Fault Diagnosis of a Helical Gearbox Based on an Adaptive Empirical Wavelet Transform in Combination with a Spectral Subtraction Method
Abstract
:Featured Application
Abstract
1. Introduction
2. The Theory of the Proposed Method
2.1. Spectral Subtraction Method
2.2. Empirical Wavelet Decomposition
2.3. The Proposed SS-AEWT for Extracting Gear Fault Features
3. Experiment Analysis
4. Verification and Discussion of the Proposed Method
4.1. Establishment of Simulation Model
4.2. The Fault Analysis of Different Breakages
4.3. The Fault Analysis of the SNR Effect
4.4. Comparison of Different Methods
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sun, R.; Yang, Z.; Chen, X.; Tian, S.; Xie, Y. Gear fault diagnosis based on the structured sparsity time-frequency analysis. Mech. Syst. Signal Process. 2018, 102, 346–363. [Google Scholar] [CrossRef]
- Lu, D.; Gong, X.; Qiao, W. Current-based diagnosis for gear tooth breaks in wind turbine gearboxes. In Proceedings of the 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, 15–20 September 2012. [Google Scholar]
- Chaari, F.; Baccar, W.; Abbes, M.S.; Haddar, M. Effect of spalling or tooth breakage on gearmesh stiffness and dynamic response of a one-stage spur gear transmission. Eur. J. Mech. A Solids 2008, 27, 691–705. [Google Scholar] [CrossRef]
- Jia, S.; Howard, I. Comparison of localised spalling and crack damage from dynamic modelling of spur gear vibrations. Mech. Syst. Signal Process. 2006, 20, 332–349. [Google Scholar] [CrossRef]
- Pandya, Y.; Parey, A. Failure path based modified gear mesh stiffness for spur gear pair with tooth root crack. Eng. Fail. Anal. 2013, 27, 286–296. [Google Scholar] [CrossRef]
- Brethee, K.F.; Zhen, D.; Gu, F.; Ball, A.D. Helical gear wear monitoring: Modelling and experimental validation. Mech. Mach. Theory 2017, 117, 210–229. [Google Scholar] [CrossRef]
- Ding, H.; Kahraman, A. Interactions between nonlinear spur gear dynamics and surface wear. J. Sound Vib. 2007, 307, 662–679. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Y.; Zhang, J. Investigation on coupling effects between surface wear and dynamics in a spur gear system. Tribol. Int. 2016, 101, 383–394. [Google Scholar] [CrossRef]
- Flodin, A. Wear of Spur and Helical Gears. Ph.D. Thesis, KTH Stockholm, Royal Institute of Technology, Stockholm, Sweden, 2000. [Google Scholar]
- Hu, C.; Smith, W.A.; Randall, R.B.; Peng, Z. Development of a gear vibration indicator and its application in gear wear monitoring. Mech. Syst. Signal Process. 2016, 76, 319–336. [Google Scholar] [CrossRef]
- Choy, F.; Polyshchuk, V.; Zakrajsek, J.; Handschuh, R.; Townsend, D. Analysis of the effects of surface pitting and wear on the vibration of a gear trans-mission system. Tribol. Int. 1996, 29, 77–83. [Google Scholar] [CrossRef]
- Ding, H. Dynamic Wear Models for Gear Systems. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 2007. [Google Scholar]
- Mohammed, O.D.; Rantatalo, M.; Aidanpää, J.-O. Dynamic modelling of a one-stage spur gear system and vibration-based tooth crack detection analysis. Mech. Syst. Signal Process. 2015, 54, 293–305. [Google Scholar] [CrossRef]
- Wu, S.; Zuo, M.J.; Parey, A. Simulation of spur gear dynamics and estimation of fault growth. J. Sound Vib. 2008, 317, 608–624. [Google Scholar] [CrossRef]
- Tian, Z.; Zuo, M.J.; Wu, S. Crack propagation assessment for spur gears using model-based analysis and simulation. J. Intell. Manuf. 2012, 23, 239–253. [Google Scholar] [CrossRef]
- Chen, Z.; Shao, Y. Dynamic simulation of spur gear with tooth root crack propagating along tooth width and crack depth. Eng. Fail. Anal. 2011, 18, 2149–2164. [Google Scholar] [CrossRef]
