Graphene Oxide/Polystyrene Bilayer Gate Dielectrics for Low-Voltage Organic Field-Effect Transistors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Film Characterization
2.2. Device Fabrication
3. Results
3.1. Film Characterization
3.2. Molecular Ordering and Crystallinity
3.3. Device Characterization
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Heremans, P.; Tripathi, A.K.; Meux, A.J.; Smits, E.C.P.; Hou, B.; Pourtois, G.; Gelinck, G.H. Mechanical and Electronic Properties of Thin-Film Transistors on Plastic, and Their Integration in Flexible Electronic Applications. Adv. Mater. 2016, 28, 4266–4282. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; Nam, S.; Im, K.; Hur, J.; Cha, S.N.; Kim, J.; Son, H.B.; Suh, H.; Loth, M.A.; Anthony, J.E.; et al. Highly Crystalline Soluble Acene Crystal Arrays for Organic Transistors: Mechanism of Crystal Growth During Dip-Coating. Adv. Funct. Mater. 2012, 22, 1005–1014. [Google Scholar] [CrossRef]
- Kang, I.; An, T.K.; Hong, J.A.; Yun, H.J.; Kim, R.; Chung, D.S.; Park, C.E.; Kim, Y.H.; Kwon, S.K. Effect of Selenophene in a DPP Copolymer Incorporating a Vinyl Group for High-Performance Organic Field-Effect Transistors. Adv. Mater. 2013, 25, 524–528. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Zhang, Y.; Wu, Q.; Xu, R.; Nan, H.; Liu, J.; Yao, J.; Wang, Z.; Yuan, S.; Li, Y.; et al. Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors. Nat. Commun. 2014, 5, 5162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, S.; Jang, J.; Park, J.J.; Kim, S.W.; Park, C.E.; Kim, J.M. High-Performance Low-Voltage Organic Field-Effect Transistors. ACS Appl. Mater. Interfaces 2012, 4, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Noh, Y.H.; Park, Y.; Seo, S.M.; Lee, H.H. Root cause of hysteresis in organic thin film transistor with polymer dielectric. Org. Electron. 2006, 7, 271–275. [Google Scholar] [CrossRef]
- Subbarao, N.V.V.; Gedda, M.; Iyer, P.K.; Goswami, D.K. Enhanced environmental stability induced by effective polarization of a polar dielectric layer in a trilayer dielectric system of organic field-effect transistors: A quantitative study. ACS Appl. Mater. Interfaces 2015, 7, 1915–1924. [Google Scholar] [CrossRef]
- Nketia-Yawson, B.; Lee, H.S.; Seo, D.; Yoon, Y.; Park, W.T.; Kwak, K.; Son, H.J.; Kim, B.S.; Noh, Y.Y. A Highly Planar Fluorinated Benzothiadiazole-Based Conjugated Polymer for High-Performance Organic Thin-Film Transistors. Adv. Mater. 2015, 27, 3045–3052. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; Shin, K.; Park, C.E. The Effect of Gate-Dielectric Surface Energy on Pentacene Morphology and Organic Field-Effect Transistor Characteristics. Adv. Funct. Mater. 2005, 15, 1806–1814. [Google Scholar] [CrossRef]
- Jang, J.; Kim, S.H.; Hwang, J.; Nam, S.; Yang, C.; Chung, D.S.; Park, C.E. Photopatternable ultrathin gate dielectrics for low-voltage-operating organic circuits. Appl. Phys. Lett. 2009, 95, 073302. [Google Scholar] [CrossRef] [Green Version]
- Nath, A.; Kong, B.D.; Koehler, A.D.; Anderson, V.R.; Wheeler, V.D.; Daniels, K.M.; Boyd, A.K.; Cleveland, E.R.; Myers-Ward, R.L.; Gaskill, D.K.; et al. Universal conformal ultrathin dielectrics on epitaxial graphene enabled by a graphene oxide seed layer. Appl. Phys. Lett. 2017, 110, 013106. [Google Scholar] [CrossRef]
- Jang, J.; Park, J.; Nam, S.; Anthony, J.E.; Kim, Y.; Kim, K.S.; Kim, K.S.; Hong, B.H.; Park, C.E. Self-organizing properties of triethylsilylethynyl-anthradithiophene on monolayer graphene electrodes in solution-processed transistors. Nanoscale 2013, 5, 11094–11101. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.I.; Huang, C.H.; Liao, J.H.; Zhang, W.; Li, L.J.; Lai, C.S.; Su, C.Y. Fluorinated Graphene as High Performance Dielectric Materials and the Applications for Graphene Nanoelectronics. Sci. Rep. 2014, 4, 5893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, K.; Nam, S.; Lee, Y.; Lee, M.; Jang, J.; Kim, S.J.; Jeong, Y.J.; Kim, H.; Bae, S.; Yoo, J.B.; et al. Reduced Water Vapor Transmission Rate of Graphene Gas Barrier Films for Flexible Organic Field-Effect Transistors. ACS Nano 2015, 9, 5818–5824. [Google Scholar] [CrossRef] [PubMed]
