Nicotinic Receptors in Sleep-Related Hypermotor Epilepsy: Pathophysiology and Pharmacology
Abstract
:1. Introduction
2. Sleep-Related Hypermotor Epilepsy (SHE)
3. The Implication of Neuronal Nicotinic Receptors (nAChRs) in Autosomal Dominant SHE (ADSHE)
3.1. nAChRs in the Cerebral Cortex
3.2. The α4 and β2 nAChR Subunits in ADSHE
3.3. The α2 nAChR Subunit and Its Mysteries
4. Other Genes Implicated in SHE
5. Steps toward Precision Medicine in ADSHE
6. Developmental Aspects of ADSHE and Implications for Therapy
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fisher, R.S.; Cross, J.H.; French, J.A.; Higurashi, N.; Hirsch, E.; Jansen, F.E.; Lagae, L.; Moshé, S.L.; Peltola, J.; Roulez Perez, E.; et al. Operational classification of seizure types by the International League Against Epilepsy: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 522–530. [Google Scholar] [CrossRef] [Green Version]
- Baulac, M.; de Boer, H.; Elger, C.; Glynn, M.; Kälviäinen, R.; Little, A.; Mifsud, J.; Perucca, E.; Pitkänen, A.; Ryvlin, P. Epilepsy priorities in Europe: A report of the ILAE-IBE Epilepsy Advocacy Europe Task Force. Epilepsia 2015, 56, 1687–1695. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, C.; Koren, J.P.; Britto-Arias, M.; Zoche, L.; Pirker, S. Presurgical epilepsy evaluation and epilepsy surgery. F1000Research 2019, 8. [Google Scholar] [CrossRef] [Green Version]
- Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshé, S.L.; et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 512–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perucca, P.; Bahlo, M.; Berkovic, S.F. The genetics of epilepsy. Annu. Rev. Genom. Hum. Genet. 2020, 10, 27. [Google Scholar] [CrossRef]
- Noebels, J. Precision physiology and rescue of brain ion channel disorders. J. Gen. Physiol. 2017, 149, 533–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hesdorffer, D.C.; Logroscino, G.; Benn, E.K.; Katri, N.; Cascino, G.; Hauser, W.A. Estimating risk for developing epilepsy: A population-based study in Rochester, Minnesota. Neurology 2011, 76, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Pedley, T.A.; Guilleminault, C. Episodic nocturnal wanderings responsive to anticonvulsant drug therapy. Ann. Neurol. 1977, 2, 30–35. [Google Scholar] [CrossRef]
- Lugaresi, E.; Cirignotta, F. Hypnogenic paroxysmal dystonia: Epileptic seizure or a new syndrome? Sleep 1981, 4, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Tinuper, P.; Cerullo, A.; Cirignotta, F.; Cortelli, P.; Lugaresi, E.; Montagna, P. Nocturnal paroxysmal dystonia with short-lasting attacks: Three cases with evidence for an epileptic frontal lobe origin of seizures. Epilepsia 1990, 31, 549–556. [Google Scholar] [CrossRef]
- Scheffer, I.E.; Bhatia, K.P.; Lopes-Cendes, I.; Fish, D.R.; Marsden, C.D.; Andermann, E.; Andermann, F.; Desbiens, R.; Keene, D.; Cendes, F.; et al. Autosomal dominant nocturnal frontal lobe epilepsy. A distinct clinical disorder. Brain 1995, 118, 61–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tinuper, P.; Bisulli, F.; Cross, J.H.; Hesdorffer, D.; Kahane, P.; Nobili, L.; Provini, F.; Scheffer, I.E.; Tassi, L.; Vignatelli, L.; et al. Definition and diagnostic criteria of sleep-related hypermotor epilepsy. Neurology 2016, 86, 1834–1842. [Google Scholar] [CrossRef] [PubMed]
- Menghi, V.; Bisulli, F.; Tinuper, P.; Nobili, L. Sleep-related hypermotor epilepsy: Prevalence, impact and management strategies. Nat. Sci. Sleep 2018, 10, 317–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Picard, F.; Pegna, A.J.; Arntsberg, V.; Lucas, N.; Kaczmarek, I.; Todica, O.; Chiriaco, C.; Seeck, M.; Brodtkorb, E. Neuropsychological disturbances in frontal lobe epilepsy due to mutated nicotinic receptors. Epilepsy Behav. 2009, 14, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Oyrer, J.; Maljevic, S.; Scheffer, I.E.; Berkovic, S.F.; Petrou, S.; Reid, C.A. Ion channels in genetic epilepsy: From genes and mechanisms to disease-targetd therapies. Pharmacol. Rev. 2018, 70, 142–173. [Google Scholar] [CrossRef] [PubMed]
- Nobili, L.; Francione, S.; Mai, R.; Cardinale, F.; Castana, L.; Tassi, L.; Sartori, I.; Didato, G.; Citterio, A.; Colombo, N.; et al. Surgical treatment of drug-resistant nocturnal frontal lobe epilepsy. Brain 2007, 130, 561–573. [Google Scholar] [CrossRef] [PubMed]
- Licchetta, L.; Bisulli, F.; Vignatelli, L.; Zenesini, C.; Di Vito, L.; Mostacci, B.; Rinaldi, C.; Trippi, I.; Naldi, I.; Plazzi, G.; et al. Sleep-related hypermotor epilepsy. Long-term outcome in a large cohort. Neurology 2017, 88, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Picard, F.; Brodtkorb, E. Familial frontal lobe epilepsies. In Epilepsy. A Comprehensive Textbook; Engel, J., Jr., Pedley, T.A., Eds.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2008; pp. 2495–2502. [Google Scholar]
- Steinlein, O.K. Genetic heterogeneity in familial nocturnal frontal lobe epilepsy. Prog. Brain Res. 2014, 213, 1–15. [Google Scholar]
- Jones, B.E. Arousal and sleep circuits. Neuropsychopharmacology 2020, 45, 6–20. [Google Scholar] [CrossRef]
- Levey, A.I.; Wainer, B.H.; Rye, D.B.; Mufson, E.J.; Mesulam, M.M. Choline acetyltransferase-immunoreactive neurons intrinsic to rodent cortex and distinction from acetylcholinesterase-positive neurons. Neuroscience 1984, 13, 341–353. [Google Scholar] [CrossRef]
- Consonni, S.; Leone, S.; Becchetti, A.; Amadeo, A. Developmental and neurochemical features of cholinergic neurons in the murine cerebral cortex. BMC Neurosci. 2009, 10, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Picciotto, M.R.; Highley, M.J.; Mineur, Y.S. Acetylcholine as a neuromodulator: Cholinergic signaling shape nervous system function and behavior. Neuron 2012, 76, 116–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albuquerque, E.D.; Pereira, E.F.R.; Alkondon, M.; Rogers, S.W. Mammalian nicotinic acetylcholine receptors: From structure to function. Physiol. Rev. 2009, 89, 73–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittenberg, R.E.; Wolfman, S.L.; De Biasi, M.; Dani, J.A. Nicotinic acetylcholine receptors and nicotine addiction: A brief introduction. Neuropharmacology 2020, 177, 108256. [Google Scholar] [CrossRef]