- Inalpolat, M.; Kahraman, A. A theoretical and experimental investigation of modulation sidebands of planetary gear sets. J. Sound Vib. 2009, 323, 677–696. [Google Scholar] [CrossRef]
- Wang, L.; Shao, Y.; Cao, Z. Optimal demodulation subband selection for sun gear crack fault diagnosis in planetary gearbox. Measurement 2018, 125, 554–563. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.; Shih, H.; Zheng, Q.; Yen, N.; Tung, C.; Liu, H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Parey, A.; el Badaoui, M.; Guillet, F.; Tandon, N. Dynamic modeling of spur gear pair and application of empirical mode decomposition-based statistical analysis for early detection of localized tooth defect. J. Sound Vib. 2006, 294, 547–561. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, J.; Cheng, Y.; Lu, C. Fault diagnosis of gearbox using empirical mode decomposition and multi-fractal detrended cross-correlation analysis. J. Sound Vib. 2016, 385, 350–371. [Google Scholar] [CrossRef]
- Smith, J.S. The local mean decomposition and its application to EEG perception data. J. R. Soc. Interface 2005, 2, 443–454. [Google Scholar] [CrossRef]
- Zheng, J.; Cheng, J.; Yu, Y. Partly ensemble empirical mode decomposition: An improved noise-assisted method for eliminating mode mixing. Signal Process. 2014, 96, 362–374. [Google Scholar] [CrossRef]
- Cheng, J.; Peng, Y.; Yang, Y.; Wu, Z. Adaptive sparsest narrow-band decomposition method and its applications to rolling element bearing fault diagnosis. Mech. Syst. Signal Process. 2017, 85, 947–962. [Google Scholar] [CrossRef]
- Wang, S.; Huang, W.; Zhu, Z. Transient modeling and parameter identification based on wavelet and correlation filtering for rotating machine fault diagnosis. Mech. Syst. Signal Process. 2011, 25, 1299–1320. [Google Scholar] [CrossRef]
- Zhu, Z.; Yan, R.; Luo, L.; Feng, Z.; Kong, F. Detection of signal transients based on wavelet and statistics for machine fault diagnosis. Mech. Syst. Signal Process. 2009, 23, 1076–1097. [Google Scholar] [CrossRef]
- Yan, R.; Gao, R.X.; Chen, X. Wavelets for fault diagnosis of rotary machines: A reviewwith applications. Signal Process. 2013, 96, 1–15. [Google Scholar] [CrossRef]
- Gilles, J. Empirical wavelet transform. IEEE Trans. Signal Process. 2013, 61, 3999–4010. [Google Scholar] [CrossRef]
- Kedadouche, M.; Thomas, M.; Tahan, A. A comparative study between empirical wavelet transforms and empirical mode decomposition methods: Application to bearing defect diagnosis. Mech. Syst. Signal Process. 2016, 81, 88–107. [Google Scholar] [CrossRef]
- Soltani Bozchalooi, I.; Ming, L. A joint resonance frequency estimation and in-band noise reduction method for enhancing the detectability of bearing fault signals. Mech. Syst. Signal Process 2008, 22, 915–933. [Google Scholar] [CrossRef]
- Yu, G.; Mallat, S.; Bacry, E. Audio denoising by time-frequency block thresholding. IEEE Trans. Signal Process. 2008, 56, 1830–1839. [Google Scholar] [CrossRef]
- Ephraim, Y.; Malah, D. Speech enhancement using a minimum mean square short-time spectral amplitude estimator. IEEE Trans. Acoust. Speech Signal Process. 1984, 32, 1109–1121. [Google Scholar] [CrossRef]
- Boll, S. Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans. Acoust. Speech Signal Process. 1979, 27, 113–120. [Google Scholar] [CrossRef]
- Li, S.; Wan, M.X.; Wang, S.P. Multi-band spectral subtraction method for electrolarynx speech enhancement. Algorithms 2009, 2, 550–564. [Google Scholar] [CrossRef]
- The Centre des Etudes Techniques des Industries Mécaniques de Senlis. Gear Data Center Test Seeded Fault Testdata. Available online: http://161.3.130.30/unecampagne.php?reference=13&langue=en&onglet=3 (accessed on 17 January 2011).
