The Association between the Usage of Non-Steroidal Anti-Inflammatory Drugs and Cognitive Status: Analysis of Longitudinal and Cross-Sectional Studies from the Global Alzheimer’s Association Interactive Network and Transcriptomic Data
Abstract
:1. Introduction
2. Experimental Section
3. Results
3.1. ARWIBO Dataset
3.2. KAME Dataset
3.3. APOE4 Dataset
3.4. LBLS Dataset
3.5. Transcriptomic Data Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Imbimbo, B.P.; Solfrizzi, V.; Panza, F. Are NSAIDs useful to treat Alzheimer’s disease or mild cognitive impairment? Front. Aging Neurosci. 2010, 2, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozben, T.; Ozben, S. Neuro-inflammation and anti-inflammatory treatment options for Alzheimer’s disease. Clin. Biochem. 2019, 72, 87–89. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, Y.; Wang, D.; Zhang, J.; Zhang, F. NSAID Exposure and Risk of Alzheimer’s Disease: An Updated Meta-Analysis from Cohort Studies. Front. Aging Neurosci. 2018, 10, 83. [Google Scholar] [CrossRef] [PubMed]
- Borgdorff, P.; Handoko, M.L.; Wong, Y.Y.; Tangelder, G.J. COX-2 Inhibition by Use of Rofecoxib or High Dose Aspirin Enhances ADP-Induced Platelet Aggregation in Fresh Blood. Open Cardiovasc. Med. J. 2010, 4, 198–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ornelas, A.; Zacharias-Millward, N.; Menter, D.G.; Davis, J.S.; Lichtenberger, L.; Hawke, D.; Hawk, E.; Vilar, E.; Bhattacharya, P.; Millward, S. Beyond COX-1: The effects of aspirin on platelet biology and potential mechanisms of chemoprevention. Cancer Metastasis Rev. 2017, 36, 289–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neu, S.C.; Crawford, K.L.; Toga, A.W. Sharing data in the global Alzheimer’s association interactive network. Neuroimage 2016, 124, 1168–1174. [Google Scholar] [CrossRef] [Green Version]
- Toga, A.W.; Neu, S.C.; Bhatt, P.; Crawford, K.L.; Ashish, N. The Global Alzheimer’s Association Interactive Network. Alzheimers Dement. 2016, 12, 49–54. [Google Scholar] [CrossRef] [Green Version]
- The Global Alzheimer’s Association Interactive Network. Available online: http://www.gaain.org/ (accessed on 4 September 2020).
- Cheng, F.; Theodorescu, D.; Schulman, I.G.; Lee, J.K. In vitro transcriptomic prediction of hepatotoxicity for early drug discovery. J. Theor. Biol. 2011, 290, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.J.; Kawasawa, Y.I.; Cheng, F.; Zhu, Y.; Xu, X.; Li, M.; Sousa, A.M.; Pletikos, M.; Meyer, K.A.; Sedmak, G.; et al. Spatio-temporal transcriptome of the human brain. Nature 2011, 478, 483–489. [Google Scholar] [CrossRef] [Green Version]
- Cheng, F.; Keeley, E.C.; Lee, J.K. Molecular prediction for atherogenic risks across different cell types of leukocytes. BMC Med. Genom. 2012, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Khatoon, Z.; Figler, B.; Zhang, H.; Cheng, F. Introduction to RNA-Seq and its applications to drug discovery and development. Drug Dev. Res. 2014, 75, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Toska, E.; Zagorsky, R.; Figler, B.; Cheng, F. Transcriptomic studies on liver toxicity of acetaminophen. Drug Dev. Res. 2014, 75, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Fang, Z.; Yang, Y.; Rohlsen-Neal, D.; Cheng, F.; Wang, J. Analyzing the genes related to nicotine addiction or schizophrenia via a pathway and network based approach. Sci. Rep. 2018, 8, 2894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, T.; Suzek, T.O.; Troup, D.B.; Wilhite, S.E.; Ngau, W.C.; Ledoux, P.; Rudnev, D.; Lash, A.E.; Fujibuchi, W.; Edgar, R. NCBI GEO: Mining millions of expression profiles—Database and tools. Nucleic Acids Res. 2005, 33, D562–D566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; et al. NCBI GEO: Archive for functional genomics data sets—Update. Nucleic Acids Res. 2013, 41, D991–D995. [Google Scholar] [CrossRef] [Green Version]
- Woodling, N.S.; Colas, D.; Wang, Q.; Minhas, P.; Panchal, M.; Liang, X.; Mhatre, S.D.; Brown, H.; Ko, N.; Zagol-Ikapitte, I.; et al. Cyclooxygenase inhibition targets neurons to prevent early behavioural decline in Alzheimer’s disease model mice. Brain 2016, 139, 2063–2081. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37, 1–13. [Google Scholar] [CrossRef] [Green Version]
- DAVID Functional Annotation Bioinformatics Microarray Analysis. Available online: https://david.ncifcrf.gov/ (accessed on 10 September 2020).
