Effects on the Motor Function, Proprioception, Balance, and Gait Ability of the End-Effector Robot-Assisted Gait Training for Spinal Cord Injury Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Intervention
2.3. Outcome Measures
2.4. Statistical Analysis
3. Results
3.1. Demographic Data
3.2. Outcome Measures after RAGT
3.3. Outcome Measures According to the Initial Proprioception Status
3.4. Correlation of Final Clinical Outcomes with Initial Outcome Measures
3.5. Correlation between Final Clinical Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Takeoka, A. Proprioception: Bottom-up directive for motor recovery after spinal cord injury. Neurosci. Res. 2020, 154, 1–8. [Google Scholar] [CrossRef]
- Casadio, M.; Morasso, P.; Sanguineti, V.; Giannoni, P. Minimally assistive robot training for proprioception enhancement. Exp. Brain Res. 2009, 194, 219–231. [Google Scholar] [CrossRef]
- Dietz, V. Proprioception and locomotor disorders. Nat. Rev. Neurosci. 2002, 3, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Qaiser, T.; Chisholm, A.E.; Lam, T. The relationship between lower limb proprioceptive sense and locomotor skill acquisition. Exp. Brain Res. 2016, 234, 3185–3192. [Google Scholar] [CrossRef]
- Takeoka, A.; Vollenweider, I.; Courtine, G.; Arber, S. Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury. Cell 2014, 159, 1626–1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeoka, A.; Arber, S. Functional local proprioceptive feedback circuits initiate and maintain locomotor recovery after spinal cord injury. Cell Rep. 2019, 27, 71–85.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, E.Y.Y.; Ng, T.K.W.; Yu, K.K.K.; Kwan, R.L.C.; Cheing, G.L.Y. Robot-assisted training for people with spinal cord injury: A meta-analysis. Arch. Phys. Med. Rehab. 2017, 98, 2320–2331.e12. [Google Scholar] [CrossRef] [PubMed]
- Tefertiller, C.; Pharo, B.; Evans, N.; Winchester, P. Efficacy of rehabilitation robotics for walking training in neurological disorders: A review. J. Rehabil. Res. Dev. 2011, 48, 387–416. [Google Scholar] [CrossRef]
- Nam, K.Y.; Kim, H.J.; Kwon, B.S.; Park, J.-W.; Lee, H.J.; Yoo, A. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: A systematic review. J. Neuroeng. Rehabil. 2017, 14, 24. [Google Scholar] [CrossRef] [Green Version]
- Morone, G.; Paolucci, S.; Cherubini, A.; De Angelis, D.; Venturiero, V.; Coiro, P.; Iosa, M. Robot-assisted gait training for stroke patients: Current state of the art and perspectives of robotics. Neuropsych. Dis. Treat. 2017, 13, 1303–1311. [Google Scholar] [CrossRef] [Green Version]
- Gandolfi, M.; Geroin, C.; Picelli, A.; Munari, D.; Waldner, A.; Tamburin, S.; Marchioretto, F.; Smania, N. Robot-assisted vs. sensory integration training in treating gait and balance dysfunctions in patients with multiple sclerosis: A randomized controlled trial. Front. Hum. Neurosci. 2014, 8, 318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandolfi, M.; Valè, N.; Dimitrova, E.; Zanolin, M.E.; Mattiuz, N.; Battistuzzi, E.; Beccari, M.; Geroin, C.; Picelli, A.; Waldner, A.; et al. Robot-assisted stair climbing training on postural control and sensory integration processes in chronic post-stroke patients: A randomized controlled clinical trial. Front. Neurosci. 2019, 13, 1143. [Google Scholar] [CrossRef] [PubMed]