- Zhang, S.; Tang, J. Integrating angle-frequency domain synchronous averaging technique with feature extraction for gear fault diagnosis. Mech. Syst. Signal Process. 2018, 99, 711–729. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, G.; Liu, C.; Chen, X. Study on planetary gear fault diagnosis based on variational mode decomposition and deep neural networks. Measurement 2018, 130, 94–104. [Google Scholar] [CrossRef]
- Sharma, V.; Parey, A. Frequency domain averaging based experimental evaluation of gear fault without tachometer for fluctuating speed conditions. Mech. Syst. Signal Process. 2017, 85, 278–295. [Google Scholar] [CrossRef]
- Cerrada, M.; Zurita, G.; Cabrera, D.; Sánchez, R.-V.; Artés, M.; Li, C. Fault diagnosis in spur gears based on genetic algorithm and random forest. Mech. Syst. Signal Process. 2016, 70–71, 87–103. [Google Scholar] [CrossRef]
Analysis Type | Amplitude of fr | Amplitude of 2fr | Amplitude of 3fr | Amplitude of 4fr | Amplitude of 5fr |
---|---|---|---|---|---|
EMD algorithm | 0.2264 | 0.1252 | 0.1572 | 0.1639 | 0.1435 |
LMD algorithm | 0.212 | 0.1154 | 0.1341 | 0.1468 | 0.1245 |
DWT algorithm | 0.2144 | 0.1147 | 0.1429 | 0.1515 | 0.1287 |
Proposed algorithm | 0.3085 | 0.255 | 0.1789 | 0.1248 | 0.1203 |
Fault Type | EMD | LMD | DWT | Proposed Algorithm | Percentage |
---|---|---|---|---|---|
1/3 breakage | 0.037 | 0.011 | 0.013 | 0.079 | 53%, 86%, 84% |
2/3 breakage | 0.22 | 0.24 | 0.21 | 0.32 | 45%, 33%, 52% |
Total breakage | 0.25 | 0.29 | 0.22 | 0.37 | 32%, 22%, 41% |
Analysis Type | Amplitude of fr | Amplitude of 2fr | Amplitude of 3fr | Amplitude of 4fr | Amplitude of 5fr |
---|---|---|---|---|---|
EMD algorithm | 0.051 | 0.0595 | 0.0619 | 0.0392 | 0.0393 |
LMD algorithm | 0.0402 | 0.0533 | 0.0465 | 0.0425 | 0.0279 |
DWT algorithm | 0.0546 | 0.0639 | 0.0651 | 0.0288 | 0.0365 |
Proposed algorithm | 0.3251 | 0.2965 | 0.2548 | 0.2078 | 0.1642 |
SNR | EMD | LMD | DWT | Proposed Algorithm | Percentage |
---|---|---|---|---|---|
10 dB | 0.0965 | 0.0518 | 0.0675 | 0.3247 | 236%, 527%, 381% |
5 dB | 0.0510 | 0.0401 | 0.0351 | 0.3251 | 537%, 711%, 826% |
0 dB | 0.0266 | 0.0343 | 0.0156 | 0.3225 | 1112%, 840%, 1967% |
−5 dB | 0.0109 | 0.0138 | 0.0067 | 0.3136 | 2777%, 2172%, 4581% |
−10 dB | 0.0036 | 0.0016 | 0.0063 | 0.2716 | 7444%, %, 4211% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Lee, C.-M. Fault Diagnosis of a Helical Gearbox Based on an Adaptive Empirical Wavelet Transform in Combination with a Spectral Subtraction Method. Appl. Sci. 2019, 9, 1696. https://doi.org/10.3390/app9081696
Wang P, Lee C-M. Fault Diagnosis of a Helical Gearbox Based on an Adaptive Empirical Wavelet Transform in Combination with a Spectral Subtraction Method. Applied Sciences. 2019; 9(8):1696. https://doi.org/10.3390/app9081696
Chicago/Turabian StyleWang, Peng, and Chang-Myung Lee. 2019. "Fault Diagnosis of a Helical Gearbox Based on an Adaptive Empirical Wavelet Transform in Combination with a Spectral Subtraction Method" Applied Sciences 9, no. 8: 1696. https://doi.org/10.3390/app9081696
APA StyleWang, P., & Lee, C.-M. (2019). Fault Diagnosis of a Helical Gearbox Based on an Adaptive Empirical Wavelet Transform in Combination with a Spectral Subtraction Method. Applied Sciences, 9(8), 1696. https://doi.org/10.3390/app9081696