Physical Properties of Dairy Manure Pre- and Post-Anaerobic Digestion
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Density versus Total Solids
3.2. Density versus Volatile Solids
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ozlu, E.; Kumar, S. Response of Soil Organic Carbon, pH, Electrical Conductivity, and Water Stable Aggregates to Long-Term Annual Manure and Inorganic Fertilizer. Soil Sci. Soc. Am. J. 2018, 82, 1243. [Google Scholar] [CrossRef]
- Hadrich, J.C.; Harrigan, T.M.; Wolf, C.A. Economic comparison of liquid manure transport and land application. Appl. Eng. Agric. 2010, 26, 743–758. [Google Scholar] [CrossRef]
- Veltman, K.; Rotz, C.A.; Chase, L.; Cooper, J.; Ingraham, P.; Izaurraldefg, R.C.; Jones, C.D.; Gaillard, R.; Larson, R.A.; Ruark, M.; et al. A quantitative assessment of Beneficial Management Practices to reduce carbon and reactive nitrogen footprints and phosphorus losses on dairy farms in the US Great Lakes region. Agric. Syst. 2018, 166, 10–25. [Google Scholar] [CrossRef]
- Bentley, J.; Timms, L.L.; Tranel, L.F.; Lenth, R.A.; Lang, B.J.; Rieck-Hinz, A.; Brenneman, G.; Kohl, K.; Doran, B.E.; Breuerl, R.; et al. Economics of Dairy Manure Management in Iowa. 2016. Available online: http://lib.dr.iastate.edu/ans_air/vol662/iss1/36/ (accessed on 15 May 2019).
- United States Environmental Protection Agency (USEPA). Inventory of U.S. Greenhouse Gas. Emissions and Sinks: 1990–2015; United States Environmental Protection Agency (USEPA): Washington, DC, USA, 2017.
- Sharara, M.A.; Runge, T.; Larson, R.; Primm, J.G. Techno-economic optimization of community-based manure processing. Agric. Syst. 2018, 161, 117–123. [Google Scholar] [CrossRef]
- Hu, Y.; Scarborough, M.; Aguirre-Villegas, H.; Larson, R.A.; Noguera, D.R.; Zavala, V.M. A Supply Chain Framework for the Analysis of the Recovery of Biogas and Fatty Acids from Organic Waste. ACS Sustain. Chem. Eng. 2018, 6. [Google Scholar] [CrossRef]
- Patterson, T.; Esteves, S.; Dinsdale, R.; Guwy, A. Life cycle assessment of biogas infrastructure options on a regional scale. Bioresour. Technol. 2011, 102, 7313–7323. [Google Scholar] [CrossRef] [PubMed]
- Appels, L.; Lauwers, J.; Degrève, J.; Helsen, L.; Lievens, B.; Willems, K.; Van Impe, J.; Dewil, R. Anaerobic digestion in global bio-energy production: Potential and research challenges. Renew. Sustain. Energy Rev. 2011, 15, 4295–4301. [Google Scholar] [CrossRef]
- Aguirre-Villegas, H.A.; Larson, R.A.; Reinemann, D.J. From waste-to-worth: Energy, emissions, and nutrient implications of manure processing pathways. Biofuels Bioprod. Biorefining 2014, 8, 770–793. [Google Scholar] [CrossRef]
- Orzi, V.; Scaglia, B.; Lonati, S.; Riva, C.; Boccasile, G.; Alborali, G.L.; Adani, F. The role of biological processes in reducing both odor impact and pathogen content during mesophilic anaerobic digestion. Sci. Total Environ. 2015, 526, 116–126. [Google Scholar] [CrossRef]
- Wilkie, A.C. Anaerobic Digestion of Dairy Manure: Design and Process Considerations. In Dairy Manure Management: Treatment, Handling and Community Relations (NRAES-176); Natural Resource, Agriculture, and Engineering Service: Ithaca, NY, USA, 2005; pp. 301–312. [Google Scholar]
- Rotz, C.A.; Corson, M.S.; Chianese, D.S.; Montes, F.; Hafner, S.D.; Bonifacio, H.F.; Coiner, C. The Integrated Farm System Model-Reference Manual-Version 4.4. 2018. Available online: https://www.ars.usda.gov/ARSUserFiles/80700500/Reference%20Manual.pdf (accessed on 15 May 2019).
