Blue Electrofluorescence Properties of Furan–Silole Ladder Pi-Conjugated Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterization
2.2. Device Fabrication and Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Acknowledgments
Conflicts of Interest
References
- Roncali, J. Synthetic principles for bandgap control in linear π-conjugated systems. Chem. Rev. 1997, 97, 173–206. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Ma, C.-Q.; Bauerle, P. Functional oligothiophenes: Molecular design for multidimensional nanoarchitectures and their applications. Chem. Rev. 2009, 109, 1141–1276. [Google Scholar] [CrossRef] [PubMed]
- Hissler, M.; Dyer, P.W.; Réau, R. Linear organic π-conjugated systems featuring the heavy group 14 and 15 elements. Coord. Chem. Rev. 2003, 244, 1–44. [Google Scholar] [CrossRef]
- Entwistle, C.D.; Marder, T.B. Boron chemistry lights the way: Optical properties of molecular and polymeric systems. Angew. Chem. Int. Ed. 2002, 41, 2927–2931. [Google Scholar] [CrossRef]
- Dou, C.; Saito, S.; Matsuo, K.; Hisaki, I.; Yamaguchi, S. A Boron–Containing PAH as a Substructure of Boron-Doped Graphene. Angew. Chem. Int. Ed. 2012, 51, 12206–12210. [Google Scholar] [CrossRef] [PubMed]
- Diaz, A.F.; Kanazawa, K.K.; Gardini, G.P. Electrochemical polymerization of pyrrole. J. Chem. Soc. Chem. Commun. 1979, 14, 635–636. [Google Scholar] [CrossRef]
- Sun, M.; Wang, L.; Yang, W. Pyrrole-based narrow-band-gap copolymers for red light-emitting diodes and bulk heterojunction photovoltaic cells. J. Appl. Polym. Sci. 2010, 118, 1462–1468. [Google Scholar] [CrossRef]
- Gidron, O.; Diskin-Posner, Y.; Bendikov, M. α-Oligofurans. J. Am. Chem. Soc. 2010, 132, 2148–2150. [Google Scholar] [CrossRef] [PubMed]
- Woo, C.H.; Beaujuge, P.M.; Holcombe, T.W.; Lee, O.P.; Fréchet, J.M.J. Incorporation of furan into low band-gap polymers for efficient solar cells. J. Am. Chem. Soc. 2010, 132, 15547–15549. [Google Scholar] [CrossRef] [PubMed]
- Zhan, X.; Barlow, S.; Marder, S.R. Substituent effects on the electronic structure of siloles. Chem. Commun. 2009, 15, 1948–1955. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, T.; Réau, R. Organophosphorus π-conjugated materials. Chem. Rev. 2006, 106, 4681–4727. [Google Scholar] [CrossRef] [PubMed]
- Bouit, P.-A.; Escande, A.; Szűcs, R.; Szieberth, D.; Lescop, C.; Nyulászi, L.; Hissler, M.; Réau, R. Dibenzophosphapentaphenes: Exploiting P chemistry for gap fine-tuning and coordination-driven assembly of planar polycyclic aromatic hydrocarbons. J. Am. Chem. Soc. 2012, 134, 6524–6527. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Delaunay, W.; Yu, L.; Joly, D.; Wang, Z.; Li, J.; Wang, Z.; Lescop, C.; Tondelier, D.; Geffroy, B.; et al. 2, 2′-Biphospholes: Building Blocks for Tuning the HOMO–LUMO Gap of π-Systems Using Covalent Bonding and Metal Coordination. Angew. Chem. Int. Ed. 2012, 51, 214–217. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Pascal, S.; Wang, Z.; Bouit, P.