Cloud-Fog Architecture Based Energy Management and Decision-Making for Next-Generation Distribution Network with Prosumers and Internet of Things Devices
Abstract
:Featured Application
Abstract
1. Introduction
1.1. Motivation
1.2. Related Work
1.3. Contribution
2. Cloud-Fog Hierarchical Architecture for Energy Management
2.1. Terminal Units
2.2. Fog Layers Operation
2.3. Cloud Layer Operation
3. Modeling of Various Stakeholders in the Distribution Network (DN)
3.1. Utility Model of Customers
3.2. Prosumers Model
3.3. Distribution System Operator (DSO) Model
3.4. Objective Function at the Cloud Layer
4. Implementation and Results
4.1. Fog Computing Operation
4.2. Cloud Computing Operation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Energy consumption quantity of customer i at time slot t Energy consumption quantity of prosumer j at time slot t | |
Utility parameter characterizing the electricity consumption of customer i at time slot t | |
Revenue of customer i in distribution network | |
Real-time retail price for purchasing electricity in distribution network (DN) at time slot t | |
, | Cost coefficients of storage of the prosumers Cost of storage in prosumer j |
Charge/discharge capacity of the energy storage system of the prosumer j at time slot t | |
, | Cost coefficients of renewable energy resource (RES) of the prosumers |
Feed-in power of RES of prosumer j to grid at time slot t | |
Cost of RES in prosumer i | |
Utility of consumption of prosumer j | |
Income from tariff-in RES to grid | |
Energy amount of RES to grid at time slot t | |
Local tariff of RES to gird | |
Initial energy in the storage of the prosumer | |
Revenue of MG i in wholesale market | |
Purchasing cost from wholesale market | |
a, b | Purchasing cost from RES of the prosumers Coefficients of the carbon income |
Carbon trading income of distribution system operator (DSO) | |
Total revenue of DSO |
Appendix A
Appendix B
Time | WT | PV |
---|---|---|
00–01 | 168.2 | 0.0 |
01–02 | 138.8 | 0.0 |
02–03 | 145.4 | 0.0 |
03–04 | 127.6 | 0.0 |
04–05 | 175.4 | 0.0 |
05–06 | 121.4 | 167.4 |
06–07 | 98.0 | 529.7 |
07–08 | 155.4 | 635.6 |
08–09 | 138.1 | 649.6 |
09–10 | 126.3 | 703.2 |
10–11 | 100.4 | 834.7 |
11–12 | 133.6 | 720.9 |
12–13 | 109.4 | 594.5 |
13–14 | 117.1 | 754.5 |
14–15 | 133.3 | 842.9 |
15–16 | 142.4 | 723.6 |
16–17 | 162.7 | 603.9 |
17–18 | 146.1 | 427.1 |
18–19 | 138.2 | 217.9 |
19–20 | 135.7 | 204.3 |
20–21 | 157.8 | 8.5 |
21–22 | 93.3 | 0.0 |
22–23 | 148.1 | 0.0 |
23–24 | 115.6 | 0.0 |
References
- Meng, L.; Sanseverino, E.R.; Luna, A.; Dragicevic, T.; Vasquez, J.C.; Guerrero, J.M. Microgrid supervisory controllers and energy management systems: A literature review. Renew. Sustain. Energy Rev. 2016, 60, 1263–1273. [Google Scholar] [CrossRef]
- Lee, I.; Lee, K. The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Bus. Horiz. 2015, 58, 431–440. [Google Scholar] [CrossRef]
- Jalali, F.; Vishwanath, A.; de Hoog, J.; Suits, F. Interconnecting Fog computing and microgrids for greening IoT. In Proceedings of the 2016 IEEE Innovative Smart Grid Technologies—Asia (ISGT-Asia), Melbourne, VIC, Australia, 28 November–1 December 2016; pp. 693–698. [Google Scholar]
- Chiu, T.C.; Shih, Y.Y.; Pang, A.C.; Pai, C.W. Optimized Day-Ahead Pricing with Renewable Energy Demand-Side Management for Smart Grids. IEEE Internet Things J. 2017, 4, 374–383. [Google Scholar] [CrossRef]
- Reinders, A.; Übermasser, S.; van Sark, W.; Gercek, C.; Schram, W.; Obinna, U.; Lehfuss, F.; van Mierlo, B.; Robledo, C.; van Wijk, A. An Exploration of the Three-Layer Model Including Stakeholders, Markets and Technologies for Assessments of Residential Smart Grids. Appl. Sci. 2018, 8, 2363. [Google Scholar] [CrossRef]
- Lu, T.; Wang, Z.; Ai, Q.; Lee, W. Interactive Model for Energy Management of Clustered Microgrids. IEEE Trans. Ind. Appl. 2017, 53, 1739–1750. [Google Scholar] [CrossRef]