- Fucile, S. Ca2+ permeability of nicotinic acetylcholine receptors. Cell Calcium 2004, 35, 1–8. [Google Scholar] [CrossRef]
- Giniatullin, R.; Nistri, A.; Yakel, Y. Desensitization of nicotinic ACh receptors: Shaping cholinergic signaling. Trends Neurosci. 2005, 28, 371–378. [Google Scholar] [CrossRef]
- Nelson, M.E.; Kuryatov, A.; Choi, C.H.; Zhou, Y.; Lindstrom, J. Alternate stoichiometries of alpha4beta2 nicotinic acetylcholine receptors. Mol. Pharmacol. 2003, 63, 332–341. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Latorre, J.; Yu, C.R.; Qu, X.; Perin, F.; Karlin, A.; Role, L. Functional contributions of α5 subunit to neuronal acetylcholine receptor channels. Nature 1996, 380, 347–351. [Google Scholar] [CrossRef]
- Wonnacott, S. Presynaptic nicotinic ACh receptors. Trends Neurosci. 1997, 20, 92–98. [Google Scholar] [CrossRef]
- Gotti, C.; Moretti, M.; Gaimarri, A.; Zanardi, A.; Clementi, F.; Zoli, M. Heterogeneity and complexity of native brain nicotinic receptors. Biochem. Pharmacol. 2007, 71, 1102–1111. [Google Scholar] [CrossRef]
- Bailey, C.D.; De Biasi, M.; Fletcher, P.J.; Lambe, E.K. The nicotinic acetylcholine receptor α5 subunit plays a key role in attention circuitry and accuracy. J. Neurosci. 2010, 30, 9241–9252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilscher, M.M.; Leão, R.N.; Edwards, S.J.; Leão, K.E.; Kullander, K. Chrna2-Martinotti cells synchronize layer 5 type A pyramidal cells via rebound excitation. PLoS Biol. 2017, 15, e2001392. [Google Scholar] [CrossRef] [PubMed]
- Zoli, M.; Pistillo, F.; Gotti, C. Diversity of native nicotinic receptor subtypes in mammalian brain. Neuropharmacology 2015, 96, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Quik, M.; Polonskaya, Y.; Gillespie, A.; Jakowec, M.; Lloyd, G.K.; Langston, J.W. Localization of nicotinic receptor subunit mRNAs in monkey brain by in situ hybridization. J. Comp. Neurol. 2000, 425, 58–69. [Google Scholar] [CrossRef]
- Han, Z.Y.; Le Novere, N.; Zoli, M.; Hill, J.A., Jr.; Champtiaux, N.; Changeux, J.P. Localization of nAChR subunit mRNAs in the brain of Macaca mulatta. Eur. J. Neurosci. 2000, 12, 3664–3674. [Google Scholar] [CrossRef]
- Ishii, K.; Wong, J.K.; Sumikawa, K. Comparison of α2 nicotinic acetylcholine receptor subunit mRNA expression in the central nervous system of rats and mice. J. Comp. Neurol. 2005, 493, 241–260. [Google Scholar] [CrossRef] [Green Version]
- Son, J.-H.; Winzer-Serhan, U.H. Postnatal expression of α2 nicotinic acetylcholine receptor subunit mRNA in developing cortex and hippocampus. J. Chem. Neuroanat. 2006, 32, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Di Resta, C.; Becchetti, A. Introduction to ion channels. Adv. Exp. Med. Biol. 2010, 674, 9–21. [Google Scholar] [CrossRef]
- Sharma, G.; Vijayaraghavan, S. Modulation of presynaptic store calcium induces release of glutamate and postsynaptic firing. Neuron 2003, 38, 929–939. [Google Scholar] [CrossRef] [Green Version]
- Poorthuis, R.B.; Bloem, B.; Schak, B.; Wester, J.; de Kock, C.P.; Mansvelder, H.D. Layer-specific modulation of the prefrontal cortex by nicotinic acetylcholine receptors. Cereb. Cortex 2013, 23, 148–161. [Google Scholar] [CrossRef]
- Sarter, M.; Lustig, C. Forebrain cholinergic signaling: Wired and phasic, not tonic, and causing behavior. J. Neurosci. 2020, 40, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Disney, A.A.; Higley, M.J. Diverse spatiotemporal scales of cholinergic signaling in the neocortex. J. Neurosci. 2020, 40, 720–725. [Google Scholar] [CrossRef] [PubMed]
- Sarter, M.; Kim, Y. Interpreting chemical neurotransmission in vivo: Techniques, time scales, and theories. ACS Chem. Neurosci. 2015, 6, 8–10. [Google Scholar] [CrossRef] [PubMed]
- Steinlein, O.K.; Mulley, J.C.; Propping, P.; Wallace, R.H.; Phillips, H.A.; Sutherland, G.R.; Scheffer, I.E.; Berkovic, S.F. A missense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat. Genet. 1995, 11, 201–203. [Google Scholar] [CrossRef]
- De Fusco, A.; Becchetti, A.; Patrignani, A.; Annesi, G.; Gambardella, A.; Quattrone, A.; Ballabio, A.; Wanke, E.; Casari, G. the nicotinic receptor β2 subunit is mutant in nocturnal frontal lobe epilepsy. Nat. Genet. 2000, 26, 275–276. [Google Scholar] [CrossRef]
- Phillips, H.A.; Favre, I.; Kirkpatrick, M.; Zuberi, S.M.; Goudie, D.; Heron, S.E.; Scheffer, I.E.; Sutherland, G.R.; Berkovic, S.F.; Bertrand, D.; et al. CHRNB2 is the second acetylcholine receptor subunit associated with autosomal dominant nocturnal frontal lobe epilepsy. Am. J. Hum. Genet. 2001, 68, 225–331. [Google Scholar] [CrossRef] [Green Version]
- Becchetti, A.; Aracri, P.; Meneghini, S.; Brusco, S.; Amadeo, A. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy. Front. Physiol. 2015, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Langenbruch, L.; Biskup, S.; Young, P.; Dräger, B.; Möddel, G. Two mutations in the nicotinic acetylcholine receptor subunit A4 (CHRNA4) in a family with autosomal dominant sleep-related hypermotor epilepsy. Epileptic Disord. 2020, 22, 116–119. [Google Scholar] [CrossRef]
- Cadieux-Dion, M.; Meneghini, S.; Villa, C.; Toffa, D.H.; Wickstrom, R.; Bouthillier, A.; Sandvik, U.; Gustavsson, B.; Mohamed, I.; Cossette, P.; et al. Variants in CHRNB2 and CHRNA4 identified in patients with insular epilepsy. Can. J. Neurol. Sci. 2020, 47, 800–809. [Google Scholar] [CrossRef]
- Shi, X.-Y.; Wang, G.; Li, T.; Li, Z.; Leo, P.; Liu, Z.; Wu, G.; Zhu, H.; Zhang, Y.; Li, D.; et al. Identification of susceptibility variants to benign childhood epilepsy with centro-temporal spikes (BECTS) in Chinese Han population. EBioMedicine 2020, 57, 102840. [Google Scholar] [CrossRef]
