Synthesis, Biological Evaluation and Docking Studies of Chalcone and Flavone Analogs as Antioxidants and Acetylcholinesterase Inhibitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Information
2.2. Synthesis of Chalcone Derivatives
2.3. Synthesis of Flavone Derivatives
2.4. In Vitro Antioxidant Activity assay
2.4.1. DPPH Radical-Scavenging Assay
2.4.2. ABTS (2-2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonate)) Radical-Scavenging Assay
2.4.3. β-Carotene/linoleic Acid bleaching Assay
2.5. In Vitro Acetylcholinesterase Inhibitory Assay
2.6. Molecular Docking
3. Results and Discussion
3.1. Synthesis of Chalcone and Flavone Analogs (2a–2k, 3a–3k)
3.2. Antioxidant Activity
3.3. Acetylcholinesterase Inhibitory Assay
3.4. Molecular Docking Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Ray, P.D.; Huang, B.W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 2012, 24, 981–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greeff, J.; Joubert, J.; Malan, S.F.; Van Dyk, S. Antioxidant properties of 4-quinolones and structurally related flavones. Bioorg. Med. Chem. 2012, 20, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Cao, W.; Zhao, Y.; Zhai, H.; Zhao, Y.; Tang, X.; Chen, Q. The levels of oxidative stress and antioxidant capacity in hibernating Nanorana parkeri. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2018, 219–220, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Giustarini, D.; Dalle-Donne, I.; Tsikas, D.; Rossi, R. Oxidative stress and human diseases: Origin, link, measurement, mechanisms, and biomarkers. Crit. Rev. Clin. Lab. Sci. 2009, 46, 241–281. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Oxidative stress and neurodegeneration: Where are we now? J. Neurochem. 2006, 97, 1634–1658. [Google Scholar] [CrossRef] [PubMed]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free Radicals, Antioxidants in Disease and Health. Int. J. Biomed. Sci. 2008, 4, 89–96. [Google Scholar] [PubMed]
- Abdoh, T.; Khalil, A.A.; Awais, U.I.; Jia, Q.; Na, L.; Kamal, H.; Nirmala, K.; Lei, H.; Ding, Q. Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases. Biomed. Pharm. 2018, 102, 689–698. [Google Scholar] [CrossRef]
- Angoa Pérez, M.; Rivas Arancibia, S. Estrés oxidativo y neurodegeneración: ¿causa o consecuencia? Arch. Neurocien. 2007, 12, 45–54. [Google Scholar]
- Tran, T.D.; Nguyen, T.C.V.; Nguyen, N.S.; Nguyen, D.M.; Nguyen, T.T.H.; Le, M.T.; Thai, K.M. Synthesis of novel chalcones as acetylcholinesterase inhibitors. Appl. Sci. 2016, 6, 198. [Google Scholar] [CrossRef]
- Díaz-Hung, M.L.; González Fraguela, M.E. El estrés oxidativo en las enfermedades neurológicas: ¿causa o consecuencia? Oxidative stress in neurological diseases: Cause or effect? Neurologia 2014, 29, 451–452. [Google Scholar] [CrossRef]
- Martínez-Lazcano, J.C.; Boll-Woehrlen, M.C.; Hernández-Melesio, M.; Rubio-Osornio, M.; Sánchez-Mendoza, M.; Ríos, C. Radicales libres y estrés oxidativo en las enfermedades neurodegenerativas. Mensaje Bioquim 2010, 34, 43–59. [Google Scholar]