- Zafar, R.; Mahmood, A.; Razzaq, S.; Ali, W.; Naeem, U.; Shehzad, K. Prosumer based energy management and sharing in smart grid. Renew. Sustain. Energy Rev. 2018, 82, 1675–1684. [Google Scholar] [CrossRef]
- Ejaz, W.; Naeem, M.; Shahid, A.; Anpalagan, A.; Jo, M. Efficient Energy Management for the Internet of Things in Smart Cities. IEEE Commun. Mag. 2017, 55, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Golshannavaz, S.; Afsharnia, S.; Aminifar, F. Smart Distribution Grid: Optimal Day-Ahead Scheduling with Reconfigurable Topology. IEEE Trans. Smart Grid 2014, 5, 2402–2411. [Google Scholar] [CrossRef]
- Liu, T.; Tan, X.; Sun, B.; Wu, Y.; Guan, X.; Tsang, D.H.K. Energy management of cooperative microgrids with P2P energy sharing in distribution networks. In Proceedings of the 2015 IEEE International Conference on Smart Grid Communications (SmartGridComm), Miami, FL, USA, 2–5 November 2015; pp. 410–415. [Google Scholar]
- Yue, J.; Hu, Z.; Li, C.; Vasquez, J.C.; Guerrero, J.M. Optimization scheduling in intelligent Energy Management System for the DC residential distribution system. In Proceedings of the 2017 IEEE 2nd Int. Conf. Direct Curr. Microgrids, ICDCM 2017, Nuremburg, Germany, 27–29 June 2017; pp. 558–563. [Google Scholar]
- Yin, C.; Wu, H.; Sechilariu, M.; Locment, F. Power Management Strategy for an Autonomous DC Microgrid. Appl. Sci. 2018, 8, 2202. [Google Scholar] [CrossRef]
- Li, C.; Bosio, F.; Chen, F.; Chaudhary, S.K.; Vasquez, J.; Guerrero, J. Economic Dispatch for Operating Cost Minimization Under Real Time Pricing in Droop Controlled Dc Microgrid. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 5, 587–595. [Google Scholar] [CrossRef]
- Shen, J.; Jiang, C.; Liu, Y.; Qian, J. A Microgrid Energy Management System with Demand Response for Providing Grid Peak Shaving. Electr. Power Compon. Syst. 2016, 44, 843–852. [Google Scholar] [CrossRef]
- Karavas, C.-S.; Kyriakarakos, G.; Arvanitis, K.G.; Papadakis, G. A multi-agent decentralized energy management system based on distributed intelligence for the design and control of autonomous polygeneration microgrids. Energy Convers. Manag. 2015, 103, 166–179. [Google Scholar] [CrossRef]
- Karavas, C.-S.; Arvanitis, K.; Papadakis, G. A Game Theory Approach to Multi-Agent Decentralized Energy Management of Autonomous Polygeneration Microgrids. Energies 2017, 10, 1756. [Google Scholar] [CrossRef]
- Karavas, C.-S.; Arvanitis, K.G.; Kyriakarakos, G.; Piromalis, D.D.; Papadakis, G. A novel autonomous PV powered desalination system based on a DC microgrid concept incorporating short-term energy storage. Sol. Energy 2018, 159, 947–961. [Google Scholar] [CrossRef]
- Chen, C.-R.; Lan, M.-J.; Huang, C.-C.; Hong, Y.-Y.; Low, S.H. Demand Response Optimization for Smart Home Scheduling Using Genetic Algorithm. In Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics, Manchester, UK, 13–16 October 2013; pp. 1461–1465. [Google Scholar]
- Graditi, G.; di Silvestre, M.L.; Gallea, R.; Sanseverino, E.R. Heuristic-based shiftable loads optimal management in smart micro-grids. IEEE Trans. Ind. Inform. 2015, 11, 271–280. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, K.; Zheng, C.; Chen, H. An Optimal Energy Management Method for the Multi-Energy System with Various Multi-Energy Applications. Appl. Sci. 2018, 8, 2273. [Google Scholar] [CrossRef]
- Marzband, M.; Parhizi, N.; Savaghebi, M.; Guerrero, J.M. Distributed Smart Decision-Making for a Multimicrogrid System Based on a Hierarchical Interactive Architecture. IEEE Trans. Energy Convers. 2016, 31, 637–648. [Google Scholar] [CrossRef]
- Wen, S.; Lan, H.; Fu, Q.; Yu, D.C.; Zhang, L. Economic Allocation for Energy Storage System Considering Wind Power Distribution. IEEE Trans. Power Syst. 2015, 30, 644–652. [Google Scholar] [CrossRef]
- Gamarra, C.; Guerrero, J.M.; Montero, E. A knowledge discovery in databases approach for industrial microgrid planning. Renew. Sustain. Energy Rev. 2016, 60, 615–630. [Google Scholar] [CrossRef] [Green Version]