- Neng, X.; Xiao, M.; Yuanlu, C.; Qinyan, L.; Li, S.; Zhanyi, S. Novel variant in CHRNA4 with benign childhood epilepsy with centrotemporal spikes and contribution to precise medicine. Mol. Genet. Genom. Med. 2020, 8, e1264. [Google Scholar] [CrossRef] [PubMed]
- Dibbens, L.M.; Mullen, M.; Helbig, I.; Mefford, H.C.; Bayly, M.A.; Bellows, S.; Leu, C.; Trucks, H.; Obermeier, T.; Wittig, M.; et al. Familial and sporadic 15q13.3 microdeletions in idiopathic generalized epilepsy: Precedent for disorders with complex inheritance. Hum. Mol. Genet. 2009, 18, 3626–3631. [Google Scholar] [CrossRef] [PubMed]
- Orr-Urtreger, A.; Göldner, F.M.; Saeki, M.; Lorenzo, I.; Goldberg, L.; De Biasi, M.; Dani, J.A.; Patrick, J.W.; Beaudet, A.L. Mice deficient in the α7 neuronal nicotinic acetylcholine receptor lack α-bungarotoxin binding sites and hippocampal fast nicotinic currents. J. Neurosci. 1997, 17, 9165–9171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.; Chen, W.; Yang, H.; Xue, M.; Schaaf, C.P. Chrna7 deficient mice manifest no consistent neuropsychiatric and behavioral phenotypes. Sci. Rep. 2017, 7, 39941. [Google Scholar] [CrossRef] [Green Version]
- Steinlein, O.K.; Bertrand, D. Nicotinic receptors channelopathies and epilepsy. Pflügers Arch. 2010, 460, 495–503. [Google Scholar] [CrossRef]
- Itier, V.; Bertrand, D. Mutations of the neuronal nicotinic acetylcholine receptors and their association with ADNFLE. Neurophysiol. Clin. 2002, 32, 99–107. [Google Scholar] [CrossRef]
- Hoda, J.C.; Gu, W.; Friedli, M.; Phillips, H.A.; Bertrand, S.; Antonarakis, S.E.; Goudie, D.; Roberts, R.; Scheffer, I.E.; Marini, C.; et al. Human nocturnal frontal lobe epilepsy: Pharmocogenomic profiles of pathogenic nicotinic acetylcholine receptor beta-subunit mutations outside the ion channel pore. Mol. Pharmacol. 2008, 74, 379–391. [Google Scholar] [CrossRef] [Green Version]
- Son, C.D.; Moss, F.J.; Cohen, B.N.; Lester, H.A. Nicotine normalizes intracellular subunit stoichiometry of nicotinic receptors carrying mutations linked to autosomal dominant nocturnal frontal lobe epilepsy. Mol. Pharmacol. 2009, 75, 1137–1148. [Google Scholar] [CrossRef]
- Nichols, W.A.; Henderson, B.J.; Marotta, C.B.; Yu, C.Y.; Richards, C.; Dougherty, D.A.; Lester, H.A.; Cohen, B.N. Mutation linked to autosomal dominant nocturnal frontal lobe epilepsy reduces low-sensitivity α4β2, and increases α5α4β2, nicotinic receptor surface expression. PLoS ONE 2016, 11, e0158032. [Google Scholar] [CrossRef]
- Indurthi, D.H.; Qudah, T.; Liao, V.W.; Ahring, P.K.; Lewis, T.M.; Balle, T.; Chebib, M.; Absalom, N.L. Revisiting autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) mutations in the nicotinic acetylcholine receptor reveal an increase in efficacy regardless of stoichiometry. Pharmacol. Res. 2019, 139, 215–227. [Google Scholar] [CrossRef]
- Picard, G.; Bruel, D.; Servant, D.; Saba, W.; Fruchart-Gaillard, C.; Schöllhorn-Peyronneau, M.-A.; Roumenov, D.; Brodtkorb, E.; Zuberi, S.; Gambardella, A.; et al. Alteration of the in vivo nicotinic receptor density in ADNFLE patients: A PET study. Brain 2006, 129, 2047–2060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klaassen, A.; Glykys, J.; Maguire, J.; Labarca, C.; Mody, I.; Boulter, J. Seizures and enhanced cortical GABAergic inhibition in two mouse models of human autosomal dominant nocturnal frontal lobe epilepsy. Proc. Natl. Acad. Sci. USA 2006, 103, 19152–19157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teper, Y.; Whyte, D.; Cahir, E.; Lester, H.A.; Grady, S.R.; Marks, M.J.; Cohen, B.N.; Fonck, C.; McClure-Begley, T.; McIntosh, J.M.; et al. Nicotine-induced dystonic arousal complex in a mouse line harboring a human autosomal-dominant nocturnal frontal lobe epilepsy mutation. J. Neurosci. 2007, 27, 10128–10142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manfredi, I.; Zani, A.D.; Rampoldi, L.; Pegorini, S.; Bernascone, I.; Moretti, M.; Gotti, C.; Croci, L.; Consalez, G.G.; Ferini-Strambi, L.; et al. Expression of mutant beta2 nicotinic receptors during development is crucial for epileptogenesis. Hum. Mol. Genet. 2009, 18, 1075–1088. [Google Scholar] [CrossRef]
- Xu, J.; Cohen, B.N.; Zhu, Y.; Dziewczapolski, G.; Panda, S.; Lester, H.A.; Heinemann, S.F.; Contractor, A. Altered activity-rest patterns in mice with a human autosomal-dominant nocturnal frontal lobe epilepsy mutation in the β2 nicotinic receptor. Mol. Psychiatry 2011, 16, 1048–1061. [Google Scholar] [CrossRef]
- O’Neill, H.C.; Laverty, D.C.; Patzlaff, N.E.; Cohen, B.N.; Fonck, C.; McKinney, S.; McIntosh, J.M.; Lindstrom, J.M.; Lester, H.A.; Grady, S.R.; et al. Mice expressing the ADNFLE valine 287 leucine mutation of the β2 nicotinic acetylcholine receptor subunit display increased sensitivity to acute nicotine administration and altered presynaptic nicotinic receptor function. Pharmacol. Biochem. Behav. 2013, 103, 603–621. [Google Scholar] [CrossRef] [Green Version]
- Zhu, G.; Okada, M.; Yoshida, S.; Ueno, S.; Mori, F.; Takahara, T.; Saito, R.; Miura, Y.; Kishi, A.; Tomiyama, M.; et al. Rats harboring S284L Chrna4 mutation show attenuation of synaptic and extrasynaptic GABAergic transmission and exhibit the nocturnal frontal lobe epilepsy phenotype. J. Neurosci. 2008, 28, 12465–12476. [Google Scholar] [CrossRef] [Green Version]
- Shiba, Y.; Mori, F.; Yamada, J.; Migita, K.; Nikaido, Y.; Wakabayashi, K.; Kaneko, S.; Okada, M.; Hirose, S.; Ueno, S. Spontaneous epileptic seizures in transgenic rats harboring a human ADNFLE missense mutation in the β2-subunit of the nicotinic acetylcholine receptor. Neurosci. Res. 2015, 100, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Fukuyama, K.; Okada, M. Age-dependent and sleep/seizure-induced pathomechanisms of autosomal dominant sleep-related hypermotor epilepsy. Int. J. Mol. Sci. 2020, 21, 8142. [Google Scholar] [CrossRef]
