Assessment of Motor Planning and Inhibition Performance in Non-Clinical Sample—Reliability and Factor Structure of the Tower of London and Go/No Go Computerized Tasks
Abstract
:1. General Introduction
2. Study 1
2.1. Introduction
2.2. Methods
2.2.1. Participants
2.2.2. Tasks and Measurements
2.2.3. Statistical Analyses
2.3. Results
2.4. Discussion
3. Study 2
3.1. Introduction
3.2. Methods
3.2.1. Participants
3.2.2. Tasks and Measurements
3.2.3. Statistical Analyses
3.3. Results
3.4. Discussion
4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chan, R.C.; Shum, D.; Toulopoulou, T.; Chen, E.Y. Assessment of executive functions: Review of instruments and identification of critical issues. Arch. Clin. Neuropsychol. 2008, 23, 201–216. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, J.A.; Emory, E. Executive function and the frontal lobes: A meta-analytic review. Neuropsychol. Rev. 2006, 16, 17–42. [Google Scholar] [CrossRef]
- Lezak, M.D.; Howieson, D.B.; Loring, D.W. Neuropsychological Assessment, 4th ed.; Oxford University Press: New York, NY, USA, 2004. [Google Scholar]
- Grafman, J.; Litvan, I. Importance of deficits in executive functions. Lancet 1999, 354, 1921–1923. [Google Scholar] [CrossRef]
- Berg, K.W.; Byrd, D.L. The Tower of London spatial problem-solving task: Enhancing clinical and research implementation. J. Clin. Exp. Neuropsychol. 2002, 24, 586–604. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, J.R.; Riccio, C.A.; Castillo, C.L. Concurrent validity of the tower tasks as measures of executive function in adults: A meta-analysis. Appl. Neuropsychol. 2009, 16, 62–75. [Google Scholar] [CrossRef]
- Kaller, C.P.; Rahm, B.; Köstering, L.; Unterrainer, J.M. Reviewing the impact of problem structure on planning: A software tool for analyzing tower tasks. Behav. Brain Res. 2011, 216, 1–8. [Google Scholar] [CrossRef]
- Berg, W.K.; Byrd, D.L.; McNamara, J.P.; Case, K. Deconstructing the tower: Parameters and predictors of problem difficulty on the Tower of London task. Brain Cogn. 2010, 72, 472–482. [Google Scholar] [CrossRef]
- Ouellet, M.C.; Beauchamp, M.H.; Owen, A.M.; Doyon, J. Acquiring a cognitive skill with a new repeating version of the Tower of London task. Can. J. Exp. Psychol. 2004, 58, 272–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bari, A.; Robbins, T.W. Inhibition and impulsivity: Behavioral and neural basis of response control. Prog. Neurobiol. 2013, 108, 44–79. [Google Scholar] [CrossRef] [PubMed]
- Mirabella, G. Inhibitory control and impulsive responses in neurodevelopmental disorders. Dev. Med. Child. Neurol. 2021, 63, 520–526. [Google Scholar] [CrossRef]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nigg, J.T. On inhibition/disinhibition in developmental psychopathology: Views from cognitive and personality psychology and a working inhibition taxonomy. Psychol. Bull. 2000, 126, 220–246. [Google Scholar] [CrossRef]
- Raud, L.; Westerhausen, R.; Dooley, N.; Huster, R.J. Differences in unity: The go/no-go and stop signal tasks rely on different mechanisms. Neuroimage 2020, 210, e116582. [Google Scholar] [CrossRef] [PubMed]
- Bezdjian, S.; Baker, L.A.; Lozano, D.I.; Raine, A. Assessing inattention and impulsivity in children during the Go/ NoGo task. Br. J. Dev. Psychol. 2009, 27, 365–383. [Google Scholar] [CrossRef] [Green Version]
