Understanding of Molecular Contribution of Quinhydrone/Methanol Organic Passivation for Improved Minority Carrier Lifetime on Nanostructured Silicon Surface
Abstract
1. Introduction
2. Experimental Section
2.1. Si Surface Passivation
2.2. Characterizations
3. Results and Discussion
4. Conclusions
Funding
Conflicts of Interest
References
- Tredgold, R.H. An introduction to ultrathin organic films—From langmuir-blodgett to self-assembly-Ulman, A. Nature 1991, 354, 120. [Google Scholar] [CrossRef]
- Ulman, A. Formation and Structure of Self-Assembled Monolayers. Chem. Rev. 1996, 96, 1533–1554. [Google Scholar] [CrossRef] [PubMed]
- Poirier, G.E.; Pylant, E.D. The Self-Assembly Mechanism of Alkanethiols on Au(111). Science 1996, 272, 1145–1148. [Google Scholar] [CrossRef] [PubMed]
- Royea, W.J.; Juang, A.; Lewis, N.S. Preparation of air-stable, low recombination velocity Si(111) surfaces through alkyl termination. Appl. Phys. Lett. 2000, 77, 1988–1990. [Google Scholar] [CrossRef]
- Avasthi, S.; Qi, Y.; Vertelov, G.K.; Schwartz, J.; Kahn, A.; Sturm, J.C. Silicon surface passivation by an organic overlayer of 9,10-phenanthrenequinone. Appl. Phys. Lett. 2010, 96, 222109. [Google Scholar] [CrossRef]
- Chen, J.; Ge, K.; Zhang, C.; Guo, J.; Yang, L.; Song, D.; Li, F.; Xu, Z.; Xu, Y.; Mai, Y. Vacuum-Free, Room-Temperature Organic Passivation of Silicon: Toward Very Low Recombination of Micro-/Nanotextured Surface Structures. ACS Appl. Mater. Interfaces 2018, 10, 44890–44896. [Google Scholar] [CrossRef] [PubMed]
- Fleischli, F.D.; Suárez, S.; Schaer, M.; Zuppiroli, L. Organic Thin-Film Transistors: The Passivation of the Dielectric-Pentacene Interface by Dipolar Self-Assembled Monolayers. Langmuir 2010, 26, 15044–15049. [Google Scholar] [CrossRef]
- Takato, H.; Sakata, I.; Shimokawa, R. Quinhydrone/Methanol Treatment for the Measurement of Carrier Lifetime in Silicon Substrates. Jpn. J. Appl. Phys. 2002, 41, L870–L872. [Google Scholar] [CrossRef]
- Chhabra, B.; Bowden, S.; Opila, R.L.; Honsberg, C.B. High effective minority carrier lifetime on silicon substrates using quinhydrone-methanol passivation. Appl. Phys. Lett. 2010, 96, 63502. [Google Scholar] [CrossRef]
- Cornil, J.; Calbert, J.P.; Bredas, J.L. Electronic Structure of the Pentacene Single Crystal: Relation to Transport Properties. J. Am. Chem. Soc. 2001, 123, 1250–1251. [Google Scholar] [CrossRef]
- Chhabra, B.; Suzer, S.; Opila, R.L.; Honsberg, C.B. Electrical and chemical characterization of chemically passivated silicon surfaces. In Proceedings of the 2008 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, USA, 11–16 May 2008. [Google Scholar]
- Zou, Z.; Liu, W.; Wang, D.; Liu, Z.; Jiang, E.; Wu, S.; Zhu, J.; Guo, W.; Sheng, J.; Ye, J. Electron-selective quinhydrone passivated back contact for high-efficiency silicon/organic heterojunction solar cells. Sol. Energy Mater. Sol. Cells 2018, 185, 218–225. [Google Scholar] [CrossRef]
- Patil, A.O.; Curtin, D.Y.; Paul, I.C. Solid-state formation of quinhydrones from their components. Use of solid-solid reactions to prepare compounds not accessible from solution. J. Am. Chem. Soc. 1984, 106, 348–353. [Google Scholar] [CrossRef]
- Scheffer, J.R.; Wong, Y.F.; Patil, A.O.; Curtin, D.Y.; Paul, I.C. CPMAS C-13 NMR-spectra of quinones, hydroquinones, and their complexes—Use of CMR to follow a reaction in the solid-state. J. Am. Chem. Soc. 1985, 107, 4898–4904. [Google Scholar] [CrossRef]
- Patil, A.O.; Pennington, W.T.; Desiraju, G.R.; Curtin, D.Y.; Paul, I.C. Recent Studies on the Formation and Properties of Quinhydrone Complexes. Mol. Cryst. Liq. Cryst. 1986, 134, 279–304. [Google Scholar] [CrossRef]
- Toda, F. Organic Solid State Reactions; Springer Science & Business Media: Berlin, Germany, 2005; Volume 254. [Google Scholar]