- Amadeo, A.; Coatti, A.; Aracri, P.; Ascagni, M.; Iannantuoni, D.; Modena, D.; Carraresi, L.; Brusco, S.; Meneghini, S.; Arcangeli, A.; et al. Postnatal changes in K+/Cl- cotransporter-2 expression in the forebrain of mice bearing a mutant nicotinic subunit linked to sleep-related epilepsy. Neuroscience 2018, 386, 91–107. [Google Scholar] [CrossRef] [Green Version]
- Aridon, P.; Marini, C.; Di Resta, C.; Brilli, E.; De Fusco, M.; Politi, F.; Parrini, E.; Manfredi, I.; Pisano, T.; Pruna, D.; et al. Increased sensitivity of the neuronal nicotinic receptor α2 subunit causes familial epilepsy with nocturnal wandering and ictal fear. Am. J. Hum. Genet. 2006, 79, 342–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoda, J.-C.; Wasischeck, M.; Bertrand, D.; Steinlein, O.K. Pleiotropic functional effects of the first epilepsy-associated mutation in the human CHRNA2 gene. FEBS Lett. 2009, 583, 1599–1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salas, R.; Sturm, R.; Boulter, J.; De Biasi, M. Nicotinic receptors in the habenulo-interpeduncular system are necessary for nicotine withdrawal in mice. J. Neurosci. 2009, 29, 3014–3018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, Y.; Yamazaki, Y.; Nakauchi, S.; Sumikawa, K. α2 nicotine receptors function as a molecular switch to continuously excite a subset of interneurons in rat hippocampal circuits. Eur. J. Neurosci. 2009, 29, 1588–1603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichol, H.; Amilhon, B.; Manseau, F.; Badrinarayanan, S.; Williams, S. Electrophysiological and morphological characterization of Chrna2 cells in the subiculum and CA1 of the hippocampus: An optogenetic investigation. Front. Cell. Neurosci. 2018, 12, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pombero, A.; Martinez, S. The α2-subunit of the nicotinic cholinergic receptor is specifically expressed in medial subpallium-derived cells of mammalian amygdala. J. Comp. Neurol. 2010, 523, 1608–1621. [Google Scholar] [CrossRef]
- Gu, W.; Bertrand, D.; Steinlein, O.K. A major role of the nicotinic acetylcholine receptor gene CHRNA2 in autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is unlikely. Neurosci. Lett. 2007, 422, 74–76. [Google Scholar] [CrossRef]
- Combi, R.; Ferini-Strambi, L.; Tenchini, M.L. CHRNA2 mutations are rare in the NFLE population: Evaluation of a large cohort of Italian patients. Sleep Med. 2009, 10, 139–142. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, L.; Wang, C.; Chen, Q.; Zhai, Q.; Guo, Y.; Zhang, Y. Mutational analysis of CHRNB2, CHRNA2 and CHRNA4 genes in Chinese population with autosomal dominant nocturnal frontal lobe epilepsy. Int. J. Clin. Exp. Med. 2015, 8, 9063. [Google Scholar]
- Conti, V.; Aracri, P.; Chiti, L.; Brusco, S.; Mari, F.; Marini, C.; Albanese, M.; Marchi, A.; Liguori, C.; Placidi, F.; et al. Nocturnal frontal lobe epilepsy with paroxysmal arousals due to CHRNA2 loss of function. Neurology 2015, 84, 1520–1528. [Google Scholar] [CrossRef] [Green Version]
- Villa, C.; Colombo, G.; Meneghini, S.; Gotti, C.; Moretti, M.; Ferini-Strambi, L.; Chisci, E.; Giovannoni, R.; Becchetti, A.; Combi, R. CHRNA2 and nocturnal frontal lobe epilepsy: Identification and characterization of a novel loss of function mutation. Front. Mol. Neurosci. 2019, 12, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotfipour, S.; Byun, J.S.; Leach, P.E.; Fowler, C.D.; Murphy, N.P.; Kenny, P.J.; Gould, T.J.; Boulter, J. Targeted deletion of the mouse α2 nicotinic acetylcholine receptor subunit gene (Chrna2) potentiates nicotine-modulated behaviors. J. Neurosci. 2013, 33, 7728–7741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molas, S.; Dierssen, M. The role of nicotinic receptors in shaping and functioning of the glutamatergic system: A window into cognitive pathology. Neurosci. Biobehav. Rev. 2014, 46, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Trivisano, M.; Terracciano, A.; Milano, T.; Cappelletti, S.; Pietrafusa, N.; Bertini, E.S.; Vigevano, F.; Specchio, N. Mutation of CHRNA 2 in a family with benign familial infantile seizures: Potential role of nicotinic acetylcholine receptor in various phenotypes of epilepsy. Epilepsia 2015, 56, e53–e57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demontis, D.; Rajagopal, V.M.; Thorgeirsson, T.E.; Als, T.D.; Grove, J.; Leppälä, K.; Gudbjartsson, D.F.; Pallesen, J.; Hjorthøj, C.; Reginsson, G.W.; et al. Genome-wide association study implicates CHRNA2 in cannabis use disorder. Nat. Neurosci. 2019, 22, 1066. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; van der Vaart, A.D.; Xu, Q.; Seneviratne, C.; Pomerleau, O.F.; Pomerleau, C.S.; Payne, T.J.; Ma, J.Z.; Li, M.D. Significant associations of CHRNA2 and CHRNA6 with nicotine dependence in European American and African American populations. Hum. Genet. 2014, 133, 575–586. [Google Scholar] [CrossRef] [Green Version]
- Blaveri, E.; Kalsi, G.; Lawrence, J.; Quested, D.; Moorey, H.; Lamb, G.; Kohen, D.; Shiwach, R.; Chowdhury, U.; Curtis, D.; et al. Genetic association studies of schizophrenia using the 8p21-22 genes: Prepronociceptin (PNOC), neuronal nicotinic cholinergic receptor alpha polypeptide 2 (CHRNA2) and arylamine N-acetyltransferase 1 (NAT1). Eur. J. Hum. Genet. 2001, 9, 469–472. [Google Scholar] [CrossRef] [PubMed]
- Lohoff, F.W.; Ferraro, T.N.; McNabb, L.; Schwebel, C.; Dahl, J.P.; Doyle, G.A.; Buono, R.J.; Berrettini, W.H. No association between common variations in the neuronal nicotinic acetylcholine receptor alpha2 subunit gene (CHRNA2) and bipolar I disorder. Psychiatry Res. 2005, 135, 171–177. [Google Scholar] [CrossRef]
- Freedman, R.; Leonard, S.; Gault, J.M.; Hopkins, J.; Cloninger, C.R.; Kaufmann, C.A.; Tsuang, M.T.; Farone, S.V.; Malaspina, D.; Svrakic, D.M.; et al. Linkage disequilibrium for schizophrenia at the chromosome 15q13-14 locus of the α7-nicotinic acetylcholine receptor subunit gene (CHRNA7). Am. J. Hum. Genet. 2001, 105, 20–22. [Google Scholar] [CrossRef]
