Double-Step Machine Learning Based Procedure for HFOs Detection and Classification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Description
2.2. Feature Extraction
2.3. Machine Learning Algorithms
- HFO detection
- HFO classification.
- Logistic regression (LR) [43] is a regression-based method employed to predict the probability of occurrence of an event. In this case, the value of l2 penalization has been chosen in log space between −3 and 3;
- Support vector machine (SVM) [44] is a supervised algorithm that allows creating hyperplanes in n-dimensional space according to the number of features, to discriminate two or more classes. In this case it has been used a linear kernel and the optimal cost parameter has been chosen in a log space between −3 and 3;
- K-nearest neighbors (KNN) [45] is a nonlinear instance-based algorithm. Its main idea is to predict the class based on distance between the observation and the first k neighbors and does not assume a priori the dataset distribution. The number k of neighbors has been chosen in a range from 1 to 20;
- Random forest classifier (RF) is a nonlinear classifier [46] belonging to the ensemble methods. This family of classifiers makes it possible to generalize well to new data [47] and they are more robust to overfitting than individual trees because each node does not see all the features at the same time [46]. In this case, the number of trees (100, 200), the maximum number of levels in tree (5, 10, 20), the minimum number of samples required to split a node (2, 5, 10), and the minimum number of samples required at each leaf node (1, 2, 4) have been chosen for optimization.
2.3.1. Step 1: HFO Detection
2.3.2. Step 2: HFO Classification
3. Results
3.1. Step One Results
3.2. Step Two Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zijlmans, M.; Jiruska, P.; Zelmann, R.; Leijten, F.S.S.; Jefferys, J.G.R.; Gotman, J. High-frequency oscillations as a new biomarker in epilepsy. Ann. Neurol. 2012, 71, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Quitadamo, L.R.; Mai, R.; Gozzo, F.; Pelliccia, V.; Cardinale, F.; Seri, S. Kurtosis-Based Detection of Intracranial High-Frequency Oscillations for the Identification of the Seizure Onset Zone. Int. J. Neural Syst. 2018, 28, 1850001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.Y.; Sankar, R.; Lerner, J.T.; Matsumoto, J.H.; Vinters, H.V.; Mathern, G.W. Removing interictal fast ripples on electrocorticography linked with seizure freedom in children. Neurology 2010, 75, 1686–1694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dümpelmann, M.; Jacobs, J.; Kerber, K.; Schulze-bonhage, A. Clinical Neurophysiology Automatic 80 – 250 Hz ‘“ ripple ”’ high frequency oscillation detection in invasive subdural grid and strip recordings in epilepsy by a radial basis function neural network. Clin. Neurophysiol. 2012, 123, 1721–1731. [Google Scholar]
- Bénar, C.G.; Chauvière, L.; Bartolomei, F.; Wendling, F. Pitfalls of high-pass filtering for detecting epileptic oscillations: A technical note on ‘false’ ripples. Clin. Neurophysiol. 2010, 121, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Zelmann, R.; Mari, F.; Jacobs, J.; Zijlmans, M.; Chander, R.; Gotman, J. Automatic detector of High Frequency Oscillations for human recordings with macroelectrodes. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 2329–2333. [Google Scholar]
- Staba, R.J.; Wilson, C.L.; Bragin, A.; Fried, I.; Engel, J., Jr. Quantitative analysis of high-frequency oscillations (80–500 Hz) recorded in human epileptic hippocampus and entorhinal cortex. J. Neurophysiol. 2002, 88, 1743–1752. [Google Scholar] [CrossRef]
- Gardner, A.B.; Worrell, G.A.; Marsh, E.; Dlugos, D.; Litt, B. HFO Human vs Automated detection. Clin. Neurophysiol. 2007, 118, 1–20. [Google Scholar]
- Crépon, B.; Navarro, V.; Hasboun, D.; Clemenceau, S.; Martinerie, J.; Baulac, M.; Adam, C.; Le Van Quyen, M. Mapping interictal oscillations greater than 200 Hz recorded with intracranial macroelectrodes in human epilepsy. Brain 2010, 133, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Rosso, O.A.; Blanco, S.; Yordanova, J.; Kolev, V.; Figliola, A.; Schürmann, M.; Başar, E. Wavelet entropy: A new tool for analysis of short duration brain electrical signals. J. Neurosci. Methods 2001, 105, 65–75. [Google Scholar] [CrossRef]
- Ren, G.P.; Yan, J.Q.; Yu, Z.X.; Wang, D.; Li, X.N.; Mei, S.S.; Dai, J.D.; Li, X.L.; Li, Y.L.; Wang, X.F.; et al. Automated Detector of High Frequency Oscillations in Epilepsy Based on Maximum Distributed Peak Points. Int. J. Neural Syst. 2018, 28, 1750029. [Google Scholar] [CrossRef]
- Firpi, H.; Smart, O.; Worrell, G.; Marsh, E.; Dlugos, D.; Litt, B. High-frequency oscillations detected in epileptic networks using swarmed neural-network features. Ann. Biomed. Eng. 2007, 35, 1573–1584. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, A.; Brinkmann, B.H.; Matthew Stead, S.; Matsumoto, J.; Kucewicz, M.T.; Marsh, W.R.; Meyer, F.; Worrell, G. Pathological and physiological high-frequency oscillations in focal human epilepsy. J. Neurophysiol. 2013, 110, 1958–1964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, R. Artificial Intelligence Is a Tool, Not a Threat. Available online: https://robohub.org/artificial-intelligence-is-a-tool-not-a-threat/ (accessed on 8 April 2020).
