# New Satellite Selection Approach for GPS/BDS/GLONASS Kinematic Precise Point Positioning

^{*}

## Abstract

**:**

## 1. Introduction

## 2. PPP Mathematical Model and Satellite Selection Algorithms

#### 2.1. Dual-Frequency Multi-GNSS PPP

#### 2.2. Optimal DOP Algorithm

#### 2.3. The Maximum Volume Algorithm

#### 2.4. The Fast-Rotating Partition Satellite Selection Algorithm

#### 2.5. The Elevation Partition Satellite Selection Algorithm

## 3. Establishment of the NSS Model in Kinematic PPP

#### 3.1. The Combination of Three Different Satellite Selection Algorithms

#### 3.2. The Inheritance of Ambiguity

## 4. Test and Analysis

#### 4.1. Time Complexity of the NSS Model

#### 4.2. Positioning Accuracy of the NSS Model

#### 4.2.1. The MGEX Data

#### 4.2.2. The Measured Data

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Alkan, R.M.; Saka, M.H.; Ozulu, İ.M.; İlçi, V. Kinematic Precise Point Positioning Using GPS and Glonass Measurements in Marine Environments. Measurement
**2017**, 109, 36–43. [Google Scholar] [CrossRef] - Kouba, J.; Héroux, P. Precise Point Positioning Using IGS Orbit and Clock Products. GPS Solut.
**2001**, 5, 12–28. [Google Scholar] [CrossRef] - Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. Solid Earth
**1997**, 102, 5005–5017. [Google Scholar] [CrossRef] [Green Version] - Wang, L.; Li, Z.; Ge, M.; Neitzel, F.; Wang, Z.; Yuan, H. Validation and Assessment of Multi-GNSS Real-Time Precise Point Positioning in Simulated Kinematic Mode Using IGS Real-Time Service. Remote Sens.
**2018**, 10, 337. [Google Scholar] [CrossRef] [Green Version] - Jiao, G.Q.; Song, S.L.; Ge, Y.L.; Su, K.; Liu, Y.Y. Assessment of BeiDou-3 and Multi-GNSS Precise Point Positioning Performance. Sensors
**2019**, 19, 2496. [Google Scholar] [CrossRef] [Green Version] - Yasyukevich, Y.; Astafyeva, E.; Padokhin, A.; Ivanova, V.; Syrovatskii, S.; Podlesnyi, A. The 6 September 2017 X-Class Solar Flares and Their Impacts on the Ionosphere, GNSS, and HF Radio Wave Propagation. Space Weather Int. J. Res. Appl.
**2018**, 16, 1013–1027. [Google Scholar] [CrossRef] - Jacobsen, K.S.; Andalsvik, Y.L. Overview of the 2015 St. Patrick’s day storm and its consequences for RTK and PPP positioning in Norway. J. Space Weather Space Clim.
**2016**, 6. [Google Scholar] [CrossRef] - RISDE. Global Navigation Satellite System GLONASS—Interface Control Document, Version 5.1; Russian Institute of Space Device Engineering: Moscow, Russia, 2008. [Google Scholar]
- EU. European GNSS (Galileo) Open Service Signal in Space Interface Control Document; European Union: Brussels, Belgium, 2014. [Google Scholar]
- CSNO. BeiDou Navigation Satellite System Signal in Space Interface Control Document: Open Service Signal (Version 2.0); China Satellite Navigation Office: Beijing, China, 2013. [Google Scholar]
- CSNO. Report on the Development of BeiDou Navigation Satellite System (Version 2.2); China Satellite Navigation Office: Beijing, China, 2013. [Google Scholar]
- Alcay, S.; Yigit, C.O. Network based performance of GPS-only and combined GPS/GLONASS positioning under different sky view conditions. Acta Geod. Geophys.
**2017**, 52, 345–356. [Google Scholar] [CrossRef] - Nie, Z.; Gao, Y.; Wang, Z.; Ji, S. A new method for satellite selection with controllable weighted PDOP threshold. Surv. Rev.
**2016**, 49, 285–293. [Google Scholar] [CrossRef] - Kihara, M.; Okada, T. A Satellite Selection Method and Accuracy for the Global Positioning System. Navigation
**1984**, 31, 8–20. [Google Scholar] [CrossRef] - Swaszek, P.F.; Hartnett, R.J.; Seals, K.C. Multi-Constellation GNSS: New Bounds on DOP and a Related Satellite Selection Process. In Proceedings of the 29th International Technical Meeting of the Satellite Division of the Institute of Navigation, Portland, OR, USA, 12–16 September 2016; pp. 228–235. [Google Scholar]
- Meng, F.; Wang, S.; Zhu, B. Research of Fast Satellite Selection Algorithm for Multi-constellation. Chin. J. Electron.