- Uriarte-Pueyo, I.; Calvo, M.I. Flavonoids as acetylcholinesterase inhibitors. Curr. Med. Chem. 2011, 18, 5289–5302. [Google Scholar] [CrossRef] [PubMed]
- Tan, N.D.; Dao, T.T. Synthesis, Antioxidant and Antimicrobial Activities of a Novel Series of Chalcones, Pyrazolic Chalcones, and Allylic Chalcones. Pharmacol. Pharm. 2011, 2, 282–288. [Google Scholar] [CrossRef]
- Serafini, M.; Peluso, I.; Raguzzini, A. Flavonoids as anti-inflammatory agents. Proc. Nutr. Soc. 2010, 69, 273–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davila, J.C.; Lenherr, A.; Acosta, D. Protective effect of flavonoids on drug-induced hepatotoxicity in vitro. Toxicology 1989, 57, 267–286. [Google Scholar] [CrossRef]
- Parmar, N.S.; Parmar, S. Anti-ulcer potential of flavonoids. Indian J. Physiol. Pharm. 1998, 42, 343–351. [Google Scholar]
- Ribeiro, D.; Freitas, M.; Tomé, S.M.; Silva, A.M.; Laufer, S.; Lima, J.L.; Fernandes, E. Flavonoids inhibit COX-1 and COX-2 enzymes and cytokine/chemokine production in human whole blood. Inflammation 2015, 38, 858–870. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, G.; Liao, Y.; Pan, J.; Gong, D. Dietary Flavonoids as Xanthine Oxidase Inhibitors: Structure–Affinity and Structure–Activity Relationships. J. Agric. Food. Chem. 2015, 63, 7784–7794. [Google Scholar] [CrossRef]
- Schewe, T.; Kühn, H.; Sies, H. Flavonoids of cocoa inhibit recombinant human 5-lipoxygenase. J. Nutr. 2002, 132, 1825–1829. [Google Scholar] [CrossRef]
- Ko, W.C.; Shih, C.M.; Lai, Y.H.; Chen, J.H.; Huang, H.L. Inhibitory effects of flavonoids on phosphodiesterase isozymes from guinea pig and their structure-activity relationships. Biochem. Pharm. 2004, 68, 2087–2094. [Google Scholar] [CrossRef]
- Lani, R.; Hassandarvish, P.; Shu, M.H.; Phoon, W.H.; Chu, J.J.; Higgs, S.; Vanlandingham, D.; Abu, B.S.; Zandi, K. Antiviral activity of selected flavonoids against Chikungunya virus. Antivir. Res. 2016, 133, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J.J.; Dwyer, J.T.; Jacques, P.F.; McCullough, M.L. Associations between flavonoids and cardiovascular disease incidence or mortality in European and US populations. Nutr. Rev. 2012, 70, 491–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.; Mi, M.; Ling, W.; Zhu, J.; Zhang, Q.; Wei, N.; Zhou, Y.; Tang, Y.; Yuan, J. Structurally related cytotoxic effects of flavonoids on human cancer cells in vitro. Arch. Pharm. Res. 2008, 31, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.J.; Spencer, J.P.; Rice-Evans, C. Flavonoids: Antioxidants or signalling molecules? Free Radic. Biol. Med. 2004, 36, 838–849. [Google Scholar] [CrossRef] [PubMed]
- Seyoum, A.; Asres, K.; El-Fiky, F.K. Structure-radical scavenging activity relationships of flavonoids. Phytochemistry 2006, 67, 2058–2070. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Aranda, R.; Granados-Guzmán, G.; Pérez-Meseguer, J.; González, G.M.; Waksman de Torres, N. Activity of Polyphenolic Compounds against Candida glabrata. Molecules 2015, 20, 17903–17912. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Kuskoski, E.M.; Asuero, A.G.; Troncoso, A.M.; Mancini-Filho, J.; Fett, R. Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Food Sci. Technol. 2005, 25, 726–732. [Google Scholar] [CrossRef] [Green Version]