-A.; Wang, Z.; Zhang, Y.; Tondelier, D.; Geffroy, B.; Réau, R.; Mathey, F.; et al. 1, 2-Dihydrophosphete: A Platform for the Molecular Engineering of Electroluminescent Phosphorus Materials for Light-Emitting Devices. Chem. Eur. J. 2014, 20, 9784–9793. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Kan, W.H.; Henderson, M.A.; Bomben, P.G.; Berlinguette, C.P.; Thangadurai, V.; Baumgartner, T. External-stimuli responsive photophysics and liquid crystal properties of self-assembled “phosphole-lipids”. J. Am. Chem. Soc. 2011, 133, 17014–17026. [Google Scholar] [CrossRef] [PubMed]
- Matano, Y.; Saito, A.; Fukushima, T.; Tokudome, Y.; Suzuki, F.; Sakamaki, D.; Kaji, H.; Ito, A.; Tanaka, K.; Imahori, H. Fusion of Phosphole and 1, 1′-Biacenaphthene: Phosphorus (V)-Containing Extended π-Systems with High Electron Affinity and Electron Mobility. Angew. Chem. Int. Ed. 2011, 50, 8016–8020. [Google Scholar] [CrossRef] [PubMed]
- Joly, D.; Bouit, P.-A.; Hissler, M. Organophosphorus derivatives for electronic devices. J. Mater. Chem. C 2016, 4, 3686–3698. [Google Scholar] [CrossRef]
- Duffy, M.P.; Delaunay, W.; Bouit, P.-A.; Hissler, M. π-Conjugated phospholes and their incorporation into devices: Components with a great deal of potential. Chem. Soc. Rev. 2016, 45, 5296–5310. [Google Scholar] [CrossRef] [PubMed]
- Szűcs, R.; Bouit, P.-A.; Nyulászi, L.; Hissler, M. P-containing Polycyclic Aromatic Hydrocarbons. Chem. Phys. Chem. 2017, 18, 2618–2630. [Google Scholar] [CrossRef] [PubMed]
- Tamao, K.; Uchida, M.; Izumizawa, T.; Furukawa, K.; Yamaguchi, S. Silole derivatives as efficient electron transporting materials. J. Am. Chem. Soc. 1996, 118, 11974–11975. [Google Scholar] [CrossRef]
- Chen, H.Y.; Lam, W.Y.; Luo, J.D.; Ho, Y.L.; Tang, B.Z.; Zhu, D.B.; Wong, M.; Kwok, H.S. Highly efficient organic light-emitting diodes with a silole-based compound. Appl. Phys. Lett. 2002, 81, 574–576. [Google Scholar] [CrossRef]
- Geramita, K.; McBee, J.; Shen, Y.; Radu, N.; Tilley, T.D. Synthesis and characterization of perfluoroaryl-substituted siloles and thiophenes: A series of electron-deficient blue light emitting materials. Chem. Mater. 2006, 18, 3261–3269. [Google Scholar] [CrossRef]
- Lee, J.H.; Yuan, Y.Y.; Kang, Y.J.; Jia, W.L.; Lu, Z.H.; Wang, S.N. 2, 5-Functionalized Spiro-Bisiloles as Highly Efficient Yellow-Light Emitters in Electroluminescent Devices. Adv. Funct. Mater. 2006, 16, 681–686. [Google Scholar] [CrossRef]
- Luo, J.; Xie, Z.; Lam, J.W.Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H.S.; Zhan, X.; Liu, Y.; Zhu, D.; et al. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole. Chem. Commun. 2001, 1740–1741. [Google Scholar] [CrossRef]
- Hong, Y.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission: Phenomenon, mechanism and applications. Chem. Commun. 2009, 4332–4353. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Li, K.; Liu, B.; Tang, B.Z. Bioprobes based on AIE fluorogens. Acc. Chem. Res. 2013, 46, 2441–2453. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Hong, Y.; Lam, J.W.Y.; Qin, A.; Tang, Y.; Tang, B.Z. Aggregation-induced emission: The whole is more brilliant than the parts. Adv. Mater. 