Envelope Following Response to 440 Hz Carrier Chirp-Modulated Tones Show Clinically Relevant Changes in Schizophrenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Stimulation
2.3. EEG Recording
2.4. EEG Processing
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lachaux, J.-P.; Jung, J.; Mainy, N.; Dreher, J.C.; Bertrand, O.; Baciu, M.; Minotti, L.; Hoffmann, D.; Kahane, P. Silence Is Golden: Transient Neural Deactivation in the Prefrontal Cortex during Attentive Reading. Cereb. Cortex 2008, 18, 443–450. [Google Scholar] [CrossRef] [Green Version]
- Yener, G.G.; Başar, E. Brain Oscillations as Biomarkers in Neuropsychiatric Disorders: Following an Interactive Panel Discussion and Synopsis. Suppl. Clin. Neurophysiol. 2013, 62, 343–363. [Google Scholar]
- Brenner, C.A.; Krishnan, G.P.; Vohs, J.L.; Ahn, W.-Y.; Hetrick, W.P.; Morzorati, S.L.; O’Donnell, B.F. Steady State Responses: Electrophysiological Assessment of Sensory Function in Schizophrenia. Schizophr. Bull. 2009, 35, 1065–1077. [Google Scholar] [CrossRef] [Green Version]
- Picton, T.; John, M.S.; Dimitrijevic, A.; Purcell, D. Human auditory steady-state responses: Respuestas auditivas de estado estable en humanos. Int. J. Audiol. 2003, 42, 177–219. [Google Scholar] [CrossRef]
- O’Donnell, B.F.; Vohs, J.L.; Krishnan, G.P.; Rass, O.; Hetrick, W.P.; Morzorati, S.L. The Auditory Steady-State Response (ASSR): A Translational Biomarker for Schizophrenia. Suppl. Clin. Neurophysiol. 2013, 62, 101–112. [Google Scholar]
- Thuné, H.; Recasens, M.; Uhlhaas, P.J. The 40-Hz Auditory Steady-State Response in Patients With Schizophrenia. JAMA Psychiatry 2016, 73, 1145–1153. [Google Scholar] [CrossRef]
- Edgar, J.C.; Fisk, C.L.; Chen, Y.-H.; Stone-Howell, B.; Liu, S.; Hunter, M.A.; Huang, M.; Bustillo, J.; Cañive, J.M.; Miller, G.A. Identifying auditory cortex encoding abnormalities in schizophrenia: The utility of low-frequency versus 40 Hz steady-state measures. Psychophysiol. 2018, 55, e13074. [Google Scholar] [CrossRef]
- Hamm, J.P.; Gilmore, C.S.; Clementz, B.A. Augmented gamma band auditory steady-state responses: Support for NMDA hypofunction in schizophrenia. Schizophr. Res. 2012, 138, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Alegre, M.; Molero, P.; Valencia, M.; Mayner, G.; Ortuño, F.; Artieda, J. Atypical antipsychotics normalize low-gamma evoked oscillations in patients with schizophrenia. Psychiatry Res. 2017, 247, 214–221. [Google Scholar] [CrossRef]
- Tsuchimoto, R.; Kanba, S.; Hirano, S.; Oribe, N.; Ueno, T.; Hirano, Y.; Nakamura, I.; Oda, Y.; Miura, T.; Onitsuka, T. Reduced high and low frequency gamma synchronization in patients with chronic schizophrenia. Schizophr. Res. 2011, 133, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Herdman, A.T.; Lins, O.; Van Roon, P.; Stapells, D.R.; Scherg, M.; Picton, T.W. Intracerebral Sources of Human Auditory Steady-State Responses. Brain Topogr. 2002, 15, 69–86. [Google Scholar] [CrossRef]
- Lehongre, K.; Ramus, F.; Villiermet, N.; Schwartz, D.; Giraud, A.-L. Altered Low-Gamma Sampling in Auditory Cortex Accounts for the Three Main Facets of Dyslexia. Neuron 2011, 72, 1080–1090. [Google Scholar] [CrossRef] [Green Version]
- Millman, R.E.; Prendergast, G.; Kitterick, P.T.; Woods, W.P.; Green, G.G.R. Spatiotemporal reconstruction of the auditory steady-state response to frequency modulation using magnetoencephalography. NeuroImage 2010, 49, 745–758. [Google Scholar] [CrossRef]
