Next Article in Journal
Product Service System Availability Improvement through Field Repair Kit Optimization: A Case Study
Previous Article in Journal
A Multi-Level Optimization Method for Elastic Constants Identification of Composite Laminates
Open AccessArticle

The Influence of Loading Program on the Stimulated Callus Mineralization

Institute of Applied Mechanics, Cracow University of Technology, al. Jana Pawła II 37, 31-864 Cracow, Poland
*
Author to whom correspondence should be addressed.
Appl. Sci. 2019, 9(20), 4268; https://doi.org/10.3390/app9204268
Received: 20 September 2019 / Revised: 2 October 2019 / Accepted: 4 October 2019 / Published: 11 October 2019
(This article belongs to the Section Applied Biosciences and Bioengineering)
The aim of this work is to describe the change of physical properties of the callus material with the use of the proposed mathematical model for callus remodeling. Callus tissue can be considered as a biomaterial where it’s properties change over time due to the stimulated healing process. The proposed model is based on the mechanical stimulus theory. It is used to estimate the stress-stimulated change in the callus, Young’s modulus, and the density in the case of a mandible fracture. Three healing loading programs are discussed and compared: optimal, intermittent, and intermittent with residual load. Here, the optimal loading program is understood as the in-time change of stimulating loads, which results in the shortest necessary healing time and, simultaneously, in the most uniform distribution of material density in the analyzed domain. The necessary healing time is a period after which the callus density (and hence the Young’s modulus) reaches the desired value. The results of the study suggest a significant difference in the value of the callus maximal density between all three analyzed loading programs for a given healing time interval. The highest values of the density are obtained using the optimal loading program, however, all three programs provide satisfactory density distributions. The analytical results are compared with the callus density estimation based on the computer tomography (CT) medical data. View Full-Text
Keywords: callus remodeling; fracture; tissue healing; optimal loading callus remodeling; fracture; tissue healing; optimal loading
Show Figures

Figure 1

MDPI and ACS Style

Miodowska, J.; Bielski, J. The Influence of Loading Program on the Stimulated Callus Mineralization. Appl. Sci. 2019, 9, 4268.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop