DNA-Related Modifications in a Mixture of Human Lympho-Monocyte Exposed to Radiofrequency Fields and Detected by Raman Microspectroscopy Analysis
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Blood Collection and EMFs Exposure
2.2. Isolation of Lympho-Monocyte Cells
2.3. Raman Microspectroscopy and Spectra Processing
2.4. ROS Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Camara, P.R.S. Effect of exposure to non-ionizing radiation (electromagnetic fields) on the human system: A literature review. J. Interdiscip. Histopathol. 2014, 2, 187–190. [Google Scholar] [CrossRef][Green Version]
- Romanenko, S.; Begley, R.; Harvey, A.R.; Hool, L.; Wallace, V.P. The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: Risks and potential. J. R. Soc. Interface 2017, 14, 20170585. [Google Scholar] [CrossRef] [PubMed]
- Campisi, A.; Gulino, M.; Acquaviva, R.; Bellia, P.; Raciti, G.; Grasso, R.; Musumeci, F.; Vanella, A.; Triglia, A. Reactive oxygen species levels and DNA fragmentation on astrocytes in primary culture after acute exposure to low intensity microwave electromagnetic field. Neurosci. Lett. 2010, 473, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Wei, X.; Fei, Y.; Su, L.; Zhao, X.; Chen, G.; Xu, Z. Mobile phone signal exposure triggers a hormesis-like effect in ATM+/+ and Atm-/- mouse embryonic fibroblasts. Sci. Rep. 2016, 6, 37423. [Google Scholar] [CrossRef] [PubMed]
- Galli, C.; Pedrazzi, G.; Guizzardi, S. The cellular effects of Pulsed Electromagnetic Fields on osteoblasts: A review. Bioelectromagnetics 2019, 40, 211–233. [Google Scholar] [CrossRef]
- Sannino, A.; Zeni, O.; Romeo, S.; Massa, R.; Scarfi, M.R. Adverse and beneficial effects in Chinese hamster lung fibroblast cells following radiofrequency exposure. Bioelectromagnetics 2017, 38, 245–254. [Google Scholar] [CrossRef]
- Xu, S.; Chen, G.; Chen, C.; Sun, C.; Zhang, D.; Murbach, M.; Kuster, N.; Zeng, Q.; Xu, Z. Cell Type-Dependent Induction of DNA Damage by 1800 MHz Radiofrequency Electromagnetic Fields Does Not Result in Significant Cellular Dysfunctions. PLoS ONE 2013, 8, e54906. [Google Scholar] [CrossRef]
- Saliev, T.; Begimbetova, D.; Masoud, A.-R.; Matkarimov, B. Biological effects of non-ionizing electromagnetic fields: Two sides of a coin. Prog. Biophys. Mol. Biol. 2019, 141, 25–36. [Google Scholar] [CrossRef]
- Tice, R.R.; Hook, G.G.; Donner, M.; McRee, D.I.; Guy, A.W. Genotoxicity of radiofrequency signals. I. Investigation of DNA damage and micronuclei induction in cultured human blood cells. Bioelectromagnetics 2002, 23, 113–126. [Google Scholar] [CrossRef]
- Mashevich, M.; Folkman, D.; Kesar, A.; Barbul, A.; Korenstein, R.; Jerby, E.; Avivi, L. Exposure of human peripheral blood lymphocytes to electromagnetic fields associated with cellular phones leads to chromosomal instability. Bioelectromagnetics 2003, 24, 82–90. [Google Scholar] [CrossRef]
- Kazemi, E.; Mortazavi, S.M.J.; Ali-Ghanbari, A.; Sharifzadeh, S.; Ranjbaran, R.; Mostafavi-Pour, Z.; Zal, F.; Haghani, M. Effect of 900 MHz Electromagnetic Radiation on the Induction of ROS in Human Peripheral Blood Mononuclear Cells. J. Biomed. Phys. Eng. 2015, 5, 105–114. [Google Scholar] [PubMed]
- Taheri, M.; Roshanaei, G.; Ghaffari, J.; Rahimnejad, S.; Khosroshahi, B.N.; Aliabadi, M.; Eftekharian, M.M. The effects of Base Transceiver Station waves on some immunological and hematological factors in exposed persons. Hum. Antibodies 2017, 25, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Lasalvia, M.; Scrima, R.; Perna, G.; Piccoli, C.; Capitanio, N.; Biagi, P.F.; Schiavulli, L.; Ligonzo, T.; Centra, M.; Casamassima, G.; et al. Exposure to 1.8 GHz electromagnetic fields affects morphology, DNA-related Raman spectra and mitochondrial functions in human lympho-monocytes. PLoS ONE 2018, 13, e0192894. [Google Scholar] [CrossRef] [PubMed]
- Matthews, Q.; Brolo, A.G.; Lum, J.; Duan, X.; Jirasek, A. Raman spectroscopy of single human tumour cells exposed to ionizing radiation in vitro. Phys. Med. Biol. 2011, 56, 19–38. [Google Scholar] [CrossRef] [PubMed]
- Efeoglu, E.; Casey, A.; Byrne, H.J. In vitro monitoring of time and dose dependent cytotoxicity of aminated nanoparticles using Raman spectroscopy. Analyst 2016, 141, 5417–5431. [Google Scholar] [CrossRef] [PubMed]
- Batista de Cavalho, A.L.M.; Pilling, M.; Gardner, P.; Doherty, J.; Cinque, G.; Wehbe, C.; Kelley, C.; Batista de Carvalho, L.A.E.; Marques, M.P.M. Chemoterapeutic response to cisplatin-like drugs in human breast cancer cells probed by vibrational microspectroscopy. Faraday Discuss. 2016, 187, 273–298. [Google Scholar] [CrossRef] [PubMed]
- Knief, P.; Keating, M.E.; Bonnier, F.; Byrne, H.J. Spectral pre and post processing for infrared and Raman spectroscopy of biological tissues and cells. Chem. Soc. Rev. 2016, 45, 1865–1878. [Google Scholar]
- Bonnier, F.; Byrne, H.J. Understanding the molecular information contained in principal component analysis of vibrational spectra of biological systems. Analyst 2012, 137, 322–332. [Google Scholar] [CrossRef] [PubMed]
- International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for Limiting Exposure to Time-varying Electric, Magnetic and Electromagnetic Fields (up to 300 GHz). Health Phys. 1998, 74, 494–522. [Google Scholar]
- Poljak, D. Human Exposure to Electromagnetic Fields; WIT Press: Cambridge, MA, USA, 2004; Ch. 6. [Google Scholar]
- ISO. International Standard ISO 6710 Single-Use Containers for Venous Blood Specimen Collection; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- Biagi, P.F.; Righetti, F.; Maggipinto, T.; Maggipinto, G.; Ligonzo, T.; Schiavulli, L.; LoIacono, D.; Casamassima, G.; De Carne, G.; Laterza, G.; et al. Apparatus for “in vivo” exposure at 1.8 GHz microwaves. J. Instrum. 2011, 6, T07002. [Google Scholar] [CrossRef]
- Biagi, P.F.; Castellana, L.; Maggipinto, T.; Maggipinto, G.; Ligonzo, T.; Schiavulli, L.; LoIacono, D.; Ermini, A.; Lasalvia, M.; Perna, G.; et al. A reverberation chamber to investigate the possible effects of “in vivo” exposure of rats to 1.8 ghz electromagnetic fields: A preliminary study. Prog. Electromagn. Res. 2009, 94, 133–152. [Google Scholar] [CrossRef]
- Hanson, B.A. ChemoSpec: Exploratory Chemometrics for Spectroscopy. R Package Version 4.4.97. 2017. Available online: https://CRAN.R-project.org/package=ChemoSpec (accessed on 1 March 2019).