- Han, S.T.; Zhou, Y.; Wang, C.; He, L.; Zhang, W.; Roy, V.A.L. Layer-by-Layer-Assembled Reduced Graphene Oxide/Gold Nanoparticle Hybrid Double-Floating-Gate Structure for Low-Voltage Flexible Flash Memory. Adv. Mater. 2013, 25, 872–877. [Google Scholar] [CrossRef] [PubMed]
- Nam, S.; Jeong, Y.J.; Park, C.E.; Jang, J. Enhanced gas barrier properties of graphene-TiO2 nanocomposites on plastic substrates assisted by UV photoreduction of graphene oxide. Org. Electron. 2017, 48, 323–329. [Google Scholar] [CrossRef]
- Kim, Y.; An, T.K.; Kim, J.; Hwang, J.; Park, S.; Nam, S.; Cha, H.; Park, W.J.; Baik, J.M.; Park, C.E. A composite of a graphene oxide derivative as a novel sensing layer in an organic field-effect transistor. J. Mater. Chem. C 2014, 2, 4539. [Google Scholar] [CrossRef]
- Eda, G.; Nathan, A.; Wöbkenberg, P.; Colleaux, F.; Ghaffarzadeh, K.; Anthopoulos, T.D.; Chhowalla, M. Graphene oxide gate dielectric for graphene-based monolithic field effect transistors. Appl. Phys. Lett. 2013, 102, 133108. [Google Scholar] [CrossRef]
- Kumar, K.S.; Pittala, S.; Sanyadanam, S.; Paik, P. A new single/few-layered graphene oxide with a high dielectric constant of 106: Contribution of defects and functional groups. RSC Adv. 2015, 5, 14768. [Google Scholar] [CrossRef]
- Fu, W.Y.; Liu, L.; Wang, W.L.; Wu, M.H.; Xu, Z.; Bai, X.D.; Wang, E.G. Carbon nanotube transistors with graphene oxide films as gate dielectrics. Sci. China Phys. Mech. Astron. 2010, 53, 828–833. [Google Scholar] [CrossRef]
- Chua, L.L.; Zaumseil, J.; Chang, J.F.; Ou, E.C.-W.; Ho, P.K.-H.; Sirringhaus, H.; Friend, R.H. General observation of n-type field-effect behaviour in organic semiconductors. Nature 2005, 434, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; Nam, S.; Yun, W.M.; Yang, C.; Hwang, J.; An, T.K.; Chung, D.S.; Park, C.E. High Tg cyclic olefin copolymer/Al2O3 bilayer gate dielectrics for flexible organic complementary circuits with low-voltage and air-stable operation. J. Mater. Chem. 2011, 21, 12542. [Google Scholar] [CrossRef]
- Johra, F.T.; Lee, J.W.; Jung, W.G. Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 2014, 20, 2883–2887. [Google Scholar] [CrossRef]
- Nam, S.; Jeon, H.; Kim, S.H.; Jang, J.; Yang, C.; Park, C.E. An inkjet-printed passivation layer based on a photocrosslinkable polymer for long-term stable pentacene field-effect transistors. Org. Electron. 2009, 10, 67–72. [Google Scholar] [CrossRef]
- Kim, S.H.; Jang, M.; Yang, H.; Park, C.E. Effect of pentacene–dielectric affinity on pentacene thin film growth morphology in organic field-effect transistors. J. Mater. Chem. 2010, 20, 5612–5620. [Google Scholar] [CrossRef] [Green Version]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, S.; Jeong, Y.J.; Kim, J.Y.; Yang, H.; Jang, J. Graphene Oxide/Polystyrene Bilayer Gate Dielectrics for Low-Voltage Organic Field-Effect Transistors. Appl. Sci. 2019, 9, 2. https://doi.org/10.3390/app9010002
Nam S, Jeong YJ, Kim JY, Yang H, Jang J. Graphene Oxide/Polystyrene Bilayer Gate Dielectrics for Low-Voltage Organic Field-Effect Transistors. Applied Sciences. 2019; 9(1):2. https://doi.org/10.3390/app9010002
Chicago/Turabian StyleNam, Sooji, Yong Jin Jeong, Joo Yeon Kim, Hansol Yang, and Jaeyoung Jang. 2019. "Graphene Oxide/Polystyrene Bilayer Gate Dielectrics for Low-Voltage Organic Field-Effect Transistors" Applied Sciences 9, no. 1: 2. https://doi.org/10.3390/app9010002
APA StyleNam, S., Jeong, Y. J., Kim, J. Y., Yang, H., & Jang, J. (2019). Graphene Oxide/Polystyrene Bilayer Gate Dielectrics for Low-Voltage Organic Field-Effect Transistors. Applied Sciences, 9(1), 2. https://doi.org/10.3390/app9010002