Development of Shallow-Depth Soil Temperature Estimation Model Based on Thermal Response in Permafrost Area
Abstract
1. Introduction
2. Materials and Methods
2.1. Thermal Response
2.2. Study Area
3. Results of the Field Measurements of Soil Temperature
4. A Soil Temperature Model Based on Thermal Response
4.1. Thermal Response Transfer Process
4.2. Accumulation of Soil Temperature Characteristics Using CST*ud,m
4.3. A Soil Temperature Dynamic Model Using CST*ud,m
4.4. Determination of the Fitting Parameters of A and Z to Evaluate CRCSTi,mmax
5. Verification and Comparison of the Developed Lower-Depth Soil Temperature Evaluation Model
5.1. Procedure for the Evaluation of Soil Temperature
- Calculate the thermal response of CST*ud,m using Equation (3) and the average daily soil temperature data.
- Compute the expected thermal response RCST*ud,m at the uppermost level for the rest of the measurement period using Equation (4).
- Determine the fitting parameters A and Z using Equations (11) and (12) and the maximum cumulative soil temperature CRCSTi,mmax for the entire temperature measurement duration using Equation (13).
- Determine the soil temperature Ti,m–Tref at the depth of interest based on the calculated CRCST*i,m and ΔCRCST*i,m using Equations (7) and (8), respectively.
5.2. Experimental Verification of the Developed Lower-Depth Soil Temperature Evaulation Model
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Harrison, W.D. Permafrost response to surface temperature change and its implications for the 40,000-year surface temperature history at Prudhoe Bay, Alaska. J. Geophys. Res. 1991, 96, 683. [Google Scholar] [CrossRef]
- Johannessen, O.M. Satellite Evidence for an Arctic Sea Ice Cover in Transformation. Science 1999, 286, 1937–1939. [Google Scholar] [CrossRef] [PubMed]
- Zimov, S.A.; Schuur, E.A.G.; Chapin, F.S. Permafrost and the Global Carbon Budget. Science 2006, 312, 1612–1613. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, U.S.; Walker, D.A.; Raynolds, M.K.; Comiso, J.C.; Epstein, H.E.; Jia, G.; Webber, P.J. Circumpolar Arctic Tundra Vegetation Change Is Linked to Sea Ice Decline. Earth Interact. 2010, 14, 1–20. [Google Scholar] [CrossRef]
- Screen, J.A.; Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 2010, 464, 1334–1337. [Google Scholar] [CrossRef] [PubMed]
- Shim, T.; Jeong, J.; Kim, B.; Kim, S.; Kim, H. Development of Dynamical Seasonal Prediction System for Northern Winter using the Cryospheric Condition of Late Autumn. Atmosphere 2013, 23, 73–83. [Google Scholar] [CrossRef]
- Shim, T.; Jeong, J.; Ok, J.; Jeong, H.; Kim, B. Development and Assessment of Dynamical Seasonal Forecast System Using the Cryospheric Variables. Atmosphere 2015, 25, 155–167. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Reisinger, A. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2007. [Google Scholar]
- Roffey, R. Climate Change and Natural Disasters: A Challenge for Russian Policy-Makers; FOI-R-3874; FOI: Stockholm, Sweden, 2014; ISSN 16501942. [Google Scholar]
- Harris, C.; Davies, M.C.; Etzelmüller, B. The assessment of potential geotechnical hazards associated with mountain permafrost in a warming global climate. Permafr. Periglac. Process. 2001, 12, 145–156. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Meyer, L.A. Climate change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2014. [Google Scholar]
- Qian, B.; Gregorich, E.G.; Gameda, S.; Hopkins, D.W.; Wang, X.L. Observed soil temperature trends associated with climate change in Canada. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Lund, M.; Hansen, B.U.; Pedersen, S.H.; Stiegler, C.; Tamstorf, M.P. Characteristics of summer-time energy exchange in a high Arctic tundra heath 2000–2010. Tellus B: Chem. Phys. Meteorol 2014, 66, 21631. [Google Scholar] [CrossRef]