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Ras, G.; van Gerven, M.; Haselager, P. Explanation Methods in Deep Learning: Users, Values, Concerns and Challenges; Springer: Berlin/Heidelberg, Germany, 2018; pp. 19–36. [Google Scholar]
- Blanco, J.A.; Stead, M.; Krieger, A.; Viventi, J.; Marsh, W.R.; Lee, K.H.; Worrell, G.A.; Litt, B. Unsupervised classification of high-frequency oscillations in human neocortical epilepsy and control patients. J. Neurophysiol. 2010, 104, 2900–2912. [Google Scholar] [CrossRef]
- Jrad, N.; Kachenoura, A.; Merlet, I.; Nica, A.; Benar, C.G.; Wendling, F. Classification of high frequency oscillations in epileptic intracerebral EEG. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 574–577. [Google Scholar]
- Jrad, N.; Kachenoura, A.; Merlet, I.; Bartolomei, F.; Nica, A.; Biraben, A. Automatic detection and classification of High Frequency Oscillations in depth-EEG signals. IEEE Trans. Biomed. Eng. 2016, 64, 2230–2240. [Google Scholar] [CrossRef]
- Amiri, M.; Lina, J.M.; Pizzo, F.; Gotman, J. High Frequency Oscillations and spikes: Separating real HFOs from false oscillations. Clin. Neurophysiol. 2016, 127, 187–196. [Google Scholar] [CrossRef]
- Chaibi, S.; Lajnef, T.; Samet, M.; Jerbi, K.; Kachouri, A. Detection of High Frequency Oscillations (HFOs) in the 80–500 Hz range in epilepsy recordings using decision tree analysis. Int. Image Process. Appl. Syst. Conf. IPAS 2014. [Google Scholar] [CrossRef]
- Khalilov, I.; van Quyen, M.L.; Gozlan, H.; Ben-ari, Y. Epileptogenic Actions of GABA and Fast Oscillations in the Developing Hippocampus. Neuron 2005, 48, 787–796. [Google Scholar] [CrossRef]
- Doshi, C. Methods for Detecting High-Frequency Oscillations in Ongoing Brain Signals: Application to the Determination of Epileptic Seizure Onset Zones. Master’s Thesis, Marquette University, Milwaukee, WI, USA, 2011; p. 93. [Google Scholar]
- Chaibi, S.; Lajnef, T.; Sakka, Z.; Samet, M.; Kachouri, A. A comparaison of methods for detection of high frequency oscillations (HFOs) in human intacerberal EEG recordings. Am. J. Signal Process. 2013, 3, 25–34. [Google Scholar]
- Chaibi, S.; Sakka, Z.; Lajnef, T.; Samet, M.; Kachouri, A. Automated detection and classification of high frequency oscillations (HFOs) in human intracereberal EEG. Biomed. Signal Process. Control 2013, 8, 927–934. [Google Scholar] [CrossRef]
- Burnos, S.; Frauscher, B.; Zelmann, R.; Haegelen, C.; Sarnthein, J.; Gotman, J. The morphology of high frequency oscillations (HFO) does not improve delineating the epileptogenic zone. Clin. Neurophysiol. 2016, 127, 2140–2148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varatharajah, Y.; Berry, B.; Cimbalnik, J.; Kremen, V.; Van Gompel, J.; Stead, M.; Brinkmann, B.; Iyer, R.; Worrell, G. Integrating artificial intelligence with real-time intracranial EEG monitoring to automate interictal identification of seizure onset zones in focal epilepsy. J. Neural Eng. 2018, 15, 046035. [Google Scholar] [CrossRef] [PubMed]
- López-Cuevas, A.; Castillo-Toledo, B.; Medina-Ceja, L.; Ventura-Mejía, C.; Pardo-Peña, K. An algorithm for on-line detection of high frequency oscillations related to epilepsy. Comput. Methods Programs Biomed. 2013, 110, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Zuo, R.; Wei, J.; Li, X.; Li, C.; Zhao, C.; Ren, Z.; Liang, Y.; Geng, X.; Jiang, C.; Yang, X.; et al. Automated Detection of High-Frequency Oscillations in Epilepsy Based on a Convolutional Neural Network. Front. Comput. Neurosci. 2019, 13, 6. [Google Scholar] [CrossRef] [Green Version]
- Navarrete, M.; Alvarado-Rojas, C.; le van Quyen, M.; Valderrama, M. RIPPLELAB: A comprehensive application for the detection, analysis and classification of high frequency oscillations in electroencephalographic signals. PLoS ONE 2016, 11, e0158276. [Google Scholar] [CrossRef]
