanne, Jessica Adams, and Michael F. Back. 2021. "Volumetric Response of Limited Brain Metastatic Disease to Focal Hypofractionated Radiation Therapy" Brain Sciences 11, no. 11: 1457. https://doi.org/10.3390/brainsci11111457
APA StyleWijetunga, A. R., Jayamanne, D. T., Adams, J., & Back, M. F. (2021). Volumetric Response of Limited Brain Metastatic Disease to Focal Hypofractionated Radiation Therapy. Brain Sciences, 11(11), 1457. https://doi.org/10.3390/brainsci11111457