2014, 26, 5429–5479. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, S.; Xu, C.; Tamao, K. Bis-silicon-bridged stilbene homologues synthesized by new intramolecular reductive double cyclization. J. Am. Chem. Soc. 2003, 125, 13662–13663. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Wakamiya, A.; Yamaguchi, S. Ladder Oligo(p-phenylenevinylene)s with Silicon and Carbon Bridges. J. Am. Chem. Soc. 2005, 127, 1638–1639. [Google Scholar] [CrossRef] [PubMed]
- Mouri, K.; Wakamiya, A.; Yamada, H.; Kajiwara, T.; Yamaguchi, S. Ladder distyrylbenzenes with silicon and chalcogen bridges: Synthesis, structures, and properties. Org. Lett. 2006, 9, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Fukazawa, A.; Yamaguchi, S. Ladder π-Conjugated Materials Containing Main-Group Elements. Chem. Asian J. 2009, 4, 1386–1400. [Google Scholar] [CrossRef] [PubMed]
- Ohshita, J.; Lee, K.-H.; Kimura, K.; Kunai, A. Synthesis of siloles condensed with benzothiophene and indole rings. Organometallics 2004, 23, 5622–5625. [Google Scholar] [CrossRef]
- Wan, J.-H.; Fang, W.-F.; Li, Z.-F.; Xiao, X.-Q.; Xu, Z.; Deng, Y.; Zhang, L.-H.; Jiang, J.-X.; Qiu, H.-Y.; Wu, L.-B.; et al. Novel Ladder π-Conjugated Materials—Sila-Pentathienoacenes: Synthesis, Structure, and Electronic Properties. Chem. Asian J. 2010, 5, 2290–2296. [Google Scholar] [CrossRef] [PubMed]
- Ureshino, T.; Yoshida, T.; Kuninobu, Y.; Takai, K. Rhodium-catalyzed synthesis of silafluorene derivatives via cleavage of silicon−hydrogen and carbon−hydrogen bonds. J. Am. Chem. Soc. 2010, 132, 14324–14326. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.Z.; Wang, Z.H.; Gan, Z.J.; Xi, Q.Z.; Duan, Z.; Mathey, F. Versatile Synthesis of Phospholides from Open-Chain Precursors. Application to Annelated Pyrrole–and Silole–Phosphole Rings. Org. Lett. 2015, 17, 1732–1734. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yang, S.; Li, J.; He, G.F.; Duan, Z.; Mathey, F. Phosphorus and silicon-bridged stilbenes: Synthesis and optoelectronic properties. Dalton Trans. 2016, 45, 18308–18312. [Google Scholar] [CrossRef] [PubMed]
- Oyama, H.; Nakano, K.; Harada, T.; Kuroda, R.; Naito, M.; Nobusawa, K.; Nozaki, K. Facile synthetic route to highly luminescent sil [7] helicene. Org. Lett. 2013, 15, 2104–2107. [Google Scholar] [CrossRef] [PubMed]
- Shibata, T.; Uchiyama, T.; Yoshinami, Y.; Takayasu, S.; Tsuchikama, K.; Endo, K. Highly enantioselective synthesis of silahelicenes using Ir-catalyzed [2+2+2] cycloaddition. Chem. Commun. 2012, 48, 1311–1313. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, S.; Kobayashi, J.; Kawashima, T. Development of a Sila-Friedel− Crafts Reaction and Its Application to the Synthesis of Dibenzosilole Derivatives. J. Am. Chem. Soc. 2009, 131, 14192–14193. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Delaunay, W.; Li, J.; Wang, Z.; Bouit, P.-A.; Tondelier, D.; Geffroy, B.; Mathey, F.; Duan, Z.; Réau, R.; et al. Benzofuran-fused phosphole: Synthesis, electronic, and electroluminescence properties. Org. Lett. 2013, 15, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Hao, W.; Ma, W.; Zang, Z.; Zhang, H.; Liu, X.; Zou, S.; Zhang, H.; Liu, W.; Gao, J. Easily-soluble heteroacene bis (benzothieno) silole derivatives for sensing of nitro explosives. New. J. Chem. 2014, 38, 5754–5760. [Google Scholar] [CrossRef]