- Maranesi, E.; Riccardi, G.R.; Di Donna, V.; Di Rosa, M.; Fabbietti, P.; Luzi, R.; Pranno, L.; Lattanzio, F.; Bevilacqua, R. Effectiveness of intervention based on end-effector gait trainer in older patients with stroke: A systematic review. J. Am. Med. Dir. Assoc. 2019, 21, 1036–1044. [Google Scholar] [CrossRef] [PubMed]
- Picelli, A.; Capecci, M.; Filippetti, M.; Varalta, V.; Fonte, C.; DI Censo, R.; Zadra, A.; Chignola, I.; Scarpa, S.; Amico, A.P.; et al. Effects of robot-assisted gait training on postural instability in Parkinson’s disease: A systematic review. Eur. J. Phys. Rehab. Med. 2021, 57, 472–477. [Google Scholar]
- Aguirre-Güemez, A.V.; Pérez-Sanpablo, A.I.; Quinzaños-Fresnedo, J.; Pérez-Zavala, R.; Barrera-Ortiz, A. Walking speed is not the best outcome to evaluate the effect of robotic assisted gait training in people with motor incomplete spinal cord injury: A systematic review with meta-analysis. J. Spinal Cord Med. 2019, 42, 142–154. [Google Scholar] [CrossRef] [PubMed]
- Hesse, S.; Werner, C.; Bardeleben, A. Electromechanical gait training with functional electrical stimulation: Case studies in spinal cord injury. Spinal Cord 2004, 42, 346–352. [Google Scholar] [CrossRef]
- Freivogel, S.; Mehrholz, J.; Husak-Sotomayor, T.; Schmalohr, D. Gait training with the newly developed ‘LokoHelp’-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain Injury 2008, 22, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, R.S.; Filoni, S.; Billeri, L.; Balletta, T.; Cannavò, A.; Militi, A.; Milardi, D.; Pignolo, L.; Naro, A. Robotic rehabilitation in spinal cord injury: A pilot study on end-effectors and neurophysiological outcomes. Ann. Biomed. Eng. 2020, 49, 732–745. [Google Scholar] [CrossRef]
- Rupp, R.; Biering-Sørensen, F.; Burns, S.P.; Graves, D.E.; Guest, J.; Jones, L.; Read, M.S.; Schmidt, M.; Rodriguez, G.M.; Schuld, C.; et al. American Spinal Injury Association: International Standards for Neurological Classification of Spinal Cord Injury, Revised 2019. Top. Spinal Cord Inj. Rehabil. 2021, 27, 1–22. [Google Scholar] [CrossRef]
- Alcobendas-Maestro, M.; Esclarín-Ruz, A.; Casado-López, R.M.; Muñoz-González, A.; Pérez-Mateos, G.; González-Valdizáan, E.; Martín, J.L.R. Lokomat robotic-assisted versus overground training within 3 to 6 months of incomplete spinal cord lesion. Neurorehabil. Neural Repair 2012, 26, 1058–1063. [Google Scholar] [CrossRef]
- Labruyère, R.; Hedel, H.J.A. van. Strength training versus robot-assisted gait training after incomplete spinal cord injury: A randomized pilot study in patients depending on walking assistance. J. Neuroeng. Rehabil. 2014, 11, 4. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.C.; Kim, J.Y.; Park, H.K.; Kim, N.Y. Effect of robotic-assisted gait training in patients with incomplete spinal cord injury. Ann. Rehabil. Med. 2014, 38, 719–725. [Google Scholar] [CrossRef]
- Lam, T.; Noonan, V.K.; Eng, J.J. A systematic review of functional ambulation outcome measures in spinal cord injury. Spinal Cord 2008, 46, 246–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Field-Fote, E.C.; Roach, K. Influence of a locomotor training approach on walking speed and distance in people with chronic spinal cord injury: A randomized clinical trial. Phys. Ther. 2011, 91, 48–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Q.; Huang, Q.; Hu, C. Research on design theory and compliant control for underactuated lower-extremity rehabilitation robotic systems code: (51175368); 2012.01–2015.12. J. Phys. Ther. Sci. 2014, 26, 1597–1599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horak, F.B. Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls? Age Ageing 2006, 35, ii7–ii11. [Google Scholar] [CrossRef] [Green Version]
- Bonan, I.V.; Colle, F.M.; Guichard, J.P.; Vicaut, E.; Eisenfisz, M.; Ba Huy, P.; Yelnik, A.P. Reliance on visual information after stroke. Part I: Balance on dynamic posturography. Arch. Phys. Med. Rehabil. 2004, 85, 268–273. [Google Scholar] [CrossRef]
- Smania, N.; Picelli, A.; Gandolfi, M.; Fiaschi, A.; Tinazzi, M. Rehabilitation of sensorimotor integration deficits in balance impairment of patients with stroke hemiparesis: A before/after pilot study. Neurol. Sci. 2008, 29, 313–319. [Google Scholar] [CrossRef] [PubMed]
Value | |
---|---|
Age (yr.) | 52 (19–85) |
Sex | |
Male | 8 |
Female | 5 |
Time from onset (day) | 48 (19–139) |
Etiology | |
Traumatic | 12 |
Non-traumatic | 1 |
Level | |
Tetraplegia | 11 |
Paraplegia | 2 |
AIS | |
C | 1 |
D | 12 |
preRAGT | postRAGT | Effect Size | p-Value | |
---|---|---|---|---|
10MWT (m/s) | 0 (0–0) | 0.16 (0.12–0.50) | 1.20 | 0.002 ** |
6mWT (m) | 0 (0–0) | 52 (38–129) | 1.03 | 0.002 ** |
LEMS | 34 (30–37) | 39 (38–40) | 0.74 | 0.003 ** |
proprioception | 10 (6–12) | 12 (10–12) | 0.63 | 0.027 * |
BBS | 14 (8–26) | 38 (24–49) | 1.48 | 0.001 ** |
WISCI-II | 3 (0–4) | 13 (9–19) | 1.97 | 0.001 ** |
Normal Group (n = 6) | Abnormal Group (n = 7) | |||||||
---|---|---|---|---|---|---|---|---|
preRAGT | postRAGT | Effect Size | p-Value | preRAGT | postRAGT | Effect Size | p-Value | |
10MWT (m/s) | 0 (0–0) | 0.32 (0.13–0.48) | 1.30 | 0.028 * | 0 (0–0.07) | 0.1 9(0.11–0.34) | 0.91 | 0.027 * |
6mWT (m) | 0 (0–0) | 92 (52–131) | 1.49 | 0.028 * | 0 (0–23) | 40 (25–74) | 0.51 | 0.028 * |
LEMS | 35 (33–39) | 38 (37–40) | 0.40 | 0.068 | 32 (29–36) | 39 (38–40) | 0.91 | 0.018 * |
Proprioception | - | - | - | 4 (4–6) | 7 (6–7) | 1.49 | 0.027 * | |
BBS | 20 (12–28) | 43 (31–49) | 1.68 | 0.028 * | 7 (5–16) | 23 (18–45) | 1.36 | 0.018 * |
WISCI-II | 3 (1–4) | 15 (13–19) | 3.17 | 0.027 * | 2 (0–7) | 11 (8–18) | 1.35 | 0.018 * |
Normal Group (n = 6) | Abnormal Group (n = 7) | Effect Size | p-Value | |
---|---|---|---|---|
Δ10MWT (m/s) | 0.28 (0.13–0.48) | 0.14 (0.11–0.32) | 0.61 | 0.391 |
Δ6mWT (m) | 91 (52–131) | 26 (11–39) | 1.28 | 0.063 |
ΔLEMS | 2 (0–4) | 4 (3–8) | 0.81 | 0.097 |
ΔBBS | 19 (17–23) | 19 (11–23) | 0.004 | 0.886 |
ΔWISCI-II | 12 (10–13) | 8 (7–10) | 1.23 | 0.037 * |