- Thomsen, M.S.; Weyn, A.; Mikkelsen, J.D. Hippocampal α7 nicotinic acetylcholine receptor levels in patients with schizophrenia, bipolar disorder, or major depressive disorder. Bipolar Disord. 2011, 13, 701–707. [Google Scholar] [CrossRef]
- Parikh, V.; Kutlu, M.G.; Gould, T.J. nAChR dysfunction as a common substrate for schizophrenia and comorbid nicotine addiction: Current trends and perspectives. Schizophrenia Res. 2016, 171, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J. Association of CHRNA2 polymorphisms with overweight/obesity and clinical characteristics in a Korean population. Clin. Chem. Lab. Med. 2008, 46, 1085–1089. [Google Scholar] [CrossRef] [PubMed]
- Jun, H.; Ma, Y.; Chen, Y.; Gong, J.; Liu, S.; Wang, J.; Knights, A.J.; Qiao, X.; Emont, P.M.; Xu, X.Z.S.; et al. Adrenergic-Independent Signaling via CHRNA2 Regulates Beige Fat Activation. Dev. Cell 2020, 54, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, M.S.; Tankard, R.; Gazina, E.V.; Damiano, J.A.; Lawrence, K.M.; Dahl, H.-H.M.; Regan, B.M.; Shearer, A.E.; Smith, R.J.H.; Marini, C.; et al. PRIMA1 mutation: A new cause of nocturnal frontal lobe epilepsy. Ann. Clin. Transl. Neurol. 2015, 2, 821–830. [Google Scholar] [CrossRef] [Green Version]
- Perrier, A.L.; Massoulie, J.; Krejci, E. PRiMA: The membrane anchor of acetylcholinesterase in the brain. Neuron 2002, 33, 275–285. [Google Scholar] [CrossRef] [Green Version]
- Farar, V.; Mohr, F.; Legrand, M.; Lamotte d’Incamps, B.; Cendelin, J.; Leroy, J.; Abitbol, M.; Bernard, V.; Baud, F.; Fournet, V.; et al. Near-complete adaptation of the PRiMA knockout to the lack of central acetylcholinesterase. J. Neurochem. 2012, 122, 1065–1080. [Google Scholar] [CrossRef]
- Heron, S.E.; Smith, K.R.; Bahlo, M.; Nobili, L.; Kahana, E.; Licchetta, L.; Oliver, K.L.; Mazarib, A.; Afawi, Z.; Korczyn, A.; et al. Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nat. Genet. 2012, 44, 1188–1190. [Google Scholar] [CrossRef]
- Barcia, G.; Fleming, M.R.; Deligniere, A.; Gazula, V.-R.; Brown, M.R.; Langouet, M.; Chen, H.; Kronengold, J.; Abhyankar, A.; Cilio, R.; et al. De novo gain-of function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat. Genet. 2012, 44, 1255–1260. [Google Scholar] [CrossRef] [Green Version]
- Milligan, C.J.; Li, M.; Gazina, E.V.; Heron, S.E.; Nair, U.; Trager, C.; Reid, C.A.; Venkat, A.; Younkin, D.P.; Dlugos, D.J.; et al. KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. Ann. Neurol. 2014, 75, 581–590. [Google Scholar] [CrossRef] [Green Version]
- Baldassari, S.; Licchetta, L.; Tinuper, P.; Bisulli, F.; Pippucci, T. GATOR1 complex: The common genetic actor in focal epilepsies. J. Med. Genet. 2016, 53, 503–510. [Google Scholar] [CrossRef] [Green Version]
- Dibbens, L.M.; de Vries, B.; Donatello, S.; Heron, S.E.; Hodgson, B.L.; Chintawar, S.; Crompton, D.E.; Hughes, J.N.; Bellows, S.T.; Klein, K.N.; et al. Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nat. Genet. 2013, 45, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Ishida, S.; Picard, F.; Rudolf, G.; Noé, E.; Achaz, G.; Thomas, P.; Genton, P.; Mundwiller, E.; Wolff, M.; Marescaux, C.; et al. Mutations of DEPDC5 cause autosomal dominant focal epilepsies. Nat. Genet. 2013, 45, 552–555. [Google Scholar] [CrossRef] [PubMed]
- Lal, D.; Reinthaler, E.M.; Schubert, J.; Muhle, H.; Riesch, E.; Kluger, G.; Jabbari, K.; Kawalia, A.; Bäumel, C.; Holthausen, H.; et al. DEPDC5 mutations in genetic focal epilepsies of childhood. Ann. Neurol. 2014, 75, 788–792. [Google Scholar] [CrossRef] [PubMed]
- Picard, F.; Makrythanasis, P.; Navarro, V.; Ishida, S.; de Bellescize, J.; Ville, D.; Weckhuysen, S.; Fosselle, E.; Suls, A.; De Jonghe, P.; et al. DEPDC5 mutations in families presenting as autosomal dominant nocturnal frontal lobe epilepsy. Neurology 2014, 82, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, I.E.; Heron, S.E.; Regan, B.M.; Mandelstam, S.; Crompton, D.E.; Hodgson, B.L.; Licchetta, L.; Provini, F.; Bisulli, F.; Vadlamudi, L.; et al. Mutations in mammalian target of rapamycin regulator DEPD5 cause focal epilepsy with brain malformations. Ann. Neurol. 2014, 75, 782–787. [Google Scholar] [CrossRef]
- Ricos, M.G.; Hodgson, B.L.; Pippucci, T.; Saidin, A.; Ong, Y.S.; Heron, S.E.; Licchetta, L.; Bisulli, F.; Bayly, M.A.; Hughes, J.; et al. Mutations in the mammalian target of rapamycin pathway regulators NPRL2 and NPRL3 cause focal epilepsy. Ann. Neurol. 2016, 79, 120–131. [Google Scholar] [CrossRef]
- Baldassari, S.; Picard, F.; Verbeek, N.E.; van Kempen, M.; Brilstra, E.H.; Lesca, G.; Conti, V.; Guerrini, R.; Bisulli, F.; Licchetta, L.; et al. The landscape of epilepsy-related GATOR1 variants. Genet. Med. 2019, 21, 398–408. [Google Scholar] [CrossRef] [Green Version]
- Asioli, A.; Rossi, S.; Bisulli, F.; Licchetta, L.; Tinuper, P.; Provini, F. Therapy in sleep-related hypermotor epilepsy (SHE). Curr. Treat. Options Neurol. 2020, 22, 1. [Google Scholar] [CrossRef]
- Chen, Z.-H.; Wang, C.; Zhuo, M.-Q.; Zhai, Q.-X.; Chen, Q.; Guo, Y.-X.; Zhang, Y.-X.; Gui, J.; Tang, Z.-H.; Zeng, X.-L. Exome sequencing identified a novel missense mutation c.464G>A (p.G155D) in Ca2+-binding protein 4 (CABP4) in a Chinese pedigree with autosomal dominant nocturnal frontal lobe epilepsy. Oncotarget 2017, 8, 78940–78947. [Google Scholar] [CrossRef] [Green Version]
- Combi, R.; Dalprà, L.; Ferini-Strambi, L.; Tenchini, M.L. Frontal lobe epilepsy and mutations of the corticotropin-releasing hormone gene. Ann. Neurol. 2005, 58, 899–904. [Google Scholar] [CrossRef]
- Di Resta, C.; Becchetti, A. Effect of carbamazepine and related compounds on ligand-gated ion channels: Possible implications for synaptic transmission and side effects. In Carbamazepine. Medical Uses, Pharmacokinetics and Adverse Effects; Gallelli, L., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2013; pp. 33–49. [Google Scholar]
- Sills, G.J.; Rogawski, M.A. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology 2020, 168, 107966. [Google Scholar] [CrossRef] [PubMed]
- Twyman, R.E.; Rogers, C.J.; MacDonald, R.L. Differential regulation of gamma-aminobutyric acid receptor channels by diazepam and phenobarbital. Ann. Neurol. 1989, 25, 213–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todorovic, S.M.; Lingle, C.J. Pharmacological properties of T-type Ca2+ current in adult rat sensory neurons: Effects of anticonvulsant and anesthetic agents. J. Neurophysiol. 1998, 79, 240–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dildy-Mayfield, J.E.; Eger, E.I., 2nd; Harris, R.A. Anesthetics produce subunit-selective actions on glutamate receptors. J. Pharmacol. Exp. Ther. 1996, 276, 1058–1065. [Google Scholar]
- Mikati, M.A.; Jiang, Y.H.; Carboni, M.; Shashi, V.; Petrovski, S.; Spillmann, R.; Milligan, C.J.; Li, M.; Grefe, A.; McConkie, A.; et al. Quinidine in the treatment of KCNT1-positive epilepsies. Ann Neurol. 2015, 78, 995–999. [Google Scholar] [CrossRef]
- Mullen, S.A.; Carney, P.W.; Roten, A.; Ching, M.; Lightfoot, P.A.; Churilov, L.; Nair, U.; Li, M.; Berkovic, S.F.; Petrou, S.; et al. Precision therapy for epilepsy due to KCNT1 mutations. Neurology 2018, 90, e67–e72. [Google Scholar] [CrossRef]
- Fitzgerald, M.P.; Fiannacca, M.; Smith, D.M.; Gertler, T.S.; Gunning, B.; Syrbe, S.; Verbeek, N.; Stamberger, H.; Weckhuysen, S.; Ceulemans, B.; et al. Treatment responsiveness in KCNT1-related epilepsy. Neurotherapeutics 2019, 16, 848–857. [Google Scholar] [CrossRef]
- Cole, B.A.; Johnson, R.M.; Dejakaisaya, H.; Pilati, N.; Fishwick, C.W.G.; Muench, S.P.; Lippiatt, J.D. Structure-based identification and characterization of inhibitors of the epilepsy-associated KNa1.1 (KCNT1) potassium channel. iScience 2020, 23, 101100. [Google Scholar] [CrossRef]
- McLean, M.J.; MacDonald, R.L. Carbamazepine and 10–11 epoxicarbamazepine produce use- and voltage-dependent limitation of rapidly firing action potentials of mouse central neurons in cell culture. J. Pharmacol. Exp. Ther. 1986, 238, 727–738. [Google Scholar]
- Picard, F.; Bertrand, S.; Steinlein, O.K.; Bertrand, D. Mutated nicotinic receptors responsible for autosomal dominant nocturnal frontal lobe epilepsy are more sensitive to carbamazepine. Epilepsia 1999, 40, 1198–1209. [Google Scholar] [CrossRef] [Green Version]
- Di Resta, C.; Ambrosi, P.; Curia, G.; Becchetti, A. Effect of carbamazepine and oxcarbazepine on wild type and mutant neuronal nicotinic receptors linked to nocturnal frontal lobe epilepsy. Eur. J. Pharmacol. 2010, 643, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Raju, G.P.; Sarco, D.P.; Poduri, A.; Riviello, J.J.; Bergin, A.M.; Takeoka, M. Oxcarbazepine in children with nocturnal frontal-lobe epilepsy. Pediatr. Neurol. 2007, 37, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Romigi, A.; Marciani, M.G.; Placidi, F.; Pisani, L.R.; Izzi, F.; Torelli, F.; Prosperetti, C. Oxcarbazepine in children with nocturnal frontal-lobe epilepsy: A further interesting report. Pediatr. Neurol. 2008, 39, 298. [Google Scholar] [CrossRef] [PubMed]
- Nevitt, S.J.; Tudur Smith, C.; Weston, J.; Marson, A.G.; Cochrane Epilepsy Group. Lamotrigine versus carbamazepine monotherapy for epilepsy: An individual participant data review. Cochrane Database Syst. Rev. 2018, 2018, CD001031. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, P.; Flesch, G.; Dieterle, W. Clinical pharmacology and pharmacokinetics of oxcarbazepine. Epilepsia 1994, 35, S10–S13. [Google Scholar] [CrossRef] [PubMed]
- Tecoma, E.S. Oxcarbazepine. Epilepsia 1999, 40, S37–S49. [Google Scholar] [CrossRef]
- Huang, C.-W.; Huang, C.-C.; Lin, M.-W.; Tsai, J.-J.; Wu, S.-N. The synergistic inhibitory actions of oxcarbazepine on voltage-gated sodium and potassium currents in differentiated NG108-15 neuronal cells and model neurons. Int. J. Neuropsychopharmacol. 2008, 11, 597–610. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Yang, K.; Liu, Q.; Wang, M.Y.; Shen, J.; Vallés, A.S.; Lukas, R.J.; Barrantes, F.J.; Wu, J. The anticonvulsive drug lamotrigine blocks neuronal α4β2 nicotinic acetylcholine receptors. J. Pharm. Exp. Ther. 2010, 335, 401–408. [Google Scholar] [CrossRef]
- Willoughby, J.O.; Pope, K.J.; Eaton, V. Nicotine as anti-epileptic agent in ADNFLE: An N-of-one study. Epilepsia 2003, 44, 1238–1240. [Google Scholar] [CrossRef] [Green Version]
- Brodtkorb, E.; Picard, F. Tobacco habits modulate autosomal dominant nocturnal frontal lobe epilepsy. Epilepsy Behav. 2006, 9, 515–520. [Google Scholar] [CrossRef]
- Lossius, K.; de Saint Martin, A.; Myren-Svelstad, S.; Bjørnvold, M.; Minken, G.; Seegmuller, C.; Valenti Hirsch, M.P.; Chelly, J.; Steinlein, O.; Picard, F.; et al. Remarkable effect of transdermal nicotine in children with CHRNA4-related autosomal dominant sleep-related hypermotor epilepsy. Epilepsy Behav. 2020, 105, 106944. [Google Scholar] [CrossRef] [PubMed]
- Zerem, A.; Nishri, D.; Yosef, Y.; Blumkin, L.; Lev, D.; Leshinsky-Silver, E.; Kivity, S.; Lerman-Sagie, T. Resolution of epileptic encephalopathy following treatment with transdermal nicotine. Epilepsia 2013, 54, e13–e15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertrand, D.; Tierry, A.V. The wonderland of neuronal nicotinic acetylcholine receptors. Biochem. Pharmacol. 2018, 151, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Kaas, Q.; Wu, Y.; Zhu, X.; Li, X.; Harvey, P.J.; Zhangsun, D.; Craik, D.J.; Luo, S. Structure and activity studies of disulfide-deficient analogues of αO-conotoxin GeXIVA. J. Med. Chem. 2020, 63, 1564–1575. [Google Scholar] [CrossRef] [PubMed]
- Morales-Perez, C.L.; Noviello, C.M.; Hibbs, R.E. X-ray structure of the human α4β2 nicotinic receptor. Nature 2016, 538, 411–417. [Google Scholar] [CrossRef] [Green Version]
- Puligheddu, M.; Melis, M.; Pillola, G.; Milioli, G.; Parrino, L.; Terzano, G.M.; Aroni, S.; Sagheddu, C.; Marrosu, F.; Pistis, M.; et al. Rationale for an adjunctive therapy with fenofibrate in pharmacoresistant nocturnal frontal lobe epilepsy. Epilepsia 2017, 58, 1762–1770. [Google Scholar] [CrossRef] [Green Version]
- Granger, P.; Biton, B.; Faure, C.; Vige, X.; Depoortere, H.; Graham, D.; Langer, S.Z.; Scatton, B.; Avenet, P. Modulation of the gamma-aminobutyric acid type A receptor by the antiepileptic drugs carbamazepine and phenytoin. Mol. Pharmacol. 1995, 47, 1189–1196. [Google Scholar]
- Liu, L.; Zheng, T.; Morris, M.J.; Wallengren, C.; Clarke, A.L.; Reid, C.A.; Petrou, S.; O’Brien, T.J. The mechanism of carbamazepine aggravation of absence seizures. J. Pharmacol. Exp. Ther. 2006, 319, 790–798. [Google Scholar] [CrossRef] [Green Version]
- Zona, C.; Tancredi, V.; Palma, E.; Pirrone, G.C.; Avoli, M. Potassium currents in rat cortical neurons in culture are enhanced by the antiepileptic drug carbamazepine. Can. J. Physiol. Pharmacol. 1990, 68, 545–547. [Google Scholar] [CrossRef]
- Sitges, M.; Chiu, L.M.; Reed, R.C. Effects of levetiracetam, carbamazepine, phenytoin, valproate, lamotrigine, oxcarbazepine, topiramate, vinpocetine and sertraline on presynaptic hippocampal Na(+) and Ca(2+) channels permeability. Neurochem. Res. 2016, 41, 758–769. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Z.; Shen, Y.; Zhu, Y.; Du, K.; Guo, J.; Ji, Y.; Tao, J. SCN9A Epileptic Encephalopathy Mutations Display a Gain-of-function Phenotype and Distinct Sensitivity to Oxcarbazepine. Neurosci. Bull. 2020, 36, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Clarke, A.L.; Morris, M.J.; Reid, C.A.; Petrou, S.; O’Brien, T.J. Oxcarbazepine, not its active metabolite, potentiates GABAA activation and aggravates absence seizures. Epilepsia 2009, 50, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Schmutz, M.; Brugger, F.; Gentsch, C.; McLean, M.J.; Olpe, H.R. Oxcarbazepine: Preclinical anticonvulsant profile and putative mechanisms of action. Epilepsia 1994, 35, S47–S50. [Google Scholar] [CrossRef] [PubMed]
- Datta, A.N.; Michoulas, A.; Guella, I.; EPGEN Study; Demos, M. Two patients with KCNT1-related epilepsy responding to phenobarbital and potassium bromide. J. Child Neurol. 2019, 34, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Sheets, M.F.; Fozzard, H.A.; Lipkind, G.M.; Hanck, D.A. Sodium channel molecular conformations and antiarrhythmic drug affinity. Trends Cardiovasc. Med. 2010, 20, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Hughes, J.; Dawson, R.; Tea, M.; McAninch, D.; Piltz, S.; Jackson, D.; Stewart, L.; Ricos, M.G.; Dibbens, L.M.; Harvey, N.L.; et al. Knockout of the epilepsy gene Depd5 in mice causes severe embryonic dysmorphology with hyperactivity of mTORC1 signalling. Sci. Rep. 2017, 7, 12618. [Google Scholar] [CrossRef] [Green Version]
- Yuskaitis, C.J.; Jones, B.M.; Wolfson, R.L.; Super, C.E.; Dhamme, S.C.; Rotenberg, A.; Sabatini, D.M.; Sahin, M.; Poduri, A. A mouse model of DEPD5-related epilepsy: Neuronal loss of Depdc5 causes dysplastic and ectopic neurons, increased mTOR signaling, and seizure susceptibility. Neurobiol. Dis. 2018, 111, 91–101. [Google Scholar] [CrossRef]
- Klofas, L.K.; Short, B.P.; Zhou, C.; Carson, R.P. Prevention of premature death and seizures in a Depdc5 mouse epilepsy model through inhibition of mTORC1. Hum. Mol. Genet. 2020, 29, 1365–1377. [Google Scholar] [CrossRef]
- Campbell, N.R.; Fernandes, C.C.; Halff, A.W.; Berg, D.K. Endogenous signaling through α7-containing nicotinic receptors promotes maturation and integration of adult-born neurons in the hippocampus. J. Neurosci. 2010, 30, 8734–8744. [Google Scholar] [CrossRef] [Green Version]
- Lozada, A.F.; Wang, X.; Gounko, N.V.; Massey, K.A.; Duan, J.; Liu, Z.; Berg, D.K. Glutamatergic synapse formation is promoted by α7-containing nicotinic acetylcholine receptors. J. Neurosci. 2012, 32, 7651–7661. [Google Scholar] [CrossRef] [Green Version]
- Morley, B.J.; Mervis, R.F. Dendritic spine alterations in the hippocampus and parietal cortex of α7 nicotinic acetylcholine receptor knockout mice. Neuroscience 2013, 233, 54–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.; Hsu, F.C.; Baumann, B.H.; Coulter, D.A.; Lynch, D.R. Cortical synaptic NMDA receptor deficits in α7 nicotinic acetylcholine receptor gene deletion models: Implications for neuropsychiatric diseases. Neurobiol. Dis. 2014, 63, 129–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballestreros-Yanez, I.; Benavides-Piccione, R.; Bourgeois, J.P.; Changeux, J.P.; DeFelipe, J. Alterations of cortical pyramidal neurons in mice lacking high-affinity nicotinic receptors. Proc. Natl. Acad. Sci. USA 2010, 107, 11567–11572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozada, A.F.; Wang, X.; Gounko, N.V.; Massey, K.A.; Duan, J.; Liu, Z.; Berg, D.K. Induction of dendritic spines by β2-containing nicotinic receptors. J. Neurosci. 2012, 32, 8391–8400. [Google Scholar] [CrossRef]
- Bailey, C.D.; Alves, N.C.; Nashmi, R.; De Biasi, M.; Lambe, E.K. Nicotinic α5 subunits drive developmental changes in the activation and morphology of prefrontal cortex layer VI neurons. Biol. Psychiatry 2012, 71, 120–128. [Google Scholar] [CrossRef] [Green Version]
- Kang, L.; Tian, M.K.; Bailey, C.D.C.; Lambe, E.K. Dendritic spine density of prefrontal layer 6 pyramidal neurons in relation to apical dendrite sculpting by nicotinic acetylcholine receptors. Front. Cell. Neurosci. 2015, 9, 398. [Google Scholar] [CrossRef] [Green Version]
- Moore, Y.E.; Kelley, M.R.; Brandon, N.J.; Deeb, T.Z.; Moss, S.J. Seizing control of KCC2: A new therapeutic target for epilepsy. Trends Neurosci. 2017, 40, 555–571. [Google Scholar] [CrossRef]
- Moore, Y.E.; Deeb, T.Z.; Chadchankar, H.; Brandon, N.J.; Moss, S.J. Potentiating KCC2 activity is sufficient to limit the onset and severity of seizures. Proc. Natl. Acad. Sci. USA 2018, 115, 10166–10171. [Google Scholar] [CrossRef] [Green Version]
- Di Cristo, G.; Awad, P.N.; Hamidi, S.; Avoli, M. KCC2, epileptiform synchronization, and epileptic disorders. Prog. Neurobiol. 2018, 162, 1–16. [Google Scholar] [CrossRef]
- Yamada, J.; Zhu, G.; Okada, M.; Hirose, S.; Yoshida, S.; Shiba, Y.; Migita, K.; Mori, F.; Sugawara, T.; Chen, L.; et al. A novel prophylactic effect of furosemide treatment on autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). Epilepsy Res. 2013, 107, 127–137. [Google Scholar] [CrossRef]
- Sigalas, C.; Rigas, P.; Tsakanikas, P.; Skaliora, I. High-affinity nicotinic receptors modulate spontaneous cortical up states in vitro. J. Neurosci. 2015, 35, 11196–11208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilscher, M.M.; Nogueira, I.; Mikulovic, S.; Kullander, K.; Leão, R.N.; Leão, K.E. Chrna2-OLM interneurons display different membrane properties and h-current magnitude depending on dorsoventral location. Hippocampus 2019, 29, 1224–1237. [Google Scholar] [CrossRef] [PubMed]
- Colangelo, C.; Shichkova, P.; Keller, D.; Markram, H.; Ramaswany, S. Cellular, synaptic and network effects of acetylcholine in the neocortex. Front. Neural Circuits 2019, 13, 24. [Google Scholar] [CrossRef] [PubMed]
Gene | Protein | Description | Clinical Phenotype | References |
---|---|---|---|---|
CHRNA4 | α4 nAChR subunit | In heteromeric nAChRs | Typical SHE | [19,45,48,49,56] |
CHRNB2 | β2 nAChR subunit | In heteromeric nAChRs | Typical SHE | [46,47,48,56,58] |
CHRNA2 | α2 nAChR subunit | In heteromeric nAChRs | Seizures with nocturnal wandering and ictal fear | [72] |
SHE with paroxysmal arousals | [81,82] | |||
KCNT1 | KNa1.1 (also known as KCa4.1,Slack, Slo2.2) | Na+-gated K+ channel | Severe SHE with psychiatric and cognitive alterations | [98] |
Epilepsy of infancy with migrating focal seizures | [99,100] | |||
DEPDC5 NPRL2/3 | DEPDC5 Nitrogen permease regulator-like-2/3 | DEPDC5 and NPRL associate to form GATOR1, which inhibits mTORC1 | Wide spectrum of focal epilepsies, including SHE, often associated with brain malformation | [101,102,103,104,105,106,107,108] |
CABP4 | Ca2+-binding protein 4. | Regulates voltage-gated Ca2+ channels. | Typical SHE | [110] |
CRH | Corticotropin-releasing hormone | Mutations in CRH promoter | Typical SHE | [111] |
Compound | Ion Channel Targets | Effects on Ion Channels In Vitro | Efficacy on ADSHE-Linked Mutations In Vitro (Compared to WT) | Effects In Vivo (ADSHE/SHE Patients and Murine Models) | References |
---|---|---|---|---|---|
Carbamazepine | NaV | Delayed recovery from inactivation | First-line treatment for ADSHE. Ineffective in ~30% of the patients | [109,121] | |
nAChRs | Open channel block of α4β2, α2β2, α2β4 | Higher on α4Ser248Pheβ2, α4776ins3β2, α2Ile279Asnβ4; lower on α2Ile279Asnβ2 | [73,122,123] | ||
GABAAR | Potentiation of α1β3γ2 and α1β2γ2 | [139,140] | |||
KV, CaV, GluRs. | Multiple effects overall leading to inhibition of glutamatergic transmission | [112,141,142] | |||
Oxcarbazepine (metabolite of carbamazepine) | Effective on a fraction of patients insensitive to carbamazepine | [81,124,125] | |||
NaV | Inhibition. Negative shift of activation and inactivation of SCN9A 1 | [129,143] | |||
nAChRs | Weak open channel block of α2β4 | [123] | |||
GABAAR | Potentiation of α1β2 and γ2L subtypes | Higher efficacy on α2Ile279Asnβ4 | [144] | ||
Delayed rectifying KV. | Inhibition | [129] | |||
CaV | Inhibition; subtype specificity unknown | [112,142,145] | |||
MHD (active metabolite of oxcarbazepine) | Overlaps with oxcarbazepine | [127,128] | |||
NaV and CaV | Inhibitory effects, but kinetic studies on specific subtypes are lacking | [112] | |||
nAChRs | Open channel block of α4β2; scarce effect on α2β4 | N.D. | [123] | ||
GABAAR | No effect | [144] | |||
Phenobarbital | N.A. | Reported to decrease seizures in patients with KCNT1-related Epilepsy | [146] | ||
GABAAR | Increases the mean open time | [114] | |||
CaVT | Block. | [115] | |||
GluRs | Block of GluR3 and GluR6 | [116] | |||
Quinidine | Mixed effects. Stronger antiseizure effects on patients carrying mutations of RCK2 domain of KNa1.1 | [117,118,119] | |||
NaV | Use-dependent block | [147] | |||
K+ channels, included KNa1.1 | Wide-spectrum K+ channel blocker | Reverses gain of function in mutant KNa1 | [100] | ||
Lamotrigine | NaV | Blocker | [113] | ||
nAChRs | Non-competitive inhibition of α4β2, included open channel block | N.D. | N.D. | [126] | |
Nicotine | Antiseizure effects on patients carrying α4Ser248Phe or α4776ins3 | [131,132,133] | |||
nAChRs | Activation, followed by desensitization | On mutant α4β2, often higher sensitivity to nicotine. (See main text) | [56,57,58,59,60,61] | ||
Increased sensitivity and induction of dystonic arousal complex in mice carrying α4Ser248Phe or β2Val287Leu | [64,67] | ||||
Fenofibrate | nAChR (indirect effect) | Inhibits nAChRs by stimulating the peroxisome proliferator-activated receptor α (negative regulator of β2* nAChR) | In slices from mice carrying α4Ser252Phe: lower IPSC 2 frequency in cortical pyramidal neurons | Reduction of seizure frequency in drug-resistant SHE and ADSHE patients, if applied with classic AEDs | [138] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becchetti, A.; Grandi, L.C.; Colombo, G.; Meneghini, S.; Amadeo, A. Nicotinic Receptors in Sleep-Related Hypermotor Epilepsy: Pathophysiology and Pharmacology. Brain Sci. 2020, 10, 907. https://doi.org/10.3390/brainsci10120907
Becchetti A, Grandi LC, Colombo G, Meneghini S, Amadeo A. Nicotinic Receptors in Sleep-Related Hypermotor Epilepsy: Pathophysiology and Pharmacology. Brain Sciences. 2020; 10(12):907. https://doi.org/10.3390/brainsci10120907
Chicago/Turabian StyleBecchetti, Andrea, Laura Clara Grandi, Giulia Colombo, Simone Meneghini, and Alida Amadeo. 2020. "Nicotinic Receptors in Sleep-Related Hypermotor Epilepsy: Pathophysiology and Pharmacology" Brain Sciences 10, no. 12: 907. https://doi.org/10.3390/brainsci10120907
APA StyleBecchetti, A., Grandi, L. C., Colombo, G., Meneghini, S., & Amadeo, A. (2020). Nicotinic Receptors in Sleep-Related Hypermotor Epilepsy: Pathophysiology and Pharmacology. Brain Sciences, 10(12), 907. https://doi.org/10.3390/brainsci10120907