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361. [Google Scholar] [CrossRef] [Green Version]
- Schaie, K.W.; Caskie, G.I.; Revell, A.J.; Willis, S.L.; Kaszniak, A.W.; Teri, L. Extending neuropsychological assessments into the primary mental ability space. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 2005, 12, 245–277. [Google Scholar] [CrossRef] [Green Version]
- Terracciano, A.; Iacono, D.; O’Brien, R.J.; Troncoso, J.C.; An, Y.; Sutin, A.R.; Ferrucci, L.; Zonderman, A.B.; Resnick, S.M. Personality and resilience to Alzheimer’s disease neuropathology: A prospective autopsy study. Neurobiol. Aging 2013, 34, 1045–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, S.; Fisher, D.W.; Yu, T.; Dong, H. The link between chronic pain and Alzheimer’s disease. J. Neuroinflamm. 2019, 16, 204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiner, D.K.; Rudy, T.E.; Morrow, L.; Slaboda, J.; Lieber, S. The relationship between pain, neuropsychological performance, and physical function in community-dwelling older adults with chronic low back pain. Pain Med. 2006, 7, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Chaigneau, E.; Tiret, P.; Lecoq, J.; Ducros, M.; Knopfel, T.; Charpak, S. The relationship between blood flow and neuronal activity in the rodent olfactory bulb. J. Neurosci. 2007, 27, 6452–6460. [Google Scholar] [CrossRef] [PubMed]
- Jaradat, M.S.; Wongsud, B.; Phornchirasilp, S.; Rangwala, S.M.; Shams, G.; Sutton, M.; Romstedt, K.J.; Noonan, D.J.; Feller, D.R. Activation of peroxisome proliferator-activated receptor isoforms and inhibition of prostaglandin H(2) synthases by ibuprofen, naproxen, and indomethacin. Biochem. Pharmacol. 2001, 62, 1587–1595. [Google Scholar] [CrossRef]
- Patel, D.; Roy, A.; Kundu, M.; Jana, M.; Luan, C.H.; Gonzalez, F.J.; Pahan, K. Aspirin binds to PPARalpha to stimulate hippocampal plasticity and protect memory. Proc. Natl. Acad. Sci. USA 2018, 115, E7408–E7417. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Pahan, K. PPARalpha in lysosomal biogenesis: A perspective. Pharmacol. Res. 2016, 103, 144–148. [Google Scholar] [CrossRef] [Green Version]
- Bala, S.; Szabo, G. TFEB, a master regulator of lysosome biogenesis and autophagy, is a new player in alcoholic liver disease. Dig. Med. Res. 2018, 1, 16. [Google Scholar] [CrossRef]
- Knopfova, L.; Smarda, J. The use of Cox-2 and PPARgamma signaling in anti-cancer therapies. Exp. Ther. Med. 2010, 1, 257–264. [Google Scholar] [CrossRef]
- Fan, F.; Ge, Y.; Lv, W.; Elliott, M.R.; Muroya, Y.; Hirata, T.; Booz, G.W.; Roman, R.J. Molecular mechanisms and cell signaling of 20-hydroxyeicosatetraenoic acid in vascular pathophysiology. Front. Biosci. 2016, 21, 1427–1463. [Google Scholar]
- Theken, K.N.; Deng, Y.; Kannon, M.A.; Miller, T.M.; Poloyac, S.M.; Lee, C.R. Activation of the acute inflammatory response alters cytochrome P450 expression and eicosanoid metabolism. Drug Metab. Dispos. 2011, 39, 22–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, F.; Muroya, Y.; Roman, R.J. Cytochrome P450 eicosanoids in hypertension and renal disease. Curr. Opin. Nephrol. Hypertens. 2015, 24, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, S. Nasal NSAIDs for Alzheimer’s Disease. Am. J. Alzheimers Dis. Other Demen. 2014, 29, 401–403. [Google Scholar] [CrossRef]
- Parepally, J.M.; Mandula, H.; Smith, Q.R. Brain uptake of nonsteroidal anti-inflammatory drugs: Ibuprofen, flurbiprofen, and indomethacin. Pharm. Res. 2006, 23, 873–881. [Google Scholar] [CrossRef] [PubMed]
Control Group | NSAID Group | Odds Ratio | p-Value | |
---|---|---|---|---|
N | 184 | 30 | ||
Age | 72.14 | 70.94 | 0.99 (0.95 to 1.04) | 0.82 |
Sex | 121 females 63 males | 20 females 10 males | 0.90 (0.39 to 2.07) | 0.80 |