- Nezhad Gashti, E.H. Thermo-Mechanical Behaviour of Ground-Source Thermo-Active Structures. Ph.D. Thesis, University of Oulu, Oulu, Finland, 2016. [Google Scholar]
- Kurylyk, B.L.; Hayashi, M.; Quinton, W.L.; Mckenzie, J.M.; Voss, C.I. Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow. Water Resour. Res. 2016, 52, 1286–1305. [Google Scholar] [CrossRef]
- Stoller, E.W.; Wax, L.M. Periodicity of Germination and Emergence of Some Annual Weeds. Weed Sci. 1973, 21, 574–580. [Google Scholar]
- Parton, W.J. Predicting soil temperatures in a shortgrass steppe. Soil Sci. 1984, 138, 93–101. [Google Scholar] [CrossRef]
- Koerselman, W.; Kerkhoven, M.B.; Verhoeven, J.T. Release of inorganic N, P and K in peat soils; effect of temperature, water chemistry and water level. Biogeochemistry 1993, 20, 63–81. [Google Scholar] [CrossRef]
- Giardina, C.P.; Ryan, M.G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 2000, 404, 858–861. [Google Scholar] [CrossRef] [PubMed]
- Jackson, T.; Mansfield, K.; Saafi, M.; Colman, T.; Romine, P. Measuring soil temperature and moisture using wireless MEMS sensors. Measurement 2008, 41, 381–390. [Google Scholar] [CrossRef]
- Fröb, K. Measuring and Modeling of Soil Thermal Properties and Ground Heat Flux at Two Different Sites at Lena Delta. Ph.D. Thesis, University of Leipzig, Leipzig, Germany, 2011. [Google Scholar]
- Holmes, T.R.; Owe, M.; Jeu, R.A.; Kooi, H. Estimating the soil temperature profile from a single depth observation: A simple empirical heatflow solution. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Zhang, T.; Barry, R.G.; Gilichinsky, D. An amplified signal of climatic change in soil temperatures during the last century at Irkutsk, Russia. Clim. Chang. 2001, 49, 41–76. [Google Scholar] [CrossRef]
- Niu, G.Y.; Sun, S.F.; Hong, Z.X. Numerical simulation on water and heat transport in the desert soil and atmospheric boundary layer. Acta Meteorol. Sin. 1997, 55, 398–405. [Google Scholar]
- Dakshanamurthy, V.; Fredlund, D.G. A mathematical model for predicting moisture flow in an unsaturated soil under hydraulic and temperature gradients. Water Resour. Res. 1981, 17, 714–722. [Google Scholar] [CrossRef]
- Mahrer, Y.; Katan, J. Spatial Soil Temperature Regime Under Transparent Polyethylene Mulch. Soil Sci. 1981, 131, 82–87. [Google Scholar] [CrossRef]
- Tabbagh, A.; Bendjoudi, H.; Benderitter, Y. Determination of recharge in unsaturated soils using temperature monitoring. Water Resour. Res. 1999, 35, 2439–2446. [Google Scholar] [CrossRef]
- Rajver, D.; Šafanda, J.; Shen, P. The climate record inverted from borehole temperatures in Slovenia. Tectonophysics 1998, 291, 263–276. [Google Scholar] [CrossRef]
- Pollack, H.N.; Demezhko, D.Y.; Duchkov, A.D.; Golovanova, I.V.; Huang, S.; Shchapov, V.A.; Smerdon, J.E. Surface temperature trends in Russia over the past five centuries reconstructed from borehole temperatures. J. Geophys. Res. Solid Earth 2003, 108. [Google Scholar] [CrossRef]
- Huang, S.; Pollack, H.N.; Shen, P. Temperature trends over the past five centuries reconstructed from borehole temperatures. Nature 2000, 403, 756–758. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Feng, S. A Daily Soil Temperature Dataset and Soil Temperature Climatology of the Contiguous United States. J. Appl. Meteorol. 2003, 42, 1139–1156. [Google Scholar] [CrossRef]