- Hashimoto, A.G.; Varel, V.H.; Chen, Y.R. Factors affecting methane yield and production rate. In ASAE Paper No. 79-4583; ASAE: St. Joseph, MI, USA, 1979. [Google Scholar]
- Agnew, J.M.; Leonard, J.J.; Feddes, J.; Feng, Y. A modified air pycnometer for compost air volume and density determination. Can. Biosyst. Eng. 2003, 45, 6.27–6.35. [Google Scholar]
- Thirion, F.; Chabot, F.; Andeler, D. Physical characterisation of animal manure. In Proceedings of the 8 th International Conference on Management Strategies for Organic Waste Use in Agriculture, Rennes, France, 26–29 May 1998. [Google Scholar]
- Glancey, J.; Adams, R. Applicator for sidedressing row crops with solid wastes. Trans. ASAE 1996, 39, 829–835. [Google Scholar] [CrossRef]
- Houkom, R.; Butchbaker, A.; Brusewitz, G. Effect of moisture content on thermal diffusivity of beef manure. Trans. ASAE 1974, 17, 973–977. [Google Scholar] [CrossRef]
- Chen, Y. Thermal properties of beef cattle manure. Agric. Wastes 1983, 6, 13–29. [Google Scholar] [CrossRef]
- Achkari-Begdouri, A.; Goodrich, P.R. Bulk density and thermal properties of Moroccan dairy cattle manure. Bioresour. Technol. 1992, 40, 225–233. [Google Scholar] [CrossRef]
- Landry, H.; Laguë, C.; Roberge, M. Physical and rheological properties of manure products. Appl. Eng. Agric. 2004, 20, 277–288. [Google Scholar] [CrossRef]
- Landry, H.; Laguë, C.; Roberge, M.; Alam, M. Physical and flow properties of solid and semi-solid manure as related to the design of handling and land application equipment. In Proceedings of the AIC Meeting, Saskatoon, SK, Canada, 14–17 July 2002. [Google Scholar]
- Houlbrooke, D.; Longhurst, B.; Orchiston, T.; Muirhead, R. Characterising Dairy Manures and Slurries; Hamilton: Ruakura, New Zealand, 2011. [Google Scholar]
- Sobel, A. Physical properties of animal manures associated with handling. In Proceedings of the National Symposium Animal Waste Management, East Lansing, MI, USA, 13–15 May 1966. [Google Scholar]
- U.S. Department of Agriculture (USDA). Dairy 2014, Dairy Cattle Management Practices in the United States; U.S. Department of Agriculture (USDA): Fort Collins, CO, USA, 2014.
- Blayney DPDP. The Changing Landscape of U.S. Milk Production. 2002. Available online: https://www.ers.usda.gov/webdocs/publications/47162/17864_sb978_1_.pdf?v=41056 (accessed on 15 May 2019).
- Scherer, P.A.; Vollmer, G.R.; Fakhouri, T.; Martensen, S. Development of a methanogenic process to degrade exhaustively the organic fraction of municipal ‘grey waste’ under thermophilic and hyperthermophilic conditions. Water Sci. Technol. 2000, 41, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Villegas, H.A.; Passos-Fonseca, T.H.; Reinemann, D.J.; Armentano, L.E.; Wattiaux, M.A.; Cabrera, V.E.; Norman, J.M.; Larson, R. Green cheese: Partial life cycle assessment of greenhouse gas emissions and energy intensity of integrated dairy production and bioenergy systems. J. Dairy Sci. 2015, 98, 1571–1592. [Google Scholar] [CrossRef]
- Thoma, G.; Popp, J.; Shonnard, D.; Nutter, D.; Matlock, M.; Ulrich, R.; Kellogg, W.; Kim, D.S.; Neiderman, Z.; Kemper, N.; et al. Regional analysis of greenhouse gas emissions from USA dairy farms: A cradle to farm-gate assessment of the American dairy industry circa 2008. Int. Dairy J. 2013, 31 (Suppl. 1), S29–S40. [Google Scholar] [CrossRef]
- Rotz, A.C.; Montes, F.; Chianese, D.S. The carbon footprint of dairy production systems through partial life cycle assessment. J. Dairy Sci. 2010, 93, 1266–1282. [Google Scholar] [CrossRef]
- Kramer, J. Wisconsin Agricultural Biogas Casebook. 2009. Available online: http://www.focusonenergy.com/files/Document_Management_System/Renewables/biogas09_casestudy.pdf (accessed on 15 May 2019).
- Greenberg, A.; Clesceri, L.; Eaton, A. Standard Methods for the Examination of Water and Wastewater, 18th ed.; American Public Health Association: Washington, DC, USA, 1992. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2013; ISBN 3-900051-07-0. [Google Scholar]
- CSGNetwork. Specific Gravity Of General Materials Table. Available online: http://www.csgnetwork.com/specificgravmattable.html (accessed on 5 March 2019).