- Plourde, G. Auditory evoked potentials. Best Pr. Res. Clin. Anaesthesiol. 2006, 20, 129–139. [Google Scholar] [CrossRef]
- Tichko, P.; Skoe, E. Frequency-dependent fine structure in the frequency-following response: The byproduct of multiple generators. Hear. Res. 2017, 348, 1–15. [Google Scholar] [CrossRef]
- Farahani, E.D.; Wouters, J.; Van Wieringen, A. Contributions of non-primary cortical sources to auditory temporal processing. NeuroImage 2019, 191, 303–314. [Google Scholar] [CrossRef]
- Farahani, E.D.; Wouters, J.; Van Wieringen, A. Brain mapping of auditory steady-state responses: A broad view of cortical and subcortical sources. Hum. Brain Mapp. 2020. [Google Scholar] [CrossRef]
- Moran, L.V.; Hong, L.E. High vs Low Frequency Neural Oscillations in Schizophrenia. Schizophr. Bull. 2011, 37, 659–663. [Google Scholar] [CrossRef]
- Artieda, J.; Valencia, M.; Alegre, M.; Olaziregi, O.; Urrestarazu, E.; Iriarte, J. Potentials evoked by chirp-modulated tones: A new technique to evaluate oscillatory activity in the auditory pathway. Clin. Neurophysiol. 2004, 115, 699–709. [Google Scholar] [CrossRef]
- Dolphin, W.F. The envelope following response to multiple tone pair stimuli. Hear. Res. 1997, 110, 1–14. [Google Scholar] [CrossRef]
- Purcell, D.W.; John, S.M.; Schneider, B.A.; Picton, T.W. Human temporal auditory acuity as assessed by envelope following responses. J. Acoust. Soc. Am. 2004, 116, 3581–3593. [Google Scholar] [CrossRef]
- Patchett, R.F. Human Sound Frequency Preferences. Percept. Mot. Ski. 1979, 49, 324–326. [Google Scholar] [CrossRef]
- Vitz, P.C. Preference for tones as a function of frequency (hertz) and intensity (decibels). Percept. Psychophys. 1972, 11, 84–88. [Google Scholar] [CrossRef] [Green Version]
- Pipinis, E.; Voicikas, A.; Griškova-Bulanova, I. Low and high gamma auditory steady-states in response to 440 Hz carrier chirp-modulated tones show no signs of attentional modulation. Neurosci. Lett. 2018, 678, 104–109. [Google Scholar] [CrossRef]
- Freedman, B.; Chapman, L.J. Early subjective experiences in schizophrenic episodes. J. Abnorm. Psychol. 1973, 82, 46–54. [Google Scholar] [CrossRef]
- Landon, J.; Shepherd, D.; McGarry, M.; Theadom, A.; Miller, R. When it’s quiet, it’s nice: Noise sensitivity in schizophrenia. Am. J. Psychiatr. Rehabil. 2016, 19, 122–135. [Google Scholar] [CrossRef]
- Nishiguchi, Y.; Takano, K.; Tanno, Y. The need for cognition mediates and moderates the association between depressive symptoms and impaired effortful control. Psychiatry Res. 2016, 241, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Tang, X.; Wang, X.; Zhang, X.; Zhang, X.; Sha, W.; Yao, S.; Shu, N.; Zhang, X.; Zhang, Z. Neurocognitive Impairments in Deficit and Non-Deficit Schizophrenia and Their Relationships with Symptom Dimensions and Other Clinical Variables. PLoS ONE 2015, 10, e0138357. [Google Scholar] [CrossRef] [Green Version]
- Binder, M.; Górska, U.; Pipinis, E.; Voicikas, A.; Griskova-Bulanova, I. Auditory steady-state response to chirp-modulated tones: A pilot study in patients with disorders of consciousness. NeuroImage Clin. 2020, 27, 102261. [Google Scholar] [CrossRef]
- Griškova-Bulanova, I.; Griksiene, R.; Korostenskaja, M.; Ruksenas, O. 40 Hz auditory steady-state response in females: When is it better to entrain? Acta Neurobiol. Exp. 2014, 74, 91–97. [Google Scholar]
- Kay, S.R.; Fiszbein, A.; Opler, L.A. The Positive and Negative Syndrome Scale (PANSS) for Schizophrenia. Schizophr. Bull. 1987, 13, 261–276. [Google Scholar] [CrossRef]