- Mehta, S.; Larock, S. Iodine/palladium approaches to the synthesis of polyheterocyclic compounds. J. Org. Chem. 2010, 75, 1652–1658. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.-B.; Adachi, Y.; Ooyama, Y.; Ohshita, J. Synthesis and properties of benzofuran-fused silole and germole derivatives: Reversible dimerization and crystal structures of monomers and dimers. Organometallics 2016, 35, 2327–2332. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Farinola, G.M.; Ragni, R. Electroluminescent materials for white organic light emitting diodes. Chem. Soc. Rev. 2011, 40, 3467–3482. [Google Scholar] [CrossRef] [PubMed]
Compound | λabs a [nm] | ε [L·mol−1·cm−1] | Eopt b eV | λem c [nm] | ΦF d | E°ox e [V] | Epc f [V] | Td10 g [°C] |
---|---|---|---|---|---|---|---|---|
2 | 360 | 19,000 | 3.12 | 429 | 0.75 | +0.72 | −2.73 | 203 |
4 | 368 | 19,000 | 3.03 | 441 | 0.86 | +0.79 | −2.63 | 290 |
5 | 368 | 17,000 | 3.03 | 440 | 0.68 | +0.78 | −2.68 | 318 |
6 | 369 | 18,000 | 3.03 | 443 | 0.76 | +0.79 | −2.66 | 385 |
Device | Emitter | Doping Rate (%) | Von a (V) | EQE b (%) | CE b (cd/A) | PE b (Lm/W) | CIE Color Coordinates | Maximal Brightness (cd/m2) (@ mA/cm2) |
---|---|---|---|---|---|---|---|---|
A | 4 | pure | 3.8 | 1.7 | 2.4 | 1.1 | 0.16; 0.18 | 1040 (110) |
B | 4 | 1 | 3.5 | 2.5 | 2.7 | 1.4 | 0.15; 0.15 | 1060 (110) |
C | 4 | 4.5 | 3.5 | 2.4 | 2.8 | 1.4 | 0.15; 0.15 | 1580 (130) |
D | 6 | pure | 4.3 | 0.5 | 0.9 | 0.3 | 0.20; 0.27 | 270 (90) |
E | 6 | 1 | 3.9 | 1.3 | 1.3 | 0.6 | 0.18; 0.17 | 740 (140) |
F | 6 | 4 | 3.4 | 1.2 | 1.5 | 0.7 | 0.17; 0.19 | 590 (120) |
G | 6 | 6 | 3.6 | 1.1 | 1.5 | 0.7 | 0.18; 0.19 | 630 (150) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Denis, M.; Bouit, P.-A.; Zhang, Y.; Wei, X.; Tondelier, D.; Geffroy, B.; Duan, Z.; Hissler, M. Blue Electrofluorescence Properties of Furan–Silole Ladder Pi-Conjugated Systems. Appl. Sci. 2018, 8, 812. https://doi.org/10.3390/app8050812
Chen H, Denis M, Bouit P-A, Zhang Y, Wei X, Tondelier D, Geffroy B, Duan Z, Hissler M. Blue Electrofluorescence Properties of Furan–Silole Ladder Pi-Conjugated Systems. Applied Sciences. 2018; 8(5):812. https://doi.org/10.3390/app8050812
Chicago/Turabian StyleChen, Hui, Mathieu Denis, Pierre-Antoine Bouit, Yinlong Zhang, Xinda Wei, Denis Tondelier, Bernard Geffroy, Zheng Duan, and Muriel Hissler. 2018. "Blue Electrofluorescence Properties of Furan–Silole Ladder Pi-Conjugated Systems" Applied Sciences 8, no. 5: 812. https://doi.org/10.3390/app8050812
APA StyleChen, H., Denis, M., Bouit, P.-A., Zhang, Y., Wei, X., Tondelier, D., Geffroy, B., Duan, Z., & Hissler, M. (2018). Blue Electrofluorescence Properties of Furan–Silole Ladder Pi-Conjugated Systems. Applied Sciences, 8(5), 812. https://doi.org/10.3390/app8050812