- Guin, P.S.; Das, S.; Mandal, P.C. Electrochemical Reduction of Quinones in Different Media: A Review. Int. J. Electrochem. 2011, 2011, 1–22. [Google Scholar] [CrossRef]
- Eggins, B.; Chambers, J. Proton effects in the electrochemistry of the quinone hydroquinone system in aprotic solvents. J. Electrochem. Soc. 1970, 117, 186–192. [Google Scholar] [CrossRef]
- Astudillo, P.D.; Valencia, D.P.; González-Fuentes, M.A.; Díaz-Sánchez, B.R.; Frontana, C.; González, F.J. Electrochemical and chemical formation of a low-barrier proton transfer complex between the quinone dianion and hydroquinone. Electrochim. Acta 2012, 81, 197–204. [Google Scholar] [CrossRef]
- Rykaczewski, K.; Hildreth, O.J.; Wong, C.P.; Fedorov, A.G.; Scott, J.H.J. Guided Three-Dimensional Catalyst Folding during Metal-Assisted Chemical Etching of Silicon. Nano Lett. 2011, 11, 2369–2374. [Google Scholar] [CrossRef]
- Huang, Z.; Geyer, N.; Werner, P.; de Boor, J.; Gösele, U. Metal-Assisted Chemical Etching of Silicon: A Review. Adv. Mater. 2011, 23, 285–308. [Google Scholar] [CrossRef]
- Lehn, J.-M.; Ziessel, R. Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation. Proc. Natl. Acad. Sci. USA 1982, 79, 701–704. [Google Scholar] [CrossRef]
- Kotulak, N.A.; Chen, M.; Schreiber, N.; Jones, K.; Opila, R.L. Examining the free radical bonding mechanism of benzoquinone– and hydroquinone–methanol passivation of silicon surfaces. Appl. Surf. Sci. 2015, 354, 469–474. [Google Scholar] [CrossRef]
- Har-Lavan, R.; Schreiber, R.E.; Yaffe, O.; Cahen, D. Molecular field effect passivation: Quinhydrone/methanol treatment of n-Si(100). J. Appl. Phys. 2013, 113, 84909. [Google Scholar] [CrossRef]
- Haick, H.; Hurley, P.T.; Hochbaum, A.I.; Yang, P.; Lewis, N.S. Electrical Characteristics and Chemical Stability of Non-Oxidized, Methyl-Terminated Silicon Nanowires. J. Am. Chem. Soc. 2006, 128, 8990–8991. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ho, J.C.; Yerushalmi, R.; Jacobson, Z.A.; Fan, Z.; Alley, R.L.; Javey, A. Controlled nanoscale doping of semiconductors via molecular monolayers. Nat. Mater. 2008, 7, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Atkins, P.; de Paula, J. Atkins’ Physical Chemistry; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Choi, J.-Y.; Alford, T.L.; Honsberg, C.B. Fabrication of Periodic Silicon Nanopillars in a Two-Dimensional Hexagonal Array with Enhanced Control on Structural Dimension and Period. Langmuir 2015, 31, 4018–4023. [Google Scholar] [CrossRef]
Passivation Solution | Dipping Time | τeff (μs) | SPV (meV) |
---|---|---|---|
QHY | 1 h | 2813 | 317 ± 26 |
(BQ + HQ) | 3 h | 2195 | 249 ± 8 |
BQ | 1 h | 1522 | 263 ± 13 |
3 h | 3398 | 357 ± 19 | |
HQ | 1 h | 68 | 13 ± 24 |
3 h | 91 | 20 ± 22 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.-Y. Understanding of Molecular Contribution of Quinhydrone/Methanol Organic Passivation for Improved Minority Carrier Lifetime on Nanostructured Silicon Surface. Appl. Sci. 2019, 9, 3645. https://doi.org/10.3390/app9183645
Choi J-Y. Understanding of Molecular Contribution of Quinhydrone/Methanol Organic Passivation for Improved Minority Carrier Lifetime on Nanostructured Silicon Surface. Applied Sciences. 2019; 9(18):3645. https://doi.org/10.3390/app9183645
Chicago/Turabian StyleChoi, Jea-Young. 2019. "Understanding of Molecular Contribution of Quinhydrone/Methanol Organic Passivation for Improved Minority Carrier Lifetime on Nanostructured Silicon Surface" Applied Sciences 9, no. 18: 3645. https://doi.org/10.3390/app9183645
APA StyleChoi, J.-Y. (2019). Understanding of Molecular Contribution of Quinhydrone/Methanol Organic Passivation for Improved Minority Carrier Lifetime on Nanostructured Silicon Surface. Applied Sciences, 9(18), 3645. https://doi.org/10.3390/app9183645