- Griškova-Bulanova, I.; Dapsys, K.; Melynyte, S.; Voicikas, A.; Maciulis, V.; Andruskevicius, S.; Korostenskaja, M. 40 Hz auditory steady-state response in schizophrenia: Sensitivity to stimulation type (clicks versus flutter amplitude-modulated tones). Neurosci. Lett. 2018, 662, 152–157. [Google Scholar] [CrossRef]
- Griškova-Bulanova, I.; Dapsys, K.; Maciulis, V.; Arnfred, S.M. Closed eyes condition increases auditory brain responses in schizophrenia. Psychiatry Res. Neuroimaging 2013, 211, 183–185. [Google Scholar] [CrossRef]
- Griskova-Bulanova, I.; Dapsys, K.; Maciulis, V. Does Brain Ability to Synchronize with 40 Hz Auditory Stimulation Change with Age? Acta Neurobiol. Exp. (Warsz) 2013, 73, 564–570. [Google Scholar]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Oostenveld, R.; Fries, P.; Maris, E.; Schoffelen, J.-M. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Comput. Intell. Neurosci. 2010, 2011, 1–9. [Google Scholar] [CrossRef]
- Mørup, M.; Hansen, L.K.; Arnfred, S.M. ERPWAVELAB. J. Neurosci. Methods 2007, 161, 361–368. [Google Scholar] [CrossRef]
- Haukoos, J.S.; Haukoos, M.J.S.; Lewis, R.J. Advanced Statistics: Bootstrapping Confidence Intervals for Statistics with “Difficult” Distributions. Acad. Emerg. Med. 2005, 12, 360–365. [Google Scholar] [CrossRef]
- Dima, D.C.; Perry, G.; Messaritaki, E.; Zhang, J.; Singh, K. Spatiotemporal dynamics in human visual cortex rapidly encode the emotional content of faces. Hum. Brain Mapp. 2018, 39, 3993–4006. [Google Scholar] [CrossRef] [Green Version]
- Grent-’T.-Jong, T.; Rivolta, D.; Gross, J.; Gajwani, R.; Lawrie, S.M.; Schwannauer, M.; Heidegger, T.; Wibral, M.; Singer, W.; Sauer, A.; et al. Acute ketamine dysregulates task-related gamma-band oscillations in thalamo-cortical circuits in schizophrenia. Brain 2018, 141, 2511–2526. [Google Scholar] [CrossRef] [Green Version]
- Sidarus, N.; Vuorre, M.; Haggard, P. How action selection influences the sense of agency: An ERP study. NeuroImage 2017, 150, 1–13. [Google Scholar] [CrossRef]
- Chen, J.; Gong, Q.; Wu, F. Deficits in the 30-Hz auditory steady-state response in patients with major depressive disorder. NeuroReport 2016, 27, 1147–1152. [Google Scholar] [CrossRef]
- Isomura, S.; Onitsuka, T.; Tsuchimoto, R.; Nakamura, I.; Hirano, S.; Oda, Y.; Oribe, N.; Hirano, Y.; Ueno, T.; Kanba, S. Differentiation between major depressive disorder and bipolar disorder by auditory steady-state responses. J. Affect. Disord. 2016, 190, 800–806. [Google Scholar] [CrossRef]
- Rojas, D.C.; Wilson, L.B. γ-band abnormalities as markers of autism spectrum disorders. Biomarkers Med. 2014, 8, 353–368. [Google Scholar] [CrossRef] [Green Version]
- Hong, L.E. Evoked gamma band synchronization and the liability for schizophrenia*1. Schizophr. Res. 2004, 70, 293–302. [Google Scholar] [CrossRef]
- Kim, S.; Jang, S.-K.; Kim, D.-W.; Shim, M.; Kim, Y.-W.; Im, C.-H.; Lee, S.-H. Cortical volume and 40-Hz auditory-steady-state responses in patients with schizophrenia and healthy controls. NeuroImage Clin. 2019, 22, 101732. [Google Scholar] [CrossRef]