- Chiang, M.; Zhang, T. Fog and IoT: An Overview of Research Opportunities. IEEE Internet Things J. 2016, 3, 854–864. [Google Scholar] [CrossRef]
- Negash, B.; Gia, T.N.; Anzanpour, A.; Azimi, I.; Jiang, M.; Westerlund, T.; Rahmani, A.M.; Liljeberg, P.; Tenhune, H. Leveraging fog computing for healthcare IoT. In Fog Computing in the Internet of Things; Springer: Cham, Switzerland, 2017; pp. 145–169. [Google Scholar]
- Moghaddam, M.H.Y.; Leon-Garcia, A. A Fog-Based Internet of Energy Architecture for Transactive Energy Management Systems. IEEE Internet Things J. 2018, 5, 1055–1069. [Google Scholar] [CrossRef]
- Lin, Y.-H. Design and Implementation of an IoT-Oriented Energy Management System Based on Non-Intrusive and Self-Organizing Neuro-Fuzzy Classification as an Electrical Energy Audit in Smart Homes. Appl. Sci. 2018, 8, 2337. [Google Scholar] [CrossRef]
- The IoT Microgrid Living Laboratory. Available online: https://www.et.aau.dk/department/laboratory-facilities/IoT+Microgrid+Living+Demonstration+Laboratory/ (accessed on 5 December 2018).
- Kim, J.; Byun, J.; Jeong, D.; Choi, M.-I.; Kang, B.; Park, S. An IoT-Based Home Energy Management System over Dynamic Home Area Networks. Int. J. Disturb. Sens. Netw. 2015, 2015. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samadi, P.; Mohsenian-Rad, A.-H.; Schober, R.; Wong, V.W.S.; Jatskevich, J. Optimal Real-Time Pricing Algorithm Based on Utility Maximization for Smart Grid. In Proceedings of the 2010 First IEEE International Conference on Smart Grid Communications, Gaithersburg, MD, USA, 4–6 October 2010; pp. 415–420. [Google Scholar]
- Li, N.; Chen, L.; Low, S.H. Optimal demand response based on utility maximization in power networks. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–29 July 2011; pp. 1–8. [Google Scholar]
- Almer, C.; Winkler, R. Analyzing the effectiveness of international environmental policies: The case of the Kyoto Protocol. J. Environ. Econ. Manag. 2017, 82, 125–151. [Google Scholar] [CrossRef]
- Powerwall | The Tesla Home Battery. Available online: https://www.tesla.com/powerwall (accessed on 31 December 2018).
- Kriechbaumer, T.; Jacobsen, H.A. BLOND, a building-level office environment dataset of typical electrical appliances. Sci. Data 2018, 5, 1–14. [Google Scholar] [CrossRef]
- Energy Information and Data | OpenEI.org. Available online: https://openei.org/wiki/Main_Page. (accessed on 6 December 2018).
Normal Customers | Prosumers | DSO |
---|---|---|
Cost of normal customers ($) | Prosumers’ Average Revenue ($) |
0.29 × 105 | 15.9 |
DSO’s Revenue ($) | Carbon income ($) |
0.56 × 104 | 1.749 × 103 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, J.; Hu, Z.; He, R.; Zhang, X.; Dulout, J.; Li, C.; Guerrero, J.M. Cloud-Fog Architecture Based Energy Management and Decision-Making for Next-Generation Distribution Network with Prosumers and Internet of Things Devices. Appl. Sci. 2019, 9, 372. https://doi.org/10.3390/app9030372
Yue J, Hu Z, He R, Zhang X, Dulout J, Li C, Guerrero JM. Cloud-Fog Architecture Based Energy Management and Decision-Making for Next-Generation Distribution Network with Prosumers and Internet of Things Devices. Applied Sciences. 2019; 9(3):372. https://doi.org/10.3390/app9030372
Chicago/Turabian StyleYue, Jingpeng, Zhijian Hu, Ruijiang He, Xinyan Zhang, Jeremy Dulout, Chendan Li, and Josep M. Guerrero. 2019. "Cloud-Fog Architecture Based Energy Management and Decision-Making for Next-Generation Distribution Network with Prosumers and Internet of Things Devices" Applied Sciences 9, no. 3: 372. https://doi.org/10.3390/app9030372
APA StyleYue, J., Hu, Z., He, R., Zhang, X., Dulout, J., Li, C., & Guerrero, J. M. (2019). Cloud-Fog Architecture Based Energy Management and Decision-Making for Next-Generation Distribution Network with Prosumers and Internet of Things Devices. Applied Sciences, 9(3), 372. https://doi.org/10.3390/app9030372