- Calamia, M.; Markon, K.; Tranel, D. The robust reliability of neuropsychological measures: Meta-analyses of test-retest correlations. Clin. Neuropsychol. 2013, 27, 1077–1105. [Google Scholar] [CrossRef] [PubMed]
- Duff, K. Evidence-based indicators of neuropsychological change in the individual patient: Relevant concepts and methods. Arch. Clin. Neuropsychol. 2012, 27, 248–261. [Google Scholar] [CrossRef] [Green Version]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting Intraclass Correlation Coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Schnirman, G.M.; Welsh, M.C.; Retzlaff, P.D. Development of the Tower of London-revised. Assessment 1998, 5, 355–360. [Google Scholar] [CrossRef]
- Lowe, C.; Rabbitt, P. Test\re-test reliability of the CANTAB and ISPOCD neuropsychological batteries: Theoretical and practical issues. Neuropsychologia 1998, 36, 915–923. [Google Scholar] [CrossRef]
- Syväoja, H.J.; Tammelin, T.H.; Ahonen, T.; Räsänen, P.; Tolvanen, A.; Kankaanpää, A.; Kantomaa, M.T. Internal consistency and stability of the CANTAB neuropsychological test battery in children. Psychol. Assess. 2015, 27, 698–709. [Google Scholar] [CrossRef] [Green Version]
- Welsh, M.C.; Revilla, V.; Strongin, D.; Kepler, M. Towers of Hanoi and London: Is the nonshared variance due to differences in task administration? Percept. Mot. Skills 2000, 90, 562–572. [Google Scholar] [CrossRef]
- Köstering, L.; Nitschke, K.; Schumacher, F.K.; Weiller, C.; Kaller, C.P. Test-retest reliability of the Tower of London Planning Task (TOL-F). Psychol. Assess. 2015, 27, 925–931. [Google Scholar] [CrossRef] [PubMed]
- Tunstall, J.R.; O’Gorman, J.G.; Shum, D.H. A four-disc version of the Tower of London for clinical use. J. Neuropsychol. 2016, 10, 116–129. [Google Scholar] [CrossRef]
- Lemay, S.; Bédard, M.A.; Rouleau, I.; Tremblay, P.L. Practice effect and test-retest reliability of attentional and executive tests in middle-aged to elderly subjects. Clin. Neuropsychol. 2004, 18, 284–302. [Google Scholar] [CrossRef]
- Piper, B.J.; Mueller, S.T.; Geerken, A.R.; Dixon, K.L.; Kroliczak, G.; Olsen, R.H.; Miller, J.K. Reliability and validity of neurobehavioral function on the Psychology Experimental Building Language test battery in young adults. PeerJ 2015, 3, e1460. [Google Scholar] [CrossRef] [Green Version]
- Weafer, J.; Baggott, M.J.; de Wit, H. Test-retest reliability of behavioral measures of impulsive choice, impulsive action, and inattention. Exp. Clin. Psychopharmacol. 2013, 21, 475–481. [Google Scholar] [CrossRef]
- Brunner, J.F.; Hansen, T.I.; Olsen, A.; Skandsen, T.; Håberg, A.; Kropotov, J. Long-term test-retest reliability of the P3 NoGo wave and two independent components decomposed from the P3 NoGo wave in a visual Go/NoGo task. Int. J. Psychophysiol. 2013, 89, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Langenecker, S.; Zubieta, J.K.; Young, E.; Akil, H.; Nielson, K. A task to manipulate attentional load, set-shifting, and inhibitory control: Convergent validity and test-retest reliability of the Parametric Go/No-Go Test. J. Clin. Exp. Neuropsychol. 2007, 29, 842–853. [Google Scholar] [CrossRef]
- Kindlon, D.J.; Mezzacappa, E.; Earls, F. Psychometric properties of impulsivity measures: Temporal stability, validity, and factor structure. J. Child. Psychol. Psychiatry 1995, 36, 645–661. [Google Scholar] [CrossRef]