- Wojtala, A.; Bonora, M.; Malinska, D.; Pinton, P.; Duszynski, J.; Wieckowski, M.R. Methods to monitor ROS production by fluorescence microscopy and fluorometry. Methods Enzymol. 2014, 542, 243–262. [Google Scholar] [PubMed]
- Movasaghi, Z.; Rehman, S.; Rehman, I.U. Raman Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2007, 42, 493–541. [Google Scholar] [CrossRef]
- Fore, S.; Chan, J.; Taylor, D.; Huser, T. Raman spectroscopy of individual monocytes reveals that single-beam optical trapping of mononuclear cells occurs by their nucleus. J. Opt. 2011, 13, 044021. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, Y.; Hobro, A.J.; Akira, S.; Smith, N.I. Raman spectroscopy as a tool for label-free lymphocyte cell line discrimination. Analyst 2016, 141, 3756–3764. [Google Scholar]
- Zinin, P.V.; Misra, A.; Kamemoto, L.; Yu, Q.; Hu, N.; Sharma, S.K. Visible, near-infrared and ultraviolet laser-excited Raman spectroscopy of the monocytes/macrophages (U937) cells. J. Raman Spectr. 2010, 41, 268–274. [Google Scholar] [CrossRef]
- Zothansiama; Zosangzuali, M.; Lalramdinpuii, M.; Jagetia, G.C. Impact of radiofrequency radiation on DNA damage and antioxidants in peripheral blood lymphocytes of humans residing in the vicinity of mobile phone base stations. Electromagn. Biol. Med. 2017, 36, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Blank, M.; Goodman, R. A mechanism for stimulation of biosynthesis byelectromagnetic fields: Charge transfer in DNA and base pair separation. J. Cell. Physiol. 2008, 214, 20–26. [Google Scholar] [CrossRef]
- Brauchle, E.; Thude, S.; Brucker, S.Y.; Schenke-Layland, K. Cell death stages in single apoptotic and necrotic cells monitored by Raman microspectroscopy. Sci. Rep. 2014, 4, 4698. [Google Scholar] [CrossRef]
- Menon, R.; Taylor, R.N.; Urrabaz-Garza, R.; Kechichian, T.; Syed, T.A.; Papaconstantinou, J.; Saade, G.; Boldogh, I. Reactive oxygen species (ROS) induce DNA damage and senescence in human amniochorionic membranes and amnion cells. Reprod. Sci. 2013, 20, 239a. [Google Scholar]
- Uzunboy, S.; Cekic, S.D.; Apak, R. Determination of reactive oxygen species induced dna damage using modified cupric reducing antioxidant capacity (CUPRAC) colorimetric method. FEBS J. 2016, 283, 397–398. [Google Scholar]
- Wells, P.G.; Miller-Pinsler, L.; Bhatia, S.; Drake, D.; Shapiro, A.M. Reactive oxygen species (ROS) formation, oxidative DNA damage and repair in teratogenesis. Birth Defects Res. Part A Clin. Mol. Teratol. 2015, 103, 359. [Google Scholar]
Spectral Range of Raman Features (cm−1) [26] | Present Work (cm−1) | Attribution |
---|---|---|
780–788 | 785 | (O-P-O str., n.a.) + (ring breathing, n.a.) |
810–859 | 830, 853 | (O-P-O str., n.a.) + (ring breathing, Tyr.) |
895, 932, 970 | vibrational modes of glass substrate | |
1000–1006 | 1003 | (symmetric ring breathing, Phe) |
1031–1033 | 1030 | (C-H in-plane bend., Phe) |
1053–1064 | 1060 | (C-O C-C, c.) + (C-N str., p.) + (C-C str., l.) |
1087–1096 | 1092 | ( str., n. a.) |
1123–1128 | 1125 | (C-N str., p.) + (C-O, c.) + (C-C str., l.) |
1163–1176 | 1175 | (C-H bending, Tyr) |
1220–1284 | 1260 | (Amide III, p.) |
1300–1313 | 1305 | (CH2 twist., l.) |
1335–1343 | 1340 | (CH3 def., CH2 wagg., p. and n.a.) |
1360–1379 | 1380 | (CH bend., Trp) + (ring breathing, n.a.) + (CH3 bend., l.) |
1436–1460 | 1450 | (CH2 sciss., l.) + (CH2 sciss., p.) |
1485–1490 | 1485 | (ring breathing, n.a.) |
1573–1582 | 1580 | (ring breathing, n.a.) |
1615–1618 | 1615 | (C=C, Tyr., Trp.) |
1655–1685 | 1662 | (Amide I, p.) + (C=C str., l.) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lasalvia, M.; Perna, G.; Capozzi, V. DNA-Related Modifications in a Mixture of Human Lympho-Monocyte Exposed to Radiofrequency Fields and Detected by Raman Microspectroscopy Analysis. Appl. Sci. 2019, 9, 3700. https://doi.org/10.3390/app9183700
Lasalvia M, Perna G, Capozzi V. DNA-Related Modifications in a Mixture of Human Lympho-Monocyte Exposed to Radiofrequency Fields and Detected by Raman Microspectroscopy Analysis. Applied Sciences. 2019; 9(18):3700. https://doi.org/10.3390/app9183700
Chicago/Turabian StyleLasalvia, Maria, Giuseppe Perna, and Vito Capozzi. 2019. "DNA-Related Modifications in a Mixture of Human Lympho-Monocyte Exposed to Radiofrequency Fields and Detected by Raman Microspectroscopy Analysis" Applied Sciences 9, no. 18: 3700. https://doi.org/10.3390/app9183700
APA StyleLasalvia, M., Perna, G., & Capozzi, V. (2019). DNA-Related Modifications in a Mixture of Human Lympho-Monocyte Exposed to Radiofrequency Fields and Detected by Raman Microspectroscopy Analysis. Applied Sciences, 9(18), 3700. https://doi.org/10.3390/app9183700