- Bendjoudi, H.; Cheviron, B.; Guérin, R.; Tabbagh, A. Determination of upward/downward groundwater fluxes using transient variations of soil profile temperature: Test of the method with Voyons (Aube, France) experimental data. Hydrol. Process. 2005, 19, 3735–3745. [Google Scholar] [CrossRef]
- Gao, Z. Determination of soil heat flux in a Tibetan short-grass prairie. Bound. Layer Meteorol. 2005, 114, 165–178. [Google Scholar] [CrossRef]
- Gao, Z.; Fan, X.; Bian, L. An analytical solution to one-dimensional thermal conduction-convection in soil. Soil Sci. 2003, 168, 99–107. [Google Scholar] [CrossRef]
- Gao, Z.; Lenschow, D.H.; Horton, R.; Zhou, M.; Wang, L.; Wen, J. Comparison of two soil temperature algorithms for a bare ground site on the Loess Plateau in China. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Liang, L.L.; Riveros-Iregui, D.A.; Emanuel, R.E.; Mcglynn, B.L. A simple framework to estimate distributed soil temperature from discrete air temperature measurements in data-scarce regions. J. Geophys. Res. Atmos. 2014, 119, 407–417. [Google Scholar] [CrossRef]
- Lei, S.; Daniels, J.L.; Bian, Z.; Wainaina, N. Improved soil temperature modeling. Environ. Earth Sci. 2010, 62, 1123–1130. [Google Scholar] [CrossRef]
- Sayde, C.; Buelga, J.B.; Rodriguez-Sinobas, L.; Khoury, L.E.; English, M.; Giesen, N.V.; Selker, J.S. Mapping variability of soil water content and flux across 1–1000 m scales using the Actively Heated Fiber Optic method. Water Resour. Res. 2014, 50, 7302–7317. [Google Scholar] [CrossRef]
- Benítez-Buelga, J.; Rodríguez-Sinobas, L.; Calvo, R.S.; Gil-Rodríguez, M.; Sayde, C.; Selker, J.S. Calibration of soil moisture sensing with subsurface heated fiber optics using numerical simulation. Water Resour. Res. 2016, 52, 2985–2995. [Google Scholar] [CrossRef]
- Prasad, V.V.V.; Craufurd, P.Q.; Kakani, V.G.; Wheeler, T.R.; Boote, K.J. Influence of high temperature during pre- and post-anthesis stages of floral development on fruit-set and pollen germination in peanut. Funct. Plant Biol. 2001, 28, 233–240. [Google Scholar] [CrossRef]
- Frauenfeld, O.W.; Zhang, T.; Mccreight, J.L. Northern Hemisphere freezing/thawing index variations over the twentieth century. Int. J. Climatol. 2006, 27, 47–63. [Google Scholar] [CrossRef]
- Isaksen, K.; Benestad, R.E.; Harris, C.; Sollid, J.L. Recent extreme near-surface permafrost temperatures on Svalbard in relation to future climate scenarios. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Schuh, C.; Frampton, A.; Christiansen, H.H. Soil moisture redistribution and its effect on inter-annual active layer temperature and thickness variations in a dry loess terrace in Adventdalen, Svalbard. Cryosphere Discuss. 2017, 11, 635–651. [Google Scholar] [CrossRef]
- Casasso, A.; Sethi, R. Efficiency of closed loop geothermal heat pumps: A sensitivity analysis. Renew. Energy 2014, 62, 737–746. [Google Scholar] [CrossRef]
- Emberlin, J.; Mullins, J.; Corden, J.; Millington, W.; Brooke, M.; Savage, M.; Jones, S. The trend to earlier birch pollen seasons in the U.K.: A biotic response to changes in weather conditions? Grana 1997, 36, 29–33. [Google Scholar] [CrossRef]
- Plattner, G.K.; Stocker, P.; Midgley, P.; Tignor, M. IPCC Expert Meeting on the Science of Alternative Metrics: Meeting Report; UNT Libraries: The Grand Hotel, Oslo, Norway, 2009. [Google Scholar]
- Kirschbaum, M.U. Climate-change impact potentials as an alternative to global warming potentials. Environ. Res. Lett. 2014, 9, 034014. [Google Scholar] [CrossRef]
- Kim, H.M.; Jung, J.Y.; Yergeau, E.; Hwang, C.Y.; Hinzman, L.; Nam, S.; Lee, Y.K. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska. FEMS Microbiol. Ecol. 2014, 89, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.M.; Lee, M.J.; Jung, J.Y.; Hwang, C.Y.; Kim, M.; Ro, H.; Lee, Y.K. Vertical distribution of bacterial community is associated with the degree of soil organic matter decomposition in the active layer of moist acidic tundra. J. Microbiol. 2016, 54, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.F.; Rasul, D.G. Prediction of Soil Temperature by Air Temperature: A Case Study for Faisalabad. Pak. J. Meteorol. 2008, 5, 19–27. [Google Scholar]
- Barman, D.; Kundu, D.; Pal, S.; Pal, S.; Chakraborty, A.; Jha, A.; Bhattacharyya, P. Soil temperature prediction from air temperature for alluvial soils in lower Indo-Gangetic plain. Int. Agrophys. 2017, 31, 9–22. [Google Scholar] [CrossRef]
- Dyrness, C. Control of Depth to Permafrost and Soil Temperature by the Forest Floor in Black Spruce/Feathermoss Communities. United States Department of Agriculture: Washington, DC, USA, 1982. [Google Scholar] [CrossRef]
- Quinton, W.L.; Pomeroy, J.W. Transformations of runoff chemistry in the Arctic tundra, Northwest Territories, Canada. Hydrol. Process. 2006, 20, 2901–2919. [Google Scholar] [CrossRef]
- Qian, C. Evaluation of the Energy-Based Runoff Concept for A Subalpine Tundra Hillslope. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 2012. [Google Scholar]
- Weibull, W. A Statistical Distribution Function of Wide Applicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar]
- Hu, G.; Wu, X.; Zhao, L.; Li, R.; Wu, T.; Xie, C.; Cheng, G. An improved model for soil surface temperature from air temperature in permafrost regions of Qinghai-Xizang (Tibet) Plateau of China. Meteorol. Atmos. Phys. 2016, 129, 441–451. [Google Scholar] [CrossRef]
- Dwyer, L.M.; Hayhoe, H.N.; Culley, J.L. Prediction of soil temperature from air temperature for estimating corn emergence. Can. J. Plant. Sci. 1990, 70, 619–628. [Google Scholar] [CrossRef]
Depth (cm) | Test Site | Fitting Parameter A | Fitting Parameter Z | A/Di | ZDi |
---|---|---|---|---|---|
10 | A | 3.926 | 1.444 | 0.393 | 14.437 |
B | 3.729 | 1.432 | 0.373 | 14.317 | |
15 | A | 3.970 | 1.568 | 0.265 | 23.522 |
B | 3.836 | 1.638 | 0.256 | 24.569 | |
20 | A | 3.942 | 1.705 | 0.197 | 34.099 |
B | 3.898 | 1.956 | 0.195 | 39.120 | |
30 | A | 3.982 | 2.043 | 0.133 | 61.280 |
B | 4.057 | 2.842 | 0.135 | 85.266 |
Depth (cm) | Test Site | CRCSTi,mmax | CRCSTi,mmax/Di |
---|---|---|---|
10 | A | 483.3 | 48.3 |
B | 606.0 | 60.6 | |
15 | A | 399.4 | 26.6 |
B | 515.2 | 34.3 | |
20 | A | 312.1 | 15.6 |
B | 389.4 | 19.5 | |
30 | A | 180.3 | 6.0 |
B | 207.5 | 6.9 |
Depth (cm) | Fitting Parameter A | Fitting Parameter Z | CRCSTi,mmax |
---|---|---|---|
10 | 3.8452 | 1.3804 | 621.259 |
15 | 3.8812 | 1.1687 | 407.675 |
20 | 3.9070 | 1.9046 | 302.345 |
30 | 3.9436 | 2.2992 | 198.401 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, K.; Yang, H.; Lee, B.Y.; Kim, D. Development of Shallow-Depth Soil Temperature Estimation Model Based on Thermal Response in Permafrost Area. Appl. Sci. 2018, 8, 1886. https://doi.org/10.3390/app8101886
Park K, Yang H, Lee BY, Kim D. Development of Shallow-Depth Soil Temperature Estimation Model Based on Thermal Response in Permafrost Area. Applied Sciences. 2018; 8(10):1886. https://doi.org/10.3390/app8101886
Chicago/Turabian StylePark, Keunbo, Heekwon Yang, Bang Yong Lee, and Dongwook Kim. 2018. "Development of Shallow-Depth Soil Temperature Estimation Model Based on Thermal Response in Permafrost Area" Applied Sciences 8, no. 10: 1886. https://doi.org/10.3390/app8101886
APA StylePark, K., Yang, H., Lee, B. Y., & Kim, D. (2018). Development of Shallow-Depth Soil Temperature Estimation Model Based on Thermal Response in Permafrost Area. Applied Sciences, 8(10), 1886. https://doi.org/10.3390/app8101886