- Shallice, T. Specific impairments of planning. Philos. Trans. R Soc. Lond. B Biol. Sci. 1982, 298, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Frydecka, D.; Małyszczak, K.; Chachaj, A.; Kiejna, A. Factorial structure of the general health questionnaire (GHQ-30). Psychiatr. Pol. 2010, 44, 341–359. [Google Scholar] [PubMed]
- Mueller, S.T.; Piper, B.J. The Psychology Experiment Building Language (PEBL) and PEBL Test Battery. J. Neurosci. Methods 2014, 222, 250–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, G.; Allport, A. Planning and problem-solving using the five-disc Tower of London task. Q J. Exp. Psychol. B 1997, 50, 49–78. [Google Scholar] [CrossRef]
- Phillips, L.H.; Wynn, V.; Gilhooly, K.J.; Della Sala, S.; Logie, R.H. The role of memory in the Tower of London task. Memory 1999, 7, 209–231. [Google Scholar] [CrossRef]
- Sakia, R.M. The Box-Cox transformation technique: A review. J. R. Stat. Soc. 1992, 41, 169–178. [Google Scholar] [CrossRef]
- Schatz, P.; Ferris, C.S. One-month test-retest reliability of the ImPACT Test Battery. Arch. Clin. Neuropsychol. 2013, 28, 499–504. [Google Scholar] [CrossRef] [Green Version]
- Weir, J.P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond Res. 2005, 19, 231–240. [Google Scholar] [CrossRef]
- Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Statist. 1979, 6, 65–70. [Google Scholar]
- Jacobson, N.S.; Truax, P. Clinical significance: A statistical approach to defining meaningful change in psychotherapy research. J. Consult Clin. Psychol. 1992, 59, 12–19. [Google Scholar] [CrossRef]
- Iverson, G.L.; Lovell, M.R.; Collins, M.W. Interpreting change on ImPACT following sport concussion. Clin. Neuropsychol. 2003, 17, 460–467. [Google Scholar] [CrossRef]
- Chelune, G.J.; Naugle, R.I.; Luders, H.; Sedlak, J.; Awad, I.A. Individual change after epilepsy surgery: Practice effects and base-rate information. Neuropsychology 1993, 7, 41–52. [Google Scholar] [CrossRef]
- Iverson, G.L. Interpreting change on the WAIS-III/WMS-III in clinical samples. Arch. Clin. Neuropsychol. 2001, 16, 183–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beglinger, L.J.; Gaydos, B.; Tangphao-Daniels, O.; Duff, K.; Kareken, D.A.; Crawford, J.; Fastenau, P.S.; Siemers, E.R. Practice effects and the use of alternate forms in serial neuropsychological testing. Arch. Clin. Neuropsychol. 2005, 20, 517–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirabella, G. The weight of emotions in decision-making: How fearful and happy facial stimuli modulate action readiness of goal-directed actions. Front. Psychol. 2018, 9, e1334. [Google Scholar] [CrossRef] [PubMed]
- Mancini, C.; Falciati, L.; Maioli, C.; Mirabella, G. Threatening Facial Expressions Impact Goal-Directed Actions Only if Task-Relevant. Brain Sci. 2020, 10, 794. [Google Scholar] [CrossRef]
- Spadacenta, S.; Gallese, V.; Fragola, M.; Mirabella, G. Modulation of arm reaching movements during processing of arm/hand-related action verbs with and without emotional connotation. PLoS ONE 2014, 9, e104349. [Google Scholar] [CrossRef]
- Levin, H.S.; Fletcher, J.M.; Kufera, J.A.; Harward, H.; Lilly, M.A.; Mendelsohn, D.; Bruce, D.; Eisenberg, H.M. Dimensions of cognition measured by the Tower of London and other cognitive tasks in head-injured children and adolescents. Dev. Neuropsychol. 1996, 12, 17–34. [Google Scholar] [CrossRef]
- Culbertson, W.C.; Zillmer, E.A. The construct validity of the Tower of London DX as a measure of the executive functioning of ADHD children. Assessment 1998, 5, 215–226. [Google Scholar] [CrossRef]
- Georgiou, G.K.; Li, J.; Das, J.P. Tower of London: What Level of Planning Does it Measure? Psychol. Stud. 2017, 62, 261–267. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bender, A.D.; Filmer, H.L.; Garner, K.G.; Naughtin, C.K.; Dux, P.E. On the relationship between response selection and response inhibition: An individual differences approach. Atten. Percept. Psychophys 2016, 78, 2420–2432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snodgrass, J.G.; Luce, R.D.; Galanter, E. Some Experiments on Simple and Choice Reaction Time. J. Exp. Psychol. 1967, 75, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kafer, K.L.; Hunter, M. On testing the face validity of planning/problem-solving tasks in a normal population. J. Int. Neuropsychol. Soc. 1997, 3, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Köstering, L.; Schmidt, C.S.; Egger, K.; Amtage, F.; Peter, J.; Klöppel, S.; Beume, L.; Hoeren, M.; Weiller, C.; Kaller, C.P. Assessment of planning performance in clinical samples: Reliability and validity of the Tower of London task (TOL-F). Neuropsychologia 2015, 75, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 2nd ed.; Harper Collins Publishers: New York, NY, USA, 1989. [Google Scholar]
- Gorsuch, R.L. Factor Analysis, 2nd ed.; Erlbaum: Hillsdale, MI, USA, 1983. [Google Scholar]
- Greenwood, K.E.; Wykes, T.; Sigmundsson, T.; Landau, S.; Morris, R.G. Tower of London versus real life analogue planning in schizophrenia with disorganization and psychomotor poverty symptoms. J. Int. Neuropsychol. Soc. 2011, 17, 474–484. [Google Scholar] [CrossRef]
- Jurado, M.B.; Rosselli, M. The elusive nature of executive functions: A review of our current understanding. Neuropsychol. Rev. 2007, 17, 213–233. [Google Scholar] [CrossRef] [PubMed]
Authors | Number of Participants | Age Range | Intersession Intervals | Version of TOL | Indicators | Correlation (r) | Interclass Correlation (ICC) |
---|---|---|---|---|---|---|---|
Schnirman et al. [19] | 34 | Undergraduate collage students | 5–7 weeks | TOL-Revised | Number of trials in optimum solution | 0.70 | - |
Lowe and Rabbitt [20] | 162 | 60–80 | 4 weeks | TOL from CANTAB battery | Number of trials in optimum solution | 0.60 | - |
Average number of moves-4-move problem | 0.26 | - | |||||
Average number of moves-5-move problem | 0.47 | - | |||||
Syväoja et al. [21] | 74 | 11–13 | 1 year | TOL from CANTAB battery | Number of trials in optimum solution | 0.23 | - |
Welsh et al. [22] | 39 | Collage students | 5–7 weeks | TOL-Revised | Number of trials in optimum solution | 0.70 | - |
Köstering et al. [23] | 27 | 19–26 | 1 week | TOL-Freiburg version | Accuracy | 0.739 | ICC (3,1) = 0.734 ICC (2,1) = 0.690 |
Initial thinking time | 0.405 | ICC (3,1) = 0.390 ICC (2,1) = 0.274 | |||||
Movement execution time | 0.519 | ICC (3,1) = 0.475 ICC (2,1) = 0.348 | |||||
Tunstall et al. [24] | 40 | 21–55 | 1 month | Four-disc TOL | Total score | 0.47 | ICC (3,1) = 0.45 ICC (2,1) = 0.45 |
21 | 5–15 | 0.80 | ICC (3,1) = 0.78 ICC (2,1) = 0.70 | ||||