- Burda, S.; Oleszek, W. Antioxidant and Antiradical Activities of Flavonoids. J. Agric. Food Chem. 2001, 49, 2774–2779. [Google Scholar] [CrossRef]
- Adewusi, E.A.; Moodley, N.; Steenkamp, V. Antioxidant and acetylcholinesterase inhibitory activity of selected southern African medicinal plants. S. Afr. J. Bot. 2011, 77, 638–644. [Google Scholar] [CrossRef] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 2006, 25, 247–260. [Google Scholar] [CrossRef]
- Sanner, M.F. Python: A programming language for software integration and development. J. Mol. Graph. Model. 1999, 17, 57–61. [Google Scholar] [CrossRef]
- Trott, A.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A Privileged Structure in Medicinal Chemistry. Chem. Rev. 2017, 117, 7762–7810. [Google Scholar] [CrossRef]
- Lee, Y.H.; Jeon, S.-H.; Kim, S.H.; Kim, C.; Lee, S.-J.; Koh, D.; Lim, Y.; Ha, K. A new synthetic chalcone derivative, 2-hydroxy-3′,5,5′-trimethoxychalcone (DK-139), suppresses the Toll-like receptor 4-mediated inflammatory response through inhibition of the Akt/NF-κB pathway in BV2 microglial cells. Exp. Mol. Med. 2012, 44, 369–377. [Google Scholar] [CrossRef]
- Lokhande, P.D.; Sakate, S.S.; Taksande, K.N.; Navghare, B. Dimethylsulfoxide–iodine catalysed deprotection of 2′-allyloxychalcones: Synthesis of flavones. Tetrahedron Lett. 2005, 46, 1573–1574. [Google Scholar] [CrossRef]
- Shenvi, S.; Kumar, K.; Hatti, S.K.; Rijesh, K.; Diwakar, L.; Reddy, G.C. Synthesis, anticancer and antioxidant activities of 2,4,5-trimethoxy chalcones and analogues from asaronaldehyde: Structure–activity relationship. Eur. J. Med. Chem. 2013, 62, 435–442. [Google Scholar] [CrossRef]
- Joshi, A.J.; Gaghwal, M.K.; Joshi, U.J.; D’Mello, P.; Sinha, R.; Govil, G. Synthesis of B-ring substituted flavones and evaluation of their antitumor and antioxidant activities. Med. Chem. Res. 2013, 22, 4293–4299. [Google Scholar] [CrossRef]
- Rezk, B.M.; Haenen, G.R.; Van der Vijgh, W.J.; Bast, A. The antioxidant activity of phloretin: The disclosure of a new antioxidant pharmacophore in flavonoids. Biochem. Biophys. Res. Commun. 2002, 295, 9–13. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, Y.; Li, Q.; Yu, X.; Wang, J.; Zheng, J. The synthesis and evaluation of novel hydroxyl substituted chalcone analogs with in vitro anti-free radicals pharmacological activity and in vivo anti-oxidation activity in a free radical-injury Alzheimer’s model. Molecules 2013, 18, 1693–1703. [Google Scholar] [CrossRef]
- Jung, J.-C.; Lee, Y.; Min, D.; Jung, M.; Oh, S. Practical synthesis of chalcone derivatives and their biological activities. Molecules 2017, 22, 1872. [Google Scholar] [CrossRef]