**2016**, 25, 1172–1178. [Google Scholar] [CrossRef] - Blanco-Delgado, N.; Nunes, F.D. Satellite Selection Method for Multi-Constellation GNSS Using Convex Geometry. IEEE Trans. Veh. Technol.
**2010**, 59, 4289–4297. [Google Scholar] [CrossRef] - Roongpiboonsopit, D.; Karimi, H.A. A Multi-Constellations Satellite Selection Algorithm for Integrated Global Navigation Satellite Systems. J. Intell. Transp. Syst.
**2009**, 13, 127–141. [Google Scholar] [CrossRef] - Li, F.; Li, Z.; Gao, J.; Yao, Y. A Fast Rotating Partition Satellite Selection Algorithm Based on Equal Distribution of Sky. J. Navig.
**2019**, 72, 1053–1069. [Google Scholar] [CrossRef] - Gao, X.; Dai, W.; Song, Z.; Cai, C. Reference satellite selection method for GNSS high-precision relative positioning. Geod. Geodyn.
**2017**, 8, 125–129. [Google Scholar] [CrossRef] [Green Version] - Huang, P.P.; Rizos, C.; Roberts, C. Satellite selection with an end-to-end deep learning network. GPS Solut.
**2018**, 22, 108. [Google Scholar] [CrossRef] - Kaplan, E.D.; Hegarty, C.J. Understanding GPS: Principles and Applications, 2nd ed.; Artech House: Norwood, MA, USA, 2006. [Google Scholar]
- Li, Z.K.; Chen, F. Improving availability and accuracy of GPS/BDS positioning using QZSS for single receiver. Acta Geod. Geophys.
**2017**, 52, 95–109. [Google Scholar] [CrossRef] - Montenbruck, O.; Steigenberger, P.; Prange, L.; Deng, Z.; Zhao, Q.; Perosanz, F.; Romero, I.; Noll, C.; Stuerze, A.; Weber, G.; et al. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS) —Achievements, prospects and challenges. Adv. Space Res.
**2017**, 59, 1671–1697. [Google Scholar] [CrossRef] - Zhou, F.; Dong, D.A.; Ge, M.R.; Li, P.; Wickert, J.; Schuh, H. Simultaneous estimation of GLONASS pseudorange inter-frequency biases in precise point positioning using undifferenced and uncombined observations. GPS Solut.
**2018**, 22. [Google Scholar] [CrossRef] - Schönemann, E.; Becker, M.; Springer, T. A new Approach for GNSS Analysis in a Multi-GNSS and Multi-Signal Environment. J. Geod. Sci.
**2011**, 1, 204–214. [Google Scholar] [CrossRef] [Green Version] - Odijk, D.; Zhang, B.C.; Khodabandeh, A.; Odolinski, R.; Teunissen, P.J.G. On the estimability of parameters in undifferenced, uncombined GNSS network and PPP-RTK user models by means of system theory. J. Geod.
**2016**, 90, 15–44. [Google Scholar] [CrossRef] - Yan, X.; Yang, G.; Shi, J.; Xu, C. Carrier phase-based ionospheric observables using PPP models. Geod. Geodyn.
**2017**, 8, 17–23. [Google Scholar] - Liu, T.; Yuan, Y.B.; Zhang, B.C.; Wang, N.B.; Tan, B.F.; Chen, Y.C. Multi-GNSS precise point positioning (MGPPP) using raw observations. J. Geod.
**2017**, 91, 253–268. [Google Scholar] [CrossRef] - Guo, F.; Zhang, X.H.; Wang, J.L.; Ren, X.D. Modeling and assessment of triple-frequency BDS precise point positioning. J. Geod.
**2016**, 90, 1223–1235. [Google Scholar] [CrossRef] - Zhou, F.; Dong, D.; Li, W.; Jiang, X.; Wickert, J.; Schuh, H. GAMP: An open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations. GPS Solut.
**2018**, 22, 33. [Google Scholar] [CrossRef] - Li, X.; Zus, F.; Lu, C.; Dick, G.; Ning, T.; Ge, M.; Wickert, J.; Schuh, H. Retrieving of atmospheric parameters from multi-GNSS in real time: Validation with water vapor radiometer and numerical weather model. J. Geophys. Res. Atmos.
**2015**, 120, 7189–7204. [Google Scholar] [CrossRef] [Green Version] - Kazmierski, K.; Sosnica, K.; Hadas, T. Quality assessment of multi-GNSS orbits and clocks for real-time precise point positioning. GPS Solut.
**2017**, 22, 11. [Google Scholar] [CrossRef] [Green Version] - Kazmierski, K.; Hadas, T.; Sosnica, K. Weighting of Multi-GNSS Observations in Real-Time Precise Point Positioning. Remote Sens.
**2018**, 10, 84. [Google Scholar] [CrossRef] [Green Version] - Li, P.; Zhang, X.; Guo, F. Ambiguity resolved precise point positioning with GPS and BeiDou. J. Geod.
**2017**, 91, 25–40. [Google Scholar] [CrossRef]