- Griškova-Bulanova, I.; Hubl, D.; Van Swam, C.; Dierks, T.; Koenig, T. Early- and late-latency gamma auditory steady-state response in schizophrenia during closed eyes: Does hallucination status matter? Clin. Neurophysiol. 2016, 127, 2214–2221. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Tang, Y.; Curtin, A.; Chan, R.C.; Wang, Y.; Li, H.; Zhang, T.; Qian, Z.; Guo, Q.; Li, Y.; et al. Abnormal auditory-evoked gamma band oscillations in first-episode schizophrenia during both eye open and eye close states. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 86, 279–286. [Google Scholar] [CrossRef]
- Edgar, J.C.; Iv, C.L.F.; Chen, Y.-H.; Stone-Howell, B.; Hunter, M.A.; Huang, M.; Bustilllo, J.R.; Cañive, J.M.; Miller, G.A. By our bootstraps: Comparing methods for measuring auditory 40 Hz steady-state neural activity. Psychophysiol. 2017, 54, 1110–1127. [Google Scholar] [CrossRef]
- Spencer, K.M.; Niznikiewicz, M.; Nestor, P.G.; Shenton, M.E.; McCarley, R. Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia. BMC Neurosci. 2009, 10, 85. [Google Scholar] [CrossRef]
- Uhlhaas, P.J.; Haenschel, C.; Nikolić, D.; Singer, W. The Role of Oscillations and Synchrony in Cortical Networks and Their Putative Relevance for the Pathophysiology of Schizophrenia. Schizophr. Bull. 2008, 34, 927–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griškova-Bulanova, I.; Rukšėnas, O.; Dapšys, K.; Mačiulis, V.; Arnfred, S.M. Distraction task rather than focal attention modulates gamma activity associated with auditory steady-state responses (ASSRs). Clin. Neurophysiol. 2011, 122, 1541–1548. [Google Scholar] [CrossRef] [PubMed]
- Noh, K.; Shin, K.S.; Shin, D.; Hwang, J.Y.; Kim, J.S.; Jang, J.H.; Chung, C.-K.; Kwon, J.S.; Cho, K.-H. Impaired coupling of local and global functional feedbacks underlies abnormal synchronization and negative symptoms of schizophrenia. BMC Syst. Biol. 2013, 7, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vierling-Claassen, D.; Siekmeier, P.; Stufflebeam, S.; Kopell, N. Modeling GABA Alterations in Schizophrenia: A Link Between Impaired Inhibition and Altered Gamma and Beta Range Auditory Entrainment. J. Neurophysiol. 2008, 99, 2656–2671. [Google Scholar] [CrossRef] [Green Version]
- Arnfred, S.M.; Raballo, A.; Morup, M.; Parnas, J. Self-Disorder and Brain Processing of Proprioception in Schizophrenia Spectrum Patients: A Re-Analysis. Psychopathol. 2014, 48, 60–64. [Google Scholar] [CrossRef]
- Edgar, J.C.; Chen, Y.-H.; Lanza, M.; Howell, B.; Chow, V.Y.; Heiken, K.; Liu, S.; Wootton, C.; Hunter, M.A.; Huang, M.; et al. Cortical thickness as a contributor to abnormal oscillations in schizophrenia? NeuroImage: Clin. 2014, 4, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Hamm, J.P.; Gilmore, C.S.; Picchetti, N.A.; Sponheim, S.R.; Clementz, B.A. Abnormalities of Neuronal Oscillations and Temporal Integration to Low- and High-Frequency Auditory Stimulation in Schizophrenia. Biol. Psychiatry 2011, 69, 989–996. [Google Scholar] [CrossRef] [Green Version]
- Rosburg, T.; Boutros, N.N.; Ford, J.M. Reduced auditory evoked potential component N100 in schizophrenia—A critical review. Psychiatry Res. 2008, 161, 259–274. [Google Scholar] [CrossRef]
- Miller, G.A.; Rockstroh, B. Endophenotypes in Psychopathology Research: Where Do We Stand? Annu. Rev. Clin. Psychol. 2013, 9, 177–213. [Google Scholar] [CrossRef] [Green Version]
- Turetsky, B.I.; Greenwood, T.A.; Olincy, A.; Radant, A.D.; Braff, D.L.; Cadenhead, K.S.; Dobie, D.J.; Freedman, R.; Green, M.F.; Gur, R.E.; et al. Abnormal Auditory N100 Amplitude: A Heritable Endophenotype in First-Degree Relatives of Schizophrenia Probands. Biol. Psychiatry 2008, 64, 1051–1059. [Google Scholar] [CrossRef] [Green Version]