- Sulpizio, C.; Roller, A.; Giester, G.; Rompel, A. Synthesis, structure, and antioxidant activity of methoxy- and hydroxyl-substituted 2′-aminochalcones. Mon. Chem. 2016, 147, 1747–1758. [Google Scholar] [CrossRef]
- Scotti, L.; Mendonça, J.J.B.; Magalhaes, M.D.R.; Sobral da Silva, M.; Pitta, I.R.; Scotti, M.T. SAR, QSAR and Docking of Anticancer Flavonoids and Variants: A Review. Curr. Top. Med. Chem. 2012, 12, 2785–2809. [Google Scholar] [CrossRef]
- Nickavar, B.; Esbati, N. Evaluation of the antioxidant capacity and phenolic content of three Thymus species. J. Acupunct. Meridian Stud. 2012, 5, 119–125. [Google Scholar] [CrossRef]
- Detsi, A.; Majdalani, M.; Kontogiorgis, C.A.; Hadjipavlou-Litina, D.; Kefalas, P. Natural and synthetic 2′-hydroxy-chalcones and aurones: Synthesis, characterization and evaluation of the antioxidant and soybean lipoxygenase inhibitory activity. Bioorg. Med. Chem. 2009, 17, 8073–8085. [Google Scholar] [CrossRef]
- Heijnen, C.G.M.; Haenen, G.R.M.M.; Oostveen, R.M.; Stalpers, E.M.; Bast, A. Protection of Flavonoids Against Lipid Peroxidation: The Structure Activity Relationship Revisited. Free Radic. Res. 2002, 36, 575–581. [Google Scholar] [CrossRef]
- Cordeiro, D.S.; Corio, P. Electrochemical and photocatalytic reactions of polycyclic aromatic hydrocarbons investigated by Raman spectroscopy. J. Braz. Chem. Soc. 2009, 20, 80–87. [Google Scholar] [CrossRef]
- Fouillaud, M.; Caro, Y.; Venkatachalam, M.; Grondin, I.; Dufossé, L. Anthraquinones. In Phenolic Compounds in Food: Characterization and Analysis, 1st ed.; Nollet, L.M.L., Gutiérrez-Uribe, J.A., Eds.; CRC Press: Boca Raton, FL, USA, 2018; Volume 1, pp. 131–172. [Google Scholar]
- Cock, I.E. The Genus Aloe: Phytochemistry and therapeutic uses including treatments for gastrointestinal conditions and chronic inflammation. In Novel Natural Products: Therapeutic Effects in Pain, Arthritis and Gastro-Intestinal Diseases, 1st ed.; Rainsford, K.D., Powanda, M.C., Whitehouse, M.W., Eds.; Springer: Basel, Switzerland, 2015; Volume 70, pp. 179–235. [Google Scholar]
- Höfer, M.; Moszner, N.; Liska, R. Oxygen scavengers and sensitizers for reduced oxygen inhibition in radical photopolymerization. J. Polym. Sci. A Polym. Chem. 2008, 46, 6916–6927. [Google Scholar] [CrossRef]
- Sugiyama, Y.; Kawakishi, S.; Osawa, T. Involvement of the beta-diketone moiety in the antioxidative mechanism of tetrahydrocurcumin. Biochem. Pharmacol. 1996, 52, 519–525. [Google Scholar] [CrossRef]
- Chavan, B.B.; Gadekar, A.S.; Mehta, P.P.; Vawhal, P.K.; Kolsure, A.K.; Chabukswar, A.R. Synthesis and medicinal significance of chalcones—A review. Asian J. Biomed. Pharm. Sci. 2016, 6, 1–7. [Google Scholar]
- Hasan, A.; Khan, K.M.; Sher, M.; Maharvi, G.M.; Nawaz, S.A.; Choudhary, M.I.; Atta-Ur-Rahman; Supuran, C.T. Synthesis and inhibitory potential towards acetylcholinesterase, butyrylcholinesterase and lipoxygenase of some variably substituted chalcones. J. Enzym. Inhib. Med. Chem. 2005, 20, 41–47. [Google Scholar] [CrossRef]