- Fedele, T.; Burnos, S.; Boran, E.; Krayenbühl, N.; Hilfiker, P.; Grunwald, T.; Sarnthein, J. Resection of high frequency oscillations predicts seizure outcome in the individual patient. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Fedele, T.; Burnos, S.; Boran, E.; Krayenbühl, N.; Hilfiker, P.; Grunwald, J.; Sarnthein, T. High Frequency Oscillations Detected in The Intracranial Eeg of Epilepsy Patients during Interictal Sleep, Patients’ Electrode Location and Outcome of Epilepsy Surgery. CRCNS.org 2017. [CrossRef]
- Fedele, T.; van’t Klooster, M.; Burnos, S.; Zweiphenning, W.; van Klink, N.; Leijten, F.; Zijlmans, M.; Sarnthein, J. Automatic detection of high frequency oscillations during epilepsy surgery predicts seizure outcome. Clin. Neurophysiol. 2016, 127, 3066–3074. [Google Scholar] [CrossRef] [Green Version]
- Park, C.J.; Hong, S.B. High Frequency Oscillations in Epilepsy: Detection Methods and Considerations in Clinical Application. J. Epilepsy Res. 2019, 9, 1. [Google Scholar] [CrossRef]
- Jacobs, J.; Levan, P.; Chander, R.; Hall, J.; Dubeau, F. Interictal high-frequency oscillations ( 80–500 Hz ) are an indicator of seizure onset areas independent of spikes in the human epileptic brain. Epilepsia 2013, 49, 1893–1907. [Google Scholar] [CrossRef] [Green Version]
- Worrell, G.A.; Jerbi, K.; Kobayashi, K.; Lina, J.-M.; Zelmann, R.; le van Quyen, M. Recording and analysis techniques for high-frequency oscillations. Prog. Neurobiol. 2012, 98, 265–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoaran, M.; Haghi, B.A.; Taghavi, M.; Farivar, M.; Emami-Neyestanak, A. Energy-efficient classification for resource-constrained biomedical applications. IEEE J. Emerg. Sel. Top. Circuits Syst. 2018, 8, 693–707. [Google Scholar] [CrossRef]
- Lai, D.; Zhang, X.; Ma, K.; Chen, Z.; Chen, W.; Zhang, H.; Yuan, H.; Ding, L. Automated Detection of High Frequency Oscillations in Intracranial EEG Using the Combination of Short-Time Energy and Convolutional Neural Networks. IEEE Access 2019, 7, 82501–82511. [Google Scholar] [CrossRef]
- Lai, D.; Zhang, X.; Chen, W.; Zhang, H.; Kang, T.; Yuan, H.; Ding, L. Channel-Wise Characterization of High Frequency Oscillations for Automated Identification of the Seizure Onset Zone. IEEE Access 2020, 8, 45531–45543. [Google Scholar] [CrossRef]
- Fisher, R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Rao, C.R. The Utilization of Multiple Measurements in Problems of Biological Classification. J. R. Stat. Soc. Ser. B 1948, 10, 159–193. [Google Scholar] [CrossRef]
- Cramer, J.S. The origins of logistic regression. Tinbergen Institute Working Paper No. 2002-119/4. [CrossRef] [Green Version]
- Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; Association for Computing Machinery: New York, NY, USA; pp. 144–152. [Google Scholar]
- Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992, 46, 175–185. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Novak, D.; Mihelj, M.; Munih, M. A survey of methods for data fusion and system adaptation using autonomic nervous system responses in physiological computing. Interact. Comput. 2012, 24, 154–172. [Google Scholar] [CrossRef]
- Pohlert, T. The Pairwise Multiple Comparison of Mean Ranks Package (PMCMR). R Packag. 2014, 27, 9. [Google Scholar]
- Banos, O.; Galvez, J.M.; Damas, M.; Pomares, H.; Rojas, I. Window size impact in human activity recognition. Sensors 2014, 14, 6474–6499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arlot, S.; Celisse, A. A survey of cross-validation procedures for model selection. Stat. Surv. 2010, 4, 40–79. [Google Scholar] [CrossRef]
- He, H.; Bai, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–8 June 2008; pp. 1322–1328. [Google Scholar]