**Figure 4.**The visible satellites using the original Precise Point Positioning (PPP) (

**Left**), NSS model (

**middle**), and Optimal dilution of precision (DOP) algorithm (

**Right**) at the DARW station.

**Figure 5.**The visible GPS satellite number using the NSS model (

**Left**) and Optimal DOP algorithm. (

**Right**) at the DARW station (day of year (DOY) 239, 2017).

**Figure 6.**The visible GLONASS satellite number using the NSS model (

**Left**) and Optimal DOP algorithm (

**Right**) at the DARW station (DOY 239, 2017).

**Figure 7.**The visible BDS satellite number using the NSS model (

**Left**) and Optimal DOP algorithm (

**Right**) at the DARW station (DOY 239, 2017).

**Figure 8.**The satellite number and geometric position dilution of precision (GDOP) of kinematic PPP using the original PPP, NSS model, and Optimal DOP algorithm at the DARW station.

**Figure 10.**The satellite number and GDOP of kinematic PPP using the original PPP, NSS model, and Optimal DOP algorithm based on the measured data.

**Figure 11.**Position residuals of PPP using different satellite selection solutions based on the measured data.

Average Number of Visible Satellites at JFNG | ||||
---|---|---|---|---|

Number of Selected Satellites | G | GC | GR | GRC |

9 | 15 | 19 | 25 | |

4 | 126 | 1365 | 3876 | 12,650 |

5 | 126 | 3003 | 11,628 | 53,130 |

6 | 84 | 5005 | 27,132 | 177,100 |

7 | 6435 | 50,388 | 780,700 | |

8 | 6435 | 75,582 | 1,081,575 | |

9 | 5005 | 92,378 | 2,042,975 | |

10 | 3003 | 92,378 | 3,268,760 | |

11 | 75,582 | 4,457,400 | ||

12 | 50,388 | 5,200,300 |

**Table 2.**The average percentages of the number of selected satellites with respect to all visible satellites.

DARW | GMSD | KARR | MRO1 | XMIS | Mean | |
---|---|---|---|---|---|---|

Original PPP | 100% | 100% | 100% | 100% | 100% | 100% |

NSS model | 46.0% | 48.3% | 45.0% | 45.4% | 43.0% | 45.5% |

Optimal DOP | 45.8% | 51.1% | 45.4% | 46.8% | 43.9% | 46.6% |

DARW | GMSD | KARR | MRO1 | XMIS | Mean | |
---|---|---|---|---|---|---|

Original PPP | 3.6 | 2.7 | 2.9 | 3.1 | 2.8 | 3.0 |

NSS model | 7.8 | 8.7 | 6.4 | 8.7 | 7.2 | 7.8 |

Optimal DOP | 8.6 | 5.3 | 8.3 | 6.2 | 8.1 | 7.3 |

**Table 4.**The computing time of daily data processing using the original PPP and NSS model, respectively (s).

Original PPP | NSS Model | Improved | |
---|---|---|---|

DARW | 130.440 | 62.823 | 51.8% |

GMSD | 78.570 | 45.342 | 42.3% |

KARR | 112.436 | 62.214 | 44.7% |

MRO1 | 103.957 | 60.057 | 42.2% |

XMIS | 112.781 | 60.924 | 46.0% |

Mean | 107.637 | 58.272 | 45.9% |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yang, L.; Gao, J.; Li, Z.; Li, F.; Chen, C.; Wang, Y.
New Satellite Selection Approach for GPS/BDS/GLONASS Kinematic Precise Point Positioning. *Appl. Sci.* **2019**, *9*, 5280.
https://doi.org/10.3390/app9245280

**AMA Style**

Yang L, Gao J, Li Z, Li F, Chen C, Wang Y.
New Satellite Selection Approach for GPS/BDS/GLONASS Kinematic Precise Point Positioning. *Applied Sciences*. 2019; 9(24):5280.
https://doi.org/10.3390/app9245280

**Chicago/Turabian Style**

Yang, Liu, Jingxiang Gao, Zengke Li, Fangchao Li, Chao Chen, and Yifan Wang.
2019. "New Satellite Selection Approach for GPS/BDS/GLONASS Kinematic Precise Point Positioning" *Applied Sciences* 9, no. 24: 5280.
https://doi.org/10.3390/app9245280