- Xie, Y.; Yang, W.; Chen, X.; Xiao, J. Inhibition of flavonoids on acetylcholine esterase: Binding and structure-activity relationship. Food Funct. 2014, 5, 2582–2589. [Google Scholar] [CrossRef]
- Sukumaran, S.D.; Chee, C.F.; Viswanathan, G.; Buckle, M.J.C.; Othman, R.; Rahman, N.A.; Chung, L.Y. Synthesis, biological evaluation and molecular modelling of 2′-hydroxychalcones as acetylcholinesterase inhibitors. Molecules 2016, 21, 955. [Google Scholar] [CrossRef]
- Andersson, C.D.; Forsgren, N.; Akfur, C.; Allgardsson, A.; Berg, L.; Engdahl, C.; Qian, W.; Ekström, F.; Linusson, A. Divergent structure-activity relationships of structurally similar acetylcholinesterase inhibitors. J. Med. Chem. 2013, 56, 7615–7624. [Google Scholar] [CrossRef]
- Kryger, G.; Silman, I.; Sussman, J.L. Structure of acetylcholinesterase complexed with E2020 (Aricept®): Implications for the design of new anti-Alzheimer drugs. Structure 1999, 7, 297–307. [Google Scholar] [CrossRef]
- Hevener, K.E.; Zhao, W.; Ball, D.M.; Babaoglu, K.; Qi, J.; White, S.W.; Lee, R.E. Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J. Chem. Inf. Model. 2009, 49, 444–460. [Google Scholar] [CrossRef]
- Abdelhameed, R.; Elgawish, M.S.; Mira, A.; Ibrahim, A.K.; Ahmed, S.A.; Shimizu, K.; Yamada, K. Anti-choline esterase activity of ceramides from the Red Sea marine sponge Mycale euplectellioides. RSC Adv. 2016, 6, 20422–20430. [Google Scholar] [CrossRef]
- Khoobi, M.; Alipour, M.; Sakhteman, A.; Nadri, H.; Moradi, A.; Ghandi, M.; Emami, S.; Foroumadi, A.; Shafiee, A. Design, synthesis, biological evaluation and docking study of 5-oxo-4,5-dihydropyrano[3,2-c]chromene derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors. Eur. J. Med. Chem. 2013, 68, 260–269. [Google Scholar] [CrossRef]
- Neto, D.C.; de Souza Ferreira, M.; da Conceição Petronilho, E.; Lima, J.A.; de Azeredo, S.O.; Brum, J.D.; do Nascimento, C.J.; Villar, J.D. A new guanylhydrazone derivative as a potential acetylcholinesterase inhibitor for Alzheimer’s disease: Synthesis, molecular docking, biological evaluation and kinetic studies by nuclear magnetic resonance. RSC Adv. 2017, 7, 33944–33952. [Google Scholar] [CrossRef]
Compound | B-Ring Substituent | Scavenging Activity (EC50, μg/mL) | ||||
---|---|---|---|---|---|---|
R1 | R2 | R3 | R4 | ABTS (2-2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonate)) | DPPH | |
2a | 1.61 × 104 ± 5.73 × 10−3 | 260 ± 1.17 × 10−2 | ||||
2b | OH | 21 ± 7.07 × 10−5 | 8 ± 1.24 × 10−4 | |||
2c | OMe | OH | 164 ± 4.95 × 10−4 | 19 ± 1.18 × 10−3 | ||
2d | OH | NO2 | 564 ± 4.24 × 10−4 | 23 ± 9.76 × 10−4 | ||
2e | OMe | 341 ± 2.83 × 10−4 | 100 ± 2.57 × 10−3 | |||
2f | OMe | 487 ± 6.93 × 10−3 | 170 ± 4.10 × 10−3 | |||
2g | OMe | OMe | 1.14 × 10−2 ± 7.42 × 10−7 | 5 × 104 ± 7.76 × 10−1 | ||
2h | Cl | 5.23 × 103 ± 9.90 × 10−4 | 15 ± 7.43 × 10−4 | |||
2i | N(CH3)2 | 6.96 × 10−2 ± 2.12 × 10−7 | 9.3 ± 4.95 × 10−5 | |||
2j | Anthracene | 548 ± 3.54 × 10−3 | 1.7 ± 6.82 × 10−5 | |||
2k | Furan | 79 ± 6.36 × 10−4 | 5.4 × 10−3 ± 6.50 × 10−8 | |||
3a | 2.53 × 104 ± 4.24 × 10−3 | 170 ± 1.94 × 10−5 | ||||