- García, S.; Herrera, F. An extension on ‘statistical comparisons of classifiers over multiple data sets’ for all pairwise comparisons. J. Mach. Learn. Res. 2008, 9, 2677–2694. [Google Scholar]
- Khadjevand, F.; Cimbalnik, J.; Worrell, G.A. Progress and remaining challenges in the application of high frequency oscillations as biomarkers of epileptic brain. Curr. Opin. Biomed. Eng. 2017, 4, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.A.; Waldman, Z.; Raimondo, F.; Slezak, D.; Donmez, M.; Worrell, G.; Bragin, A.; Engel, J.; Staba, R.; Sperling, M. Localizing epileptogenic regions using high-frequency oscillations and machine learning. Biomark. Med. 2019, 13, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.H.; Hargrove, L.J.; Lock, B.A.; Kuiken, T.A. Determining the optimal window length for pattern recognition-based myoelectric control: Balancing the competing effects of classification error and controller delay. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 19, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Bernardi, M.L.; Cimitile, M.; Martinelli, F.; Mercaldo, F. Driver and path detection through time-series classification. J. Adv. Transp. 2018. [Google Scholar] [CrossRef]
- Darzi, A.; Azami, H.; Khosrowabadi, R. Brain functional connectivity changes in long-term mental stress. J. Neurodev. Cogn. 2019, 1, 16–41. [Google Scholar]
- Jacobs, J.; Staba, R.; Asano, E.; Otsubo, H.; Wu, J.Y.; Zijlmans, M.; Mohamed, I.; Kahane, P.; Dubeau, F.; Navarro, V.; et al. High-frequency oscillations (HFOs) in clinical epilepsy. Prog. Neurobiol. 2012, 98, 302–315. [Google Scholar] [CrossRef] [Green Version]
AI Technique | Classes | Sensitivity | Features |
---|---|---|---|
KNN [12] | 2 classes (HFO/ background) | NN features provide sensitivity significantly higher than RMS for 4/6 subjects. | RMS vs. data-driven feature extraction with NN |
Multiclass LDA [19] | 4 classes (ripple, fast ripples, ripple + fast ripples and artifacts) | Median 80.5% | Energy ratio computed with discrete wavelet |
Decision tree [22] | 2 classes (HFO/ no-HFO) | 66.96% | 6 features related to energy and duration |
RBF SVM [20] | 5 classes (gamma, high gamma, ripple, fast ripples and artifacts) | 73% fast ripples 92% ripples | Energy ratio and root mean square features computed on Gabor transformed data. |
Linear SVM [13] | 2 classes (pathological/physiological) | Ranging from 68 to 99% | Spectral amplitude, frequency, and duration |
SVM [21] | 2 classes (false HFOs due to filtering effects during sharp events/real HFOs) | >70% | 26 temporal features selected with forward feature selection. |
Radial basis neural network [4] | Cross-subject ripple classification | 49.1% | Line length, energy and instantaneous frequency |
Convolutional neural network [30] | 2 classes (ripples/no ripples and fast ripples/no fast ripples) | 77.04% ripples 83.23% fast ripples | Grayscale images of iEEG amplitude |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sciaraffa, N.; Klados, M.A.; Borghini, G.; Di Flumeri, G.; Babiloni, F.; Aricò, P. Double-Step Machine Learning Based Procedure for HFOs Detection and Classification. Brain Sci. 2020, 10, 220. https://doi.org/10.3390/brainsci10040220
Sciaraffa N, Klados MA, Borghini G, Di Flumeri G, Babiloni F, Aricò P. Double-Step Machine Learning Based Procedure for HFOs Detection and Classification. Brain Sciences. 2020; 10(4):220. https://doi.org/10.3390/brainsci10040220
Chicago/Turabian StyleSciaraffa, Nicolina, Manousos A. Klados, Gianluca Borghini, Gianluca Di Flumeri, Fabio Babiloni, and Pietro Aricò. 2020. "Double-Step Machine Learning Based Procedure for HFOs Detection and Classification" Brain Sciences 10, no. 4: 220. https://doi.org/10.3390/brainsci10040220