Lemay et al. [25] | 37 | 52–80 | Three sessions (1,2,3) with 2 weeks intervals | Shallice TOL | Total mean moves | 1→2 = 0.45 2→3 = 0.34 1→3 = 0.55 | ICC (2,1) = 0.30 |
Total mean initial thinking time | 1→2 = 0.87 2→3 = 0.83 1→3 = 0.82 | ICC (2,1) = 0.83 | |||||
Total optimal solution | 1→2 = 0.47 2→3 = 0.58 1→3 = 0.31 | ICC (2,1) = 0.33 | |||||
Problems solved | 1→2 = 0.18 2→3 = 0.09 1→3 = 0.43 | ICC (2,1) = 0.17 | |||||
Piper et al. [26] | 79 | 18–22 | 2 weeks | Phillips TOL (from PEBL) | Total moves | 0.15 | - |
Total time | 0.36 | - |
Authors | Number of Participants | Age Range | Intersession Intervals | Version of GNG | Indicators | Correlation (r) | Interclass Correlation (ICC) |
---|---|---|---|---|---|---|---|
Weafer et al. [27] | 128 | 18–30 | 8 days | GNG learning task | Commission errors | 0.65 | - |
Brunner et al. [28] | 26 | 22–46 | 6–18 months | Visual GNG | Reaction time | - | ICC (2,1) = 0.86 |
Langenecker et al. [29] | 28 | Collage students | 3 weeks | Parametric GNG | Reaction time | 0.81 | - |
Percentage of correct answers | 0.73 | - | |||||
inhibitions | 0.63 | - | |||||
Kindlon et al. [30] | 71 with ADHD | 6–16 | 2–5 months | Passive avoidance learning task | Reaction time | 0.72 | - |
Correct responses | 0.77 | - | |||||
Correct non-responses | 0.79 | - |
Time 1 | |||||
---|---|---|---|---|---|
Number of trial | 1 | 2 | 3 | 6 | 7 |
Number of minimal moves to the solution | 3 | 5 | 5 | 9 | 9 |
Number of indirect moves | 0 | 0 | 1 | 4 | 4 |
Beginning state | B | A | E | E | E |
Goal state | E | C | B | E | A |
Number of paths to the solution | 1 | 1 | 1 | 5 | 3 |
Time 2 | |||||
Number of trial | 1 | 2 | 3 | 6 | 7 |
Number of minimal moves to the solution | 3 | 5 | 5 | 9 | 9 |
Number of indirect moves | 0 | 0 | 1 | 4 | 4 |
Beginning state | D | B | B | A | A |
Goal state | B | C | B | B | D |
Number of paths to the solution | 1 | 1 | 1 | 1 | 3 |
Measure | Time 1 | Time 2 | t | p/p′ | d | ||||
---|---|---|---|---|---|---|---|---|---|
M | SD | SEM | M | SD | SEM | ||||
Indicators in TOL: | |||||||||
Initial Thinking Time (ITT) | 27.84 | 9.69 | 2.17 | 16.33 | 5.01 | 1.12 | 6.20 | 0.000/0.000 | 1.39 |
Execution Time (ET) | 43.33 | 14.23 | 3.18 | 43.38 | 10.30 | 2.30 | −0.02 | 0.986/1.000 | - |
Full Time (FT) | 71.17 | 21.99 | 4.92 | 59.71 | 13.97 | 3.12 | 2.66 | 0.016/0.080 | - |
Extra Moves (EM) | 3.95/1.12 a | 3.78/0.73 b | 0.84/0.16 c | 3.95/0.94 a | 5.98/0.83 b | 1.34/0.18 c | 0.60 | 0.555/1.000 | - |
Indicator in GNG: | |||||||||
No Go Errors (NGE) | 9.50/1.76 a | 7.79/0.80 b | 1.74/0.18 c | 12.05/1.90 a | 11.38/0.74 b | 2.55/0.16 c | −0.87 | 0.395/1.000 | - |
Reaction Time for Go Responses (RTGR) | 431.53 | 74.48 | 16.65 | 418.37 | 74.89 | 16.75 | 0.97 | 0.344/1.000 | - |
Measure | r | p/p′ | 95% CI | ICC | p/p′ | 95% CI | SEDI | 95% CI |
---|---|---|---|---|---|---|---|---|
Indicators in TOL: | ||||||||
Initial Thinking Time (ITT) | 0.52 | 0.020/0.100 | 0.18, 0.77 | 0.42 | 0.029/0.087 | −0.02, 0.72 | 7.56 | 100 |
Execution Time (ET) | 0.35 | 0.128/0.128 | −0.15, 0.77 | 0.34 | 0.069/0.138 | −0.12, 0.67 | 14.16 | 95 |
Full Time (FT) | 0.50 | 0.025/0.100 | 0.09, 0.78 | 0.45 | 0.020/0.080 | 0.02, 0.74 | 18.42 | 95 |
Extra Moves (EM) | −0.44 | 0.052/0.114 | −0.79, 0.05 | −0.44 | 0.976/0.796 | −0.73, 0.00 | 1.33 | 95 |
Indicator in GNG: | ||||||||
No Go Errors (NGE) | 0.56 | 0.010/0.060 | 0.28, 0.77 | 0.56 | 0.004/0.024 | 0.17, 0.80 | 0.72 | 100 |