Diagnosis | 76 (MCI) 108 (Dementia) | 20 (MCI) 10 (Dementia) | 0.36 (0.16 to 0.82) | 0.01 |
Control Group | Aspirin Group | Odds Ratio | p-Value | |
---|---|---|---|---|
N | 233 | 53 | ||
Age | 81.75 | 81.86 | 1.03 (0.99 to 1.06) | 0.17 |
Sex | 148 females 85 males | 27 females 26 males | 1.68 (0.9 to 3.11) | 0.10 |
MMSE | 20.19 | 22.68 | 1.08 (1.01 to 1.14) | 0.01 |
Control Group | NSAID Group | Odds Ratio | p-Value | |
---|---|---|---|---|
N | 300 | 189 | ||
Age | 55.47 | 57.04 | 1.02 (1.00 to 1.04) | 0.05 |
Sex | 228 females 72 males | 152 females 37 males | 1.22 (0.77 to 1.92) | 0.40 |
Log-mem immed | 13.68 | 14.27 | 1.07 (1.01 to 1.13) | 0.04 |
Log-mem delayed | 12.45 | 13.22 | 1.06 (1.01 to 1.11) | 0.01 |
Control Group | Aspirin Group | Odds Ratio | p-Value | |
---|---|---|---|---|
N | 627 | 787 | ||
Age | 70.07 | 67.24 | 0.99 (0.98 to 1.00) | 0.07 |
Sex | 323 females 304 males | 461 females 326 males | 1.23 (1.20 to 3.86) | 0.06 |
PI-R Immed. | 0.59 | 0.64 | 2.38 (1.34 to 4.23) | 0.003 |
Control Group | Aspirin Group | Odds Ratio | p-Value | |
---|---|---|---|---|
N | 115 | 266 | ||
Age | 64.88 | 65.54 | 1.01 (0.99 to 1.04) | 0.16 |
Sex | 60 females 55 males | 161 females 105 males | 1.28 (0.81 to 2.02) | 0.29 |
Total words IR (ST) | 5.01 | 5.4 | 1.21 (1.04 to 1.41) | 0.01 |
Total words DR (ST) | 3.43 | 3.87 | 1.18 (1.04 to 1.35) | 0.003 |
Pathway Source | Name of Pathway | Gene Count | p-Value |
---|---|---|---|
KEGG | Olfactory transduction | 46 | 1.2 × 10−7 |
KEGG | Cytokine–cytokine receptor interactions | 12 | 6.2 × 10−3 |
KEGG | Protein digestion and absorption | 7 | 6.4 × 10−3 |
KEGG | Arachidonic acid metabolism | 7 | 6.7 × 10−3 |
KEGG | Janus kinases (JAK)-signal transducer and activator of transcription proteins (STAT) signaling | 8 | 2.0 × 10−2 |
KEGG | Hematopoietic cell lineage | 6 | 2.2 × 10−2 |
KEGG | Retinol metabolism | 6 | 2.7 × 10−2 |
KEGG | Neuroactive ligand–receptor interaction | 11 | 4.4 × 10−2 |
KEGG | Tuberculosis | 8 | 5.0 × 10−2 |
BIOCARTA | Nuclear receptors in lipid metabolism and toxicity | 4 | 2.2 × 10−2 |
BIOCARTA | The co-stimulatory signal during T-cell activation | 3 | 4.6 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morris, R.; Armbruster, K.; Silva, J.; Widell, D.J.; Cheng, F. The Association between the Usage of Non-Steroidal Anti-Inflammatory Drugs and Cognitive Status: Analysis of Longitudinal and Cross-Sectional Studies from the Global Alzheimer’s Association Interactive Network and Transcriptomic Data. Brain Sci. 2020, 10, 961. https://doi.org/10.3390/brainsci10120961
Morris R, Armbruster K, Silva J, Widell DJ, Cheng F. The Association between the Usage of Non-Steroidal Anti-Inflammatory Drugs and Cognitive Status: Analysis of Longitudinal and Cross-Sectional Studies from the Global Alzheimer’s Association Interactive Network and Transcriptomic Data. Brain Sciences. 2020; 10(12):961. https://doi.org/10.3390/brainsci10120961
Chicago/Turabian StyleMorris, Robert, Kyle Armbruster, Julianna Silva, Daniel James Widell, and Feng Cheng. 2020. "The Association between the Usage of Non-Steroidal Anti-Inflammatory Drugs and Cognitive Status: Analysis of Longitudinal and Cross-Sectional Studies from the Global Alzheimer’s Association Interactive Network and Transcriptomic Data" Brain Sciences 10, no. 12: 961. https://doi.org/10.3390/brainsci10120961
APA StyleMorris, R., Armbruster, K., Silva, J., Widell, D. J., & Cheng, F. (2020). The Association between the Usage of Non-Steroidal Anti-Inflammatory Drugs and Cognitive Status: Analysis of Longitudinal and Cross-Sectional Studies from the Global Alzheimer’s Association Interactive Network and Transcriptomic Data. Brain Sciences, 10(12), 961. https://doi.org/10.3390/brainsci10120961