3b | OH | 0.3 ± 3.54 × 10−5 | 0.1 ± 1.39 × 10−6 | |||
3c | OMe | OH | 497 ± 1.98 × 10−4 | 9 ± 4.60 × 10−5 | ||
3d | OH | NO2 | 155 ± 1.11 × 10−3 | 6.2 ± 1.52 × 10−4 | ||
3e | OMe | 3.00 × 103 ± 1.21 × 10−3 | 30 ± 3.61 × 10−3 | |||
3f | OMe | 112 ± 2.90 × 10−4 | 39 ± 1.58 × 10−3 | |||
3g | OMe | OMe | 861 ± 2.55 × 10−4 | 410 ± 6.85 × 10−3 | ||
3h | Cl | 2.6 × 103 ± 1.06 × 10−3 | 7.4 ± 1.09 × 10−5 | |||
3i | N(CH3)2 | 1.9 × 10−3 ± 6.51 × 10−8 | 0.25 ± 2.14 × 10−5 | |||
3j | Anthracene | 1.07 × 105 ± 3.99 × 10−4 | 1 × 10−8 ± 1.61 × 10−12 | |||
3k | Furan | 1.26 × 103 ± 7.78 × 10−4 | 0.1 ± 7.85 × 10−6 | |||
*Quercetin | 50 ± 4.1 × 10−4 | 3 ± 2 × 10−4 |
Compound | IC50 (μg/mL) | Compound | IC50 (μg/mL) |
---|---|---|---|
2a | > 150 | 3a | > 150 |
2b | > 150 | 3b | 61.2 ± 1.39 |
2c | 52.7 ± 11.98 | 3c | 78.4 ± 1.92 |
2d | 21.5 ± 2.61 | 3d | 26.8 ± 5.91 |
2e | > 150 | 3e | 43.5 ± 4.31 |
2f | > 150 | 3f | 60 ± 9.96 |
2g | > 150 | 3g | 43.5 ± 2.52 |
2h | > 150 | 3h | > 150 |
2i | 80.4 ± 5.97 | 3i | > 150 |
2j | > 150 | 3j | 77.6 ± 31.89 |
2k | 66.4 ± 6.15 | 3k | > 150 |
*Galantamine | 0.574 ± 0.07 |
Compound | Binding Energy (kcal/mol) | Inhibition Constant (nM) | Principal Residues Interactions |
---|---|---|---|
2d | −10.2 | 33.37 | Trp84, Tyr334, Tyr130 |
3d | −9.78 | 67.79 | Trp84, Tyr334, Tyr130 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Rubio, L.; Hernández-Martínez, R.; Estolano-Cobián, A.; Chávez-Velasco, D.; Salazar-Aranda, R.; Waksman de Torres, N.; Rivero, I.A.; García-González, V.; Ramos, M.A.; Córdova-Guerrero, I. Synthesis, Biological Evaluation and Docking Studies of Chalcone and Flavone Analogs as Antioxidants and Acetylcholinesterase Inhibitors. Appl. Sci. 2019, 9, 410. https://doi.org/10.3390/app9030410
Díaz-Rubio L, Hernández-Martínez R, Estolano-Cobián A, Chávez-Velasco D, Salazar-Aranda R, Waksman de Torres N, Rivero IA, García-González V, Ramos MA, Córdova-Guerrero I. Synthesis, Biological Evaluation and Docking Studies of Chalcone and Flavone Analogs as Antioxidants and Acetylcholinesterase Inhibitors. Applied Sciences. 2019; 9(3):410. https://doi.org/10.3390/app9030410
Chicago/Turabian StyleDíaz-Rubio, Laura, Rufina Hernández-Martínez, Arturo Estolano-Cobián, Daniel Chávez-Velasco, Ricardo Salazar-Aranda, Noemí Waksman de Torres, Ignacio A. Rivero, Víctor García-González, Marco A. Ramos, and Iván Córdova-Guerrero. 2019. "Synthesis, Biological Evaluation and Docking Studies of Chalcone and Flavone Analogs as Antioxidants and Acetylcholinesterase Inhibitors" Applied Sciences 9, no. 3: 410. https://doi.org/10.3390/app9030410
APA StyleDíaz-Rubio, L., Hernández-Martínez, R., Estolano-Cobián, A., Chávez-Velasco, D., Salazar-Aranda, R., Waksman de Torres, N., Rivero, I. A., García-González, V., Ramos, M. A., & Córdova-Guerrero, I. (2019). Synthesis, Biological Evaluation and Docking Studies of Chalcone and Flavone Analogs as Antioxidants and Acetylcholinesterase Inhibitors. Applied Sciences, 9(3), 410. https://doi.org/10.3390/app9030410