- Brockhaus-Dumke, A.; Mueller, R.; Faigle, U.; Klosterkoetter, J. Sensory gating revisited: Relation between brain oscillations and auditory evoked potentials in schizophrenia. Schizophr. Res. 2008, 99, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Nopoulos, P.C.; Ceilley, J.W.; Gailis, E.A.; Andreasen, N. An MRI study of midbrain morphology in patients with schizophrenia: Relationship to psychosis, neuroleptics, and cerebellar neural circuitry. Biol. Psychiatry 2001, 49, 13–19. [Google Scholar] [CrossRef]
- Gong, J.; Luo, C.; Li, X.; Jiang, S.; Khundrakpam, B.S.; Duan, M.; Chen, X.; Yao, D. Evaluation of functional connectivity in subdivisions of the thalamus in schizophrenia. Br. J. Psychiatry 2019, 214, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Lindström, L.; Klockhoff, I.; Svedberg, A.; Bergström, K. Abnormal Auditory Brain-stem Responses in Hallucinating Schizophrenic Patients. Br. J. Psychiatry 1987, 151, 9–14. [Google Scholar] [CrossRef]
- Hayashida, Y.; Mitani, Y.; Hosomi, H.; Amemiya, M.; Mifune, K.; Tomita, S. Auditory brain stem responses in relation to the clinical symptoms of schizophrenia. Biol. Psychiatry 1986, 21, 177–188. [Google Scholar] [CrossRef]
- Baghdassarian, E.J.; Markhed, M.N.; Lindström, E.; Nilsson, B.M.; Lewander, T. Auditory brainstem response (ABR) profiling tests as diagnostic support for schizophrenia and adult attention-deficit hyperactivity disorder (ADHD). Acta Neuropsychiatr. 2017, 30, 137–147. [Google Scholar] [CrossRef]
- Binder, M.; Górska, U.; Griskova-Bulanova, I. 40 Hz auditory steady-state responses in patients with disorders of consciousness: Correlation between phase-locking index and Coma Recovery Scale-Revised score. Clin. Neurophysiol. 2017, 128, 799–806. [Google Scholar] [CrossRef]
H | SZ | |
---|---|---|
Male/female, n | 18/0 | 18/0 |
Age (years) | 42 ± 13 | 38 ± 14 |
Smoking status (yes/no) | 14/4 | 9/9 |
Onset age (years) | 25.14 ± 12.45 | |
Duration (years) | 13.03 ± 9.76 | |
Positive and negative syndrome scale: | ||
Positive | 21.11 ± 5.43 | |
Negative | 28.50 ± 5.19 | |
General | 46.61 ± 10.53 | |
Total | 95.06 ± 17.31 | |
Hallucinations | 2.50 ± 1.29 | |
Chlorpromazine equivalents (mg) | 583.50 ± 217.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Griskova-Bulanova, I.; Voicikas, A.; Dapsys, K.; Melynyte, S.; Andruskevicius, S.; Pipinis, E. Envelope Following Response to 440 Hz Carrier Chirp-Modulated Tones Show Clinically Relevant Changes in Schizophrenia. Brain Sci. 2021, 11, 22. https://doi.org/10.3390/brainsci11010022
Griskova-Bulanova I, Voicikas A, Dapsys K, Melynyte S, Andruskevicius S, Pipinis E. Envelope Following Response to 440 Hz Carrier Chirp-Modulated Tones Show Clinically Relevant Changes in Schizophrenia. Brain Sciences. 2021; 11(1):22. https://doi.org/10.3390/brainsci11010022
Chicago/Turabian StyleGriskova-Bulanova, Inga, Aleksandras Voicikas, Kastytis Dapsys, Sigita Melynyte, Sergejus Andruskevicius, and Evaldas Pipinis. 2021. "Envelope Following Response to 440 Hz Carrier Chirp-Modulated Tones Show Clinically Relevant Changes in Schizophrenia" Brain Sciences 11, no. 1: 22. https://doi.org/10.3390/brainsci11010022
APA StyleGriskova-Bulanova, I., Voicikas, A., Dapsys, K., Melynyte, S., Andruskevicius, S., & Pipinis, E. (2021). Envelope Following Response to 440 Hz Carrier Chirp-Modulated Tones Show Clinically Relevant Changes in Schizophrenia. Brain Sciences, 11(1), 22. https://doi.org/10.3390/brainsci11010022