Initial Outcome Measures | ||||||||
---|---|---|---|---|---|---|---|---|
10MWT | 6mWT | LEMS | Proprioception | BBS | WISCI-II | |||
Final outcome measures | 10MWT | r | 0.568 * | 0.546 | 0.455 | 0.273 | 0.739 * | 0.882 * |
p-value | 0.043 | 0.053 | 0.118 | 0.366 | 0.004 | <0.0001 | ||
6mWT | r | 0.446 | 0.379 | 0.215 | 0.448 | 0.935 ** | 0.705 ** | |
p-value | 0.127 | 0.202 | 0.480 | 0.125 | <0.0001 | 0.007 | ||
LEMS | r | −0.138 | −0.181 | 0.328 | 0.745 ** | 0.616 * | 0.313 | |
p-value | 0.653 | 0.555 | 0.273 | 0.003 | 0.025 | 0.297 | ||
Proprio0ception | r | 0.518 | 0.518 | 0.683 * | −0.036 | 0.069 | 0.611* | |
p-value | 0.070 | 0.070 | 0.010 | 0.908 | 0.823 | 0.026 | ||
BBS | r | 0.487 | 0.428 | 0.309 | 0.411 | 0.885 ** | 0.751 ** | |
p-value | 0.091 | 0.145 | 0.304 | 0.164 | <0.0001 | 0.003 | ||
WISCI-II | r | 0.656 * | 0.641 * | 0.390 | 0.582 * | 0.589 * | 0.679 * | |
p-value | 0.015 | 0.018 | 0.187 | 0.037 | 0.034 | 0.011 |
10MWT | 6mWT | LEMS | Proprio-Ception | BBS | WISCI-II | ||
---|---|---|---|---|---|---|---|
10MWT | r | 0.830 ** | 0.398 | 0.365 | 0.803 ** | 0.578 * | |
p-value | <0.0001 | 0.178 | 0.221 | 0.001 | 0.039 | ||
6mWT | r | 0.830 ** | 0.236 | 0.566 * | 0.946 ** | 0.693 ** | |
p-value | <0.0001 | 0.438 | 0.044 | <0.0001 | 0.009 | ||
LEMS | r | 0.398 | 0.236 | 0.116 | 0.266 | 0.294 | |
p-value | 0.178 | 0.438 | 0.707 | 0.381 | 0.330 | ||
Proprioception | r | 0.365 | 0.566 * | 0.116 | 0.609 * | 0.475 | |
p-value | 0.221 | 0.044 | 0.707 | 0.027 | 0.101 | ||
BBS | r | 0.803 ** | 0.946 ** | 0.266 | 0.609* | 0.718 ** | |
p-value | 0.001 | <0.0001 | 0.381 | 0.027 | 0.006 | ||
WISCI-II | r | 0.578 * | 0.693 ** | 0.294 | 0.475 | 0.718 ** | |
p-value | 0.039 | 0.009 | 0.330 | 0.101 | 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, J.C.; Jeon, H.R.; Kim, D.; Cho, S.I.; Min, W.K.; Lee, J.S.; Oh, D.S.; Yoo, J. Effects on the Motor Function, Proprioception, Balance, and Gait Ability of the End-Effector Robot-Assisted Gait Training for Spinal Cord Injury Patients. Brain Sci. 2021, 11, 1281. https://doi.org/10.3390/brainsci11101281
Shin JC, Jeon HR, Kim D, Cho SI, Min WK, Lee JS, Oh DS, Yoo J. Effects on the Motor Function, Proprioception, Balance, and Gait Ability of the End-Effector Robot-Assisted Gait Training for Spinal Cord Injury Patients. Brain Sciences. 2021; 11(10):1281. https://doi.org/10.3390/brainsci11101281
Chicago/Turabian StyleShin, Ji Cheol, Ha Ra Jeon, Dahn Kim, Sung Il Cho, Won Kyu Min, June Sung Lee, Da Som Oh, and Jeehyun Yoo. 2021. "Effects on the Motor Function, Proprioception, Balance, and Gait Ability of the End-Effector Robot-Assisted Gait Training for Spinal Cord Injury Patients" Brain Sciences 11, no. 10: 1281. https://doi.org/10.3390/brainsci11101281
APA StyleShin, J. C., Jeon, H. R., Kim, D., Cho, S. I., Min, W. K., Lee, J. S., Oh, D. S., & Yoo, J. (2021). Effects on the Motor Function, Proprioception, Balance, and Gait Ability of the End-Effector Robot-Assisted Gait Training for Spinal Cord Injury Patients. Brain Sciences, 11(10), 1281. https://doi.org/10.3390/brainsci11101281