- Lorimor, J.; Powers, W.; Sutton, A. Manure Characteristics. In Manure Management Systems Series; Midwest Plan Service, Iowa State University: Ames, IA, USA, 2004. [Google Scholar]
- El-Mashad, H.M.; Zhang, R. Biogas production from co-digestion of dairy manure and food waste. Bioresour. Technol. 2010, 101, 4021–4028. [Google Scholar] [CrossRef]
- Mei, R.; Narihiro, T.; Nobu, M.K.; Kuroda, K.; Liu, W.T. Evaluating digestion efficiency in full-scale anaerobic digesters by identifying active microbial populations through the lens of microbial activity. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
Manure Studied | Equation or Value Predicting Density of Manure | TS Range | Authors |
---|---|---|---|
Beef | where: ρ = bulk density (kg m−3); M = moisture content (%) | 15–75% | Houkom et al. [18] |
Beef | where: ρ = bulk density (kg m−3); TS = total solids (%) | 0–16% | Chen [19] |
Dairy, sheep, pig, poultry | + 1000 + 1000 + 1000 where: ρ = bulk density (kg m−3); TS = total solids (%) | 10–50% | Landry et al. [21] |
Dairy | where: ρ = bulk density (kg m−3); TS = total solids (%) | 16–50% | Landry et al. [22] |
Dairy | where: ρ = bulk density (ton m−3); TS = total solids (%) | 0–16% | Houlbrooke et al. [23] |
Farm ID | Substrate | Bedding Type | Digester | Pre-Digested TS (%) | Post-Digested TS (%) |
---|---|---|---|---|---|
A | Manure | Manure solids | Complete mix | 10.4 | 8.4 |
B | Manure | Sand | Plug-flow | 6.6 | 6.0 |
C | Manure | Manure solids | Plug-flow | 8.0 | 5.0 |
D | Manure | Manure solids | Plug-flow | 6.4 | 5.1 |
E | Manure | Manure solids | Plug-flow | 5.5 | 4.4 |
F | Manure and food waste | Manure solids | Complete mix | 7.1 | 4.8 |
G | Manure and chopped straw | Manure solids | Plug-flow | 7.6 | 6.2 |
H | Excreted manure | NA | NA | 15.4 | NA |
I | Excreted manure | NA | NA | 15.2 | NA |
J | Excreted manure | NA | NA | 12.8 | NA |
Farm | Pre-Digest | Post-Digest | Percentage of VS Destroyed (%) | ||||
---|---|---|---|---|---|---|---|
Slope | Intercept | Predicted VS (%) | Slope | Intercept | Predicted VS (%) | ||
A | 0.81 | −0.10 | 6.41 | 0.74 | 0.14 | 6.02 | 6.07 |
B | 0.77 | 0.03 | 6.16 | 0.75 | −0.22 | 5.77 | 6.40 |
C | 0.79 | 0.00 | 6.32 | 0.74 | 0.09 | 6.02 | 4.73 |
D | 0.82 | −0.07 | 6.51 | 0.76 | −0.15 | 5.92 | 9.12 |
E | 0.82 | −0.10 | 6.46 | 0.78 | 0.00 | 6.24 | 3.51 |
F | 0.87 | −0.05 | 6.95 | 0.71 | −0.05 | 5.60 | 19.43 |
G | 0.80 | −0.02 | 6.35 | 0.75 | 0.07 | 6.05 | 4.75 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Aguirre-Villegas, H.A.; Larson, R.A.; Alkan-Ozkaynak, A. Physical Properties of Dairy Manure Pre- and Post-Anaerobic Digestion. Appl. Sci. 2019, 9, 2703. https://doi.org/10.3390/app9132703
Wang H, Aguirre-Villegas HA, Larson RA, Alkan-Ozkaynak A. Physical Properties of Dairy Manure Pre- and Post-Anaerobic Digestion. Applied Sciences. 2019; 9(13):2703. https://doi.org/10.3390/app9132703
Chicago/Turabian StyleWang, Hui, Horacio A. Aguirre-Villegas, Rebecca A. Larson, and Asli Alkan-Ozkaynak. 2019. "Physical Properties of Dairy Manure Pre- and Post-Anaerobic Digestion" Applied Sciences 9, no. 13: 2703. https://doi.org/10.3390/app9132703
APA StyleWang, H., Aguirre-Villegas, H. A., Larson, R. A., & Alkan-Ozkaynak, A. (2019). Physical Properties of Dairy Manure Pre- and Post-Anaerobic Digestion. Applied Sciences, 9(13), 2703. https://doi.org/10.3390/app9132703