Reaction Time for Go Responses (RTGR) | 0.47 | 0.038/0.114 | −0.13, 0.91 | 0.50 | 0.009/0.045 | 0.09, 0.76 | 78.32 | 95 |
Measure | Time 1 | ||
---|---|---|---|
M | SD | SEM | |
Indicators in TOL: | |||
Initial Thinking Time (ITT) | 28.99/0.96 a | 11.12/0.01 b | 1.14/0.00 c |
Execution Time (ET) | 45.02/0.98 a | 13.23/0.01 b | 1.36/0.00 c |
Extra Moves (EM) | 4.36/0.88 a | 4.29/0.49 b | 0.44/0.05 c |
Indicator in GNG: | |||
No Go Errors (NGE) | 8.54/1.80 a | 6.49/0.63 b | 0.66/0.06 c |
Reaction Time for Go Responses (RTGR) | 441.03/1.00 a | 73.09/0.00 b | 7.50/0.00 c |
Measure | Component | |
---|---|---|
Factor 1 | Factor 2 | |
Extra Moves (EM) | 0.899 | |
Initial Thinking Time (ITT) | 0.547 | |
Execution Time (ET) | 0.829 | |
No Go Errors (NGE) | −0.830 | |
Reaction Time for Go Responses (RTGR) | 0.788 | |
Variance (%) explained by each factor | 34.93% | 31.26% |
Cumulative explained variance % | 34.93% | 66.19% |
Measure | Component | |||||
---|---|---|---|---|---|---|
Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | Factor 6 | |
Trial 1: Extra Moves (EM) | 0.860 | |||||
Trial 2: Extra Moves (EM) | 0.782 | |||||
Trial 3: Extra Moves (EM) | 0.959 | |||||
Trial 6: Extra Moves (EM) | 0.936 | |||||
Trial 7: Extra Moves (EM) | 0.860 | |||||
Trial 1: Initial Thinking Time (ITT) | 0.439 | −0.401 | ||||
Trial 2: Initial Thinking Time (ITT) | 0.475 | 0.509 | ||||
Trial 3: Initial Thinking Time (ITT) | 0.681 | |||||
Trial 6: Initial Thinking Time (ITT) | 0.828 | |||||
Trial 7: Initial Thinking Time (ITT) | 0.760 | |||||
Trial 1: Execution Time (ET) | 0.920 | |||||
Trial 2: Execution Time (ET) | 0.850 | |||||
Trial 3: Execution Time (ET) | 0.938 | |||||
Trial 6: Execution Time (ET) | 0.835 | |||||
Trial 7: Execution Time (ET) | 0.438 | 0.408 | ||||
Variance (%) explained by each factor | 16.34% | 14.55% | 13.27% | 12.61% | 11.58% | 8.65% |
Cumulative explained variance % | 16.34% | 30.89% | 44.16% | 56.77% | 68.35% | 77.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyburski, E.; Kerestey, M.; Kerestey, P.; Radoń, S.; Mueller, S.T. Assessment of Motor Planning and Inhibition Performance in Non-Clinical Sample—Reliability and Factor Structure of the Tower of London and Go/No Go Computerized Tasks. Brain Sci. 2021, 11, 1420. https://doi.org/10.3390/brainsci11111420
Tyburski E, Kerestey M, Kerestey P, Radoń S, Mueller ST. Assessment of Motor Planning and Inhibition Performance in Non-Clinical Sample—Reliability and Factor Structure of the Tower of London and Go/No Go Computerized Tasks. Brain Sciences. 2021; 11(11):1420. https://doi.org/10.3390/brainsci11111420
Chicago/Turabian StyleTyburski, Ernest, Magdalena Kerestey, Pavlo Kerestey, Stanisław Radoń, and Shane T. Mueller. 2021. "Assessment of Motor Planning and Inhibition Performance in Non-Clinical Sample—Reliability and Factor Structure of the Tower of London and Go/No Go Computerized Tasks" Brain Sciences 11, no. 11: 1420. https://doi.org/10.3390/brainsci11111420
APA StyleTyburski, E., Kerestey, M., Kerestey, P., Radoń, S., & Mueller, S. T. (2021). Assessment of Motor Planning and Inhibition Performance in Non-Clinical Sample—Reliability and Factor Structure of the Tower of London and Go/No Go Computerized Tasks. Brain Sciences, 11(11), 1420. https://doi.